1
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Rascón-Cruz Q, Siqueiros-Cendón TS, Siañez-Estrada LI, Villaseñor-Rivera CM, Ángel-Lerma LE, Olivas-Espino JA, León-Flores DB, Espinoza-Sánchez EA, Arévalo-Gallegos S, Iglesias-Figueroa BF. Antioxidant Potential of Lactoferrin and Its Protective Effect on Health: An Overview. Int J Mol Sci 2024; 26:125. [PMID: 39795983 PMCID: PMC11719613 DOI: 10.3390/ijms26010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic diseases, including cardiovascular and neurodegenerative diseases and cancer, are significant global health challenges. Oxidative stress, characterized by an imbalance between reactive oxygen species (ROS) production and antioxidant defenses, is a critical factor in the progression of these pathologies. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein, has emerged as a promising therapeutic agent due to its potent antioxidant, anti-inflammatory, and iron-regulating properties. Lf plays a pivotal role in iron homeostasis by chelating iron, modulating its cellular uptake, and reducing ROS production, thereby mitigating oxidative stress-related tissue damage. Lf also demonstrates neuroprotective potential in diseases like Parkinson's and Alzheimer's, where it alleviates oxidative damage, regulates iron metabolism, and enhances antioxidant defenses. Furthermore, its ability to enhance endogenous antioxidant mechanisms, such as superoxide dismutase and glutathione peroxidase, underscores its systemic protective effects. Lf's anti-inflammatory and antimicrobial activities also contribute to its broad-spectrum protective role in chronic diseases. This review consolidates evidence of Lf's mechanisms in mitigating oxidative stress and highlights its therapeutic potential as a versatile molecule for preventing and managing chronic conditions linked to oxidative damage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (Q.R.-C.); (T.S.S.-C.); (L.I.S.-E.); (C.M.V.-R.); (L.E.Á.-L.); (J.A.O.-E.); (D.B.L.-F.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
3
|
Seddon AR, MacArthur CP, Hampton MB, Stevens AJ. Inflammation and DNA methylation in Alzheimer's disease: mechanisms of epigenetic remodelling by immune cell oxidants in the ageing brain. Redox Rep 2024; 29:2428152. [PMID: 39579010 PMCID: PMC11587723 DOI: 10.1080/13510002.2024.2428152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disease involving memory impairment, confusion, and behavioural changes. The disease is characterised by the accumulation of amyloid beta plaques and neurofibrillary tangles in the brain, which disrupt normal neuronal function. There is no known cure for Alzheimer's disease and due to increasing life expectancy, occurrence is projected to rise over the coming decades. The causes of Alzheimer's disease are multifactorial with inflammation, oxidative stress, genetic and epigenetic variation, and cerebrovascular abnormalities among the strongest contributors. We review the current literature surrounding inflammation and epigenetics in Alzheimer's disease, with a focus on how oxidants from infiltrating immune cells have the potential to alter DNA methylation profiles in the ageing brain.
Collapse
Affiliation(s)
- A. R. Seddon
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - C. P. MacArthur
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| | - M. B. Hampton
- Mātai Hāora – Centre for Redox Biology and Medicine, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - A. J. Stevens
- Department of Pathology and Molecular Medicine, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Ceprián N, Martínez de Toda I, Maté I, Garrido A, Gimenez-Llort L, De la Fuente M. Prodromic Inflammatory-Oxidative Stress in Peritoneal Leukocytes of Triple-Transgenic Mice for Alzheimer's Disease. Int J Mol Sci 2024; 25:6976. [PMID: 39000092 PMCID: PMC11241217 DOI: 10.3390/ijms25136976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Inflammatory-oxidative stress is known to be pivotal in the pathobiology of Alzheimer's disease (AD), but the involvement of this stress at the peripheral level in the disease's onset has been scarcely studied. This study investigated the pro-inflammatory profile and oxidative stress parameters in peritoneal leukocytes from female triple-transgenic mice for AD (3xTgAD) and non-transgenic mice (NTg). Peritoneal leukocytes were obtained at 2, 4, 6, 12, and 15 months of age. The concentrations of TNFα, INFγ, IL-1β, IL-2, IL-6, IL-17, and IL-10 released in cultures without stimuli and mitogen concanavalin A and lipopolysaccharide presence were measured. The concentrations of reduced glutathione (GSH), oxidized glutathione (GSSG), lipid peroxidation, and Hsp70 were also analyzed in the peritoneal cells. Our results showed that although there was a lower release of pro-inflammatory cytokines by 3xTgAD mice, this response was uncontrolled and overstimulated, especially at a prodromal stage at 2 months of age. In addition, there were lower concentrations of GSH in leukocytes from 3xTgAD and higher amounts of lipid peroxides at 2 and 4 months, as well as, at 6 months, a lower concentration of Hsp70. In conclusion, 3xTgAD mice show a worse pro-inflammatory response and higher oxidative stress than NTg mice during the prodromal stages, potentially supporting the idea that Alzheimer's disease could be a consequence of peripheral alteration in the leukocyte inflammation-oxidation state.
Collapse
Affiliation(s)
- Noemí Ceprián
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martínez de Toda
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Ianire Maté
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Antonio Garrido
- Department of Biosciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Lydia Gimenez-Llort
- Department of Psychiatry and Forensic Medicine, Institute of Neuroscience, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Mónica De la Fuente
- Animal Physiology Unit, Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
5
|
Luan J, Guo N, Hu F, Gou X, Xu L. Aged AβPPswe/PS1ΔE9 mice as a useful animal model for studying the link between immunological senescence and diseases. Immunol Lett 2024; 266:106842. [PMID: 38355057 DOI: 10.1016/j.imlet.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
The APPswe/PS1ΔE9 mouse is a double transgenic murine model that harbors two transgenes for Alzheimer's Disease (AD)-related mutant proteins. We previously discovered that this double transgenic animal had a premature immunosenescence phenotype. However, it is unclear how this phenotype progresses to a later stage. This study aimed to elucidate the changes in systemic characteristics aside from those associated with AD between elderly APPswe/PS1ΔE9 mice and littermate control wild-type mice. Tumors in all organs were considerably more frequent in AD mice aged 24 months than in the control wild-type mice. In addition, the survival rate of aged AD mice was considerably lower than that of wild-type control mice. Further, we discovered that the phenotypic difference was mainly caused by severe immunological aging, as evidenced by a high proportion of exhausted T lymphocytes in AD mice compared to wild-type mice of the same age. Based on our findings, the harm produced by normal aging is not as severe as immunological senescence. Addressing immunological aging, as opposed to anti-aging alone, may be a more crucial target for a long life free of cancer.
Collapse
Affiliation(s)
- Jing Luan
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Na Guo
- Institution of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders and Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.
| | - Lixian Xu
- Department of Anesthesiology, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
6
|
Shi M, Chu F, Zhu F, Zhu J. Peripheral blood amyloid-β involved in the pathogenesis of Alzheimer's disease via impacting on peripheral innate immune cells. J Neuroinflammation 2024; 21:5. [PMID: 38178136 PMCID: PMC10765910 DOI: 10.1186/s12974-023-03003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
A key pathological factor of Alzheimer's disease (AD), the most prevalent form of age-related dementia in the world, is excessive β-amyloid protein (Aβ) in extracellular aggregation in the brain. And in the peripheral blood, a large amount of Aβ is derived from platelets. So far, the causality between the levels of peripheral blood Aβ and its aggregation in the brain, particularly the role of the peripheral blood Aβ in the pathology of AD, is still unclear. And the relation between the peripheral blood Aβ and tau tangles of brain, another crucial pathologic factor contributing to the pathogenesis of AD, is also ambiguous. More recently, the anti-Aβ monoclonal antibodies are approved for treatment of AD patients through declining the peripheral blood Aβ mechanism of action to enhance plasma and central nervous system (CNS) Aβ clearance, leading to a decrease Aβ burden in brain and improving cognitive function, which clearly indicates that the levels of the peripheral blood Aβ impacted on the Aβ burden in brain and involved in the pathogenesis of AD. In addition, the role of peripheral innate immune cells in AD remains mostly unknown and the results obtained were controversial. In the present review, we summarize recent studies on the roles of peripheral blood Aβ and the peripheral innate immune cells in the pathogenesis of AD. Finally, based on the published data and our own work, we believe that peripheral blood Aβ plays an important role in the development and progression of AD by impacting on the peripheral innate immune cells.
Collapse
Affiliation(s)
- Mingchao Shi
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Fengna Chu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Feiqi Zhu
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China.
| | - Jie Zhu
- Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China.
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
7
|
Puoyan-Majd S, Parnow A, Rashno M, Heidarimoghadam R, Komaki A. The Protective Effects of High-Intensity Interval Training Combined with Q10 Supplementation on Learning and Memory Impairments in Male Rats with Amyloid-β-Induced Alzheimer's Disease. J Alzheimers Dis 2024; 99:S67-S80. [PMID: 37212117 DOI: 10.3233/jad-230096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Background Oxidative stress plays a major role in the progression of Alzheimer's disease (AD)-related cognitive deficits. Objective This study was done to determine the protective effects of coenzyme Q10 (CoQ10) and high-intensity interval training (HIIT) alone and in combination for eight continuous weeks, on oxidative status, cognitive functions, and histological changes in the hippocampus in amyloid-β (Aβ)-induced AD rats. Methods Ninety male Wistar rats were randomly assigned to the sham, control, Q10 (50 mg/kg of CoQ10; P.O.), HIIT (high intensity: 4 min running at 85-90% VO2max, low intensity: 3 min running at 50-60% VO2max), Q10 + HIIT, AD, AD+Q10, AD+HIIT, and AD+Q10 + HIIT groups. Results The results showed that Aβ injection reduced cognitive functions in the Morris water maze (MWM) test and recognition memory in the novel object recognition test (NORT), which was accompanied by a decrease in total thiol groups, catalase, and glutathione peroxidase activities, an increase in malondialdehyde levels, and neuronal loss in the hippocampus. Interestingly, pretreatment with CoQ10, HIIT, or both, could markedly improve the oxidative status and cognitive decline in the MWM and NOR tests, and hinder neuronal loss in the hippocampus of Aβ-induced AD rats. Conclusion Therefore, a combination of CoQ10 and HIIT can improve Aβ-related cognitive deficits, probably through an amelioration in hippocampal oxidative status and prevention of neuronal loss.
Collapse
Affiliation(s)
- Samira Puoyan-Majd
- Bio-Sciences Department, Physical Education and Sport Sciences Faculty, Razi University, Kermanshah, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolhossein Parnow
- Bio-Sciences Department, Physical Education and Sport Sciences Faculty, Razi University, Kermanshah, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Rashid Heidarimoghadam
- Department of Ergonomics, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
8
|
Song G, Wu H, Chen H, Zhang S, Hu Q, Lai H, Fuller C, Yang G, Chi H. hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning. Curr Alzheimer Res 2024; 21:120-140. [PMID: 38808722 DOI: 10.2174/0115672050314171240527064514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis. METHODS In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors. RESULTS We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes. CONCLUSION This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.
Collapse
Affiliation(s)
- Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Haoyang Wu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Qingwen Hu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Haotian Lai
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Claire Fuller
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, MD, USA
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Gonzaga AKG, Vasconcelos RC, Lopes MLDDS, Medeiros MRDS, de Araújo AA, da Silveira ÉJD, de Medeiros AMC. Oxidative stress markers in the saliva of patients with oral lichen planus. Pathol Res Pract 2023; 248:154569. [PMID: 37285732 DOI: 10.1016/j.prp.2023.154569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To evaluate the levels of oxidative stress markers in the saliva of patients with oral lichen planus (OLP). METHODS A cross-sectional study was conducted with 22 patients diagnosed both clinically and histologically with OLP (reticular or erosive) and 12 individuals without OLP. Non-stimulated sialometry was performed and oxidative stress (myeloperoxidase - MPO and malondialdehyde - MDA) and antioxidant (superoxide dismutase - SOD and glutathione - GSH) markers were determined in the saliva. RESULTS Among the patients with OLP, most were women (n = 19; 86.4%) and reported to have experienced menopause (63.2%). Patients with OLP were mostly in the active stage of the disease (n = 17; 77.3%) and the reticular form was predominant (n = 15; 68.2%). No statistically significant differences were observed when comparing SOD, GSH, MPO and MDA values between individuals with and without OLP, as well as between erosive and reticular forms of OLP (p > 0.05). Patients with inactive OLP presented higher SOD when compared to those with active disease (p = 0.031). CONCLUSION Oxidative stress markers in the saliva of patients with OLP were similar to those found in people without OLP, which can be related to the high exposure of the oral cavity environment to several physical, chemical and microbiological stimuli, important generators of the oxidative stress.
Collapse
Affiliation(s)
- Amanda Katarinny Goes Gonzaga
- Postgraduate Program in Dental Sciences, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Department of Dentistry, Federal University of Rio Grande do Norte, RN, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Fraile-Ramos J, Garrit A, Reig-Vilallonga J, Giménez-Llort L. Hepatic Oxi-Inflammation and Neophobia as Potential Liver-Brain Axis Targets for Alzheimer's Disease and Aging, with Strong Sensitivity to Sex, Isolation, and Obesity. Cells 2023; 12:1517. [PMID: 37296638 PMCID: PMC10252497 DOI: 10.3390/cells12111517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Research on Alzheimer's disease (AD) has classically focused on alterations that occur in the brain and their intra- and extracellular neuropathological hallmarks. However, the oxi-inflammation hypothesis of aging may also play a role in neuroimmunoendocrine dysregulation and the disease's pathophysiology, where the liver emerges as a target organ due to its implication in regulating metabolism and supporting the immune system. In the present work, we demonstrate organ (hepatomegaly), tissue (histopathological amyloidosis), and cellular oxidative stress (decreased glutathione peroxidase and increased glutathione reductase enzymatic activities) and inflammation (increased IL-6 and TNF𝛼) as hallmarks of hepatic dysfunction in 16-month-old male and female 3xTg-AD mice at advanced stages of the disease, and as compared to age- and sex-matched non-transgenic (NTg) counterparts. Moreover, liver-brain axis alterations were found through behavioral (increased neophobia) and HPA axis correlations that were enhanced under forced isolation. In all cases, sex (male) and isolation (naturalistic and forced) were determinants of worse hepatomegaly, oxidative stress, and inflammation progression. In addition, obesity in old male NTg mice was translated into a worse steatosis grade. Further research is underway determine whether these alterations could correlate with a worse disease prognosis and to establish potential integrative system targets for AD research.
Collapse
Affiliation(s)
- Juan Fraile-Ramos
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Anna Garrit
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Josep Reig-Vilallonga
- Department of Anatomy, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Costa HN, Esteves AR, Empadinhas N, Cardoso SM. Parkinson's Disease: A Multisystem Disorder. Neurosci Bull 2023; 39:113-124. [PMID: 35994167 PMCID: PMC9849652 DOI: 10.1007/s12264-022-00934-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 01/22/2023] Open
Abstract
The way sporadic Parkinson's disease (PD) is perceived has undergone drastic changes in recent decades. For a long time, PD was considered a brain disease characterized by motor disturbances; however, the identification of several risk factors and the hypothesis that PD has a gastrointestinal onset have shed additional light. Today, after recognition of prodromal non-motor symptoms and the pathological processes driving their evolution, there is a greater understanding of the involvement of other organ systems. For this reason, PD is increasingly seen as a multiorgan and multisystemic pathology that arises from the interaction of susceptible genetic factors with a challenging environment during aging-related decline.
Collapse
Affiliation(s)
- Helena Nunes Costa
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- IIIUC-Institute for Interdisciplinary Research, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Sandra Morais Cardoso
- CNC-Center for Neuroscience and Cell Biology and CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
12
|
Lai Y, Lin P, Lin F, Chen M, Lin C, Lin X, Wu L, Zheng M, Chen J. Identification of immune microenvironment subtypes and signature genes for Alzheimer's disease diagnosis and risk prediction based on explainable machine learning. Front Immunol 2022; 13:1046410. [PMID: 36569892 PMCID: PMC9773397 DOI: 10.3389/fimmu.2022.1046410] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Using interpretable machine learning, we sought to define the immune microenvironment subtypes and distinctive genes in AD. Methods ssGSEA, LASSO regression, and WGCNA algorithms were used to evaluate immune state in AD patients. To predict the fate of AD and identify distinctive genes, six machine learning algorithms were developed. The output of machine learning models was interpreted using the SHAP and LIME algorithms. For external validation, four separate GEO databases were used. We estimated the subgroups of the immunological microenvironment using unsupervised clustering. Further research was done on the variations in immunological microenvironment, enhanced functions and pathways, and therapeutic medicines between these subtypes. Finally, the expression of characteristic genes was verified using the AlzData and pan-cancer databases and RT-PCR analysis. Results It was determined that AD is connected to changes in the immunological microenvironment. WGCNA revealed 31 potential immune genes, of which the greenyellow and blue modules were shown to be most associated with infiltrated immune cells. In the testing set, the XGBoost algorithm had the best performance with an AUC of 0.86 and a P-R value of 0.83. Following the screening of the testing set by machine learning algorithms and the verification of independent datasets, five genes (CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12) that were closely associated with AD pathological biomarkers and allowed for the accurate prediction of AD progression were found to be immune microenvironment-related genes. The feature gene-based nomogram may provide clinical advantages to patients. Two immune microenvironment subgroups for AD patients were identified, subtype2 was linked to a metabolic phenotype, subtype1 belonged to the immune-active kind. MK-866 and arachidonyltrifluoromethane were identified as the top treatment agents for subtypes 1 and 2, respectively. These five distinguishing genes were found to be intimately linked to the development of the disease, according to the Alzdata database, pan-cancer research, and RT-PCR analysis. Conclusion The hub genes associated with the immune microenvironment that are most strongly associated with the progression of pathology in AD are CXCR4, PPP3R1, HSP90AB1, CXCL10, and S100A12. The hypothesized molecular subgroups might offer novel perceptions for individualized AD treatment.
Collapse
Affiliation(s)
- Yongxing Lai
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Peiqiang Lin
- Department of Neurology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Fan Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Chunjin Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Xing Lin
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Lijuan Wu
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mouwei Zheng
- Department of Geriatric Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,Fujian Provincial Center for Geriatrics, Fujian Provincial Hospital, Fuzhou, Fujian, China,*Correspondence: Jianhao Chen, ; Mouwei Zheng,
| | - Jianhao Chen
- Department of Rehabilitation Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China,*Correspondence: Jianhao Chen, ; Mouwei Zheng,
| |
Collapse
|
13
|
Moghaddam SR, Mehrabani J, Berahman H, Elmieh A, Chafy MF. Leisure-time regular exercise and prevention of the side effects of immune system activity in middle-aged healthy subjects. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep220036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Regular exercise is recommended to improve immune system function and antioxidant activity, while conversely, it may cause inflammation by increasing neutrophil-derived main enzyme, myeloperoxidase, which produces reactive oxygen species. The present study aimed to investigate changes in myeloperoxidase level, its influence on total oxidant status, and the capacity of the antioxidant defence system to counteract oxidative stress in middle-aged men participating in leisure-time regular exercise compared to untrained peer subjects. Twenty trained (age 53.58±2.94 years, body mass index (BMI) 25.47±1.6) and 17 untrained (age 54.17±2.83 years, BMI 27.83±1.12) healthy middle-aged men participated in this study [Rasht, Gilan, Iran]. Participants performed a modified Bruce treadmill test as a model of progressive exercise training. Blood samples were taken before, immediately after, and one hour after the end of the test. A mixed ANOVA and Bonferroni post hoc test was used for the analysis of variables. A significant difference was observed in myeloperoxidase levels between groups, while the trained group showed a significantly lower concentration than the untrained group (P<0.018). This result was also consistent with the lower total oxidant status in this group (P<0.001). Total antioxidant capacity changed significantly in both groups with higher concentration in the trained group (P<0.001). The leisure-time regular exercise can reduce myeloperoxidase concentration and total oxidant status in healthy middle-aged men while increasing the total antioxidant capacity, which may potentially protect them from the side effects of immune system activity induced by exercise training.
Collapse
Affiliation(s)
- S.R. Rahimi Moghaddam
- Department of Physical Education and Sports Sciences, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - J. Mehrabani
- Faculty of Physical Education and Sports Sciences, Guilan University, Rasht, Iran
| | - H. Berahman
- Department of Physical Education and Sports Sciences, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - A. Elmieh
- Department of Physical Education and Sports Sciences, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - M.R. Fadaei Chafy
- Department of Physical Education and Sports Sciences, Islamic Azad University, Rasht Branch, Rasht, Iran
| |
Collapse
|
14
|
Rommer PS, Bsteh G, Zrzavy T, Hoeftberger R, Berger T. Immunosenescence in Neurological Diseases-Is There Enough Evidence? Biomedicines 2022; 10:2864. [PMID: 36359383 PMCID: PMC9687682 DOI: 10.3390/biomedicines10112864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/15/2023] Open
Abstract
The aging of the immune system has recently attracted a lot of attention. Immune senescence describes changes that the immune system undergoes over time. The importance of immune senescence in neurological diseases is increasingly discussed. For this review, we considered studies that investigated cellular changes in the aging immune system and in neurological disease. Twenty-six studies were included in our analysis (for the following diseases: multiple sclerosis, stroke, Parkinson's disease, and dementia). The studies differed considerably in terms of the patient groups included and the cell types studied. Evidence for immunosenescence in neurological diseases is currently very limited. Prospective studies in well-defined patient groups with appropriate control groups, as well as comprehensive methodology and reporting, are essential prerequisites to generate clear insights into immunosenescence in neurological diseases.
Collapse
Affiliation(s)
- Paulus S Rommer
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Hoeftberger
- Department of Neurology, Division of Neuropathology and Neurochemistry, Comprohensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
15
|
Contaldi E, Magistrelli L, Cosentino M, Marino F, Comi C. Lymphocyte Count and Neutrophil-to-Lymphocyte Ratio Are Associated with Mild Cognitive Impairment in Parkinson’s Disease: A Single-Center Longitudinal Study. J Clin Med 2022; 11:jcm11195543. [PMID: 36233411 PMCID: PMC9571051 DOI: 10.3390/jcm11195543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphocyte count and neutrophil-to-lymphocyte ratio (NLR) may represent useful biomarkers of Parkinson’s disease (PD), but their role in PD-related mild cognitive impairment (MCI) has not been fully elucidated. The present study aimed to confirm whether these immunological measures can discriminate PD patients from healthy controls (HC) and establish their feasibility as prognostic biomarkers of MCI in PD. Immunological data at baseline were analyzed in 58 drug-naïve PD patients and 58 HC matched 1:1 for age, sex, and cardiovascular comorbidities. We selected a subgroup of 51 patients from this initial cohort who underwent longitudinal neuropsychological assessments through the Addenbrooke’s Cognitive Examination Revised (ACE-R) test. We considered the last examination available to analyze the relationship between ACE-R test scores and immunological measures. We found that lymphocyte count was lower and NLR higher in PD than HC (p = 0.006, p = 0.044), with AUC = 0.649 and 0.608, respectively. Secondly, in PD-MCI there were significantly higher levels of circulating lymphocytes (p = 0.002) and lower NLR (p = 0.020) than PD with normal cognitive status (PD-NC). Correlations between lymphocyte count and ACE-R total score and memory subitem (r = −0.382, p = 0.006; r = −0.362, p = 0.01), as well as between NLR and ACE-R total score and memory subitem (r = 0.325, p = 0.02; r = 0.374, p = 0.007), were also found. ROC curve analysis showed that lymphocyte count and NLR displayed acceptable discrimination power of PD-MCI with AUC = 0.759 and 0.691, respectively. In conclusion, we suggest that an altered peripheral immune phenotype could foster cognitive decline development in PD, thus opening the possibility of immune-targeting strategies to tackle this disabling non-motor feature.
Collapse
Affiliation(s)
- Elena Contaldi
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- PhD Program in Medical Sciences and Biotechnology, University of Piemonte Orientale, 28100 Novara, Italy
| | - Luca Magistrelli
- Movement Disorders Centre, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, 21100 Varese, Italy
| | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
- Center for Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Franca Marino
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
- Center for Research in Neuroscience, University of Insubria, 21100 Varese, Italy
| | - Cristoforo Comi
- Center of Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
- Department of Translational Medicine, Neurology Unit, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
- Correspondence:
| |
Collapse
|
16
|
Li J, Zou B, Cheng XY, Yang XH, Li J, Zhao CH, Ma RX, Tian JX, Yao Y. Therapeutic effects of total saikosaponins from Radix bupleuri against Alzheimer’s disease. Front Pharmacol 2022; 13:940999. [PMID: 35935875 PMCID: PMC9351603 DOI: 10.3389/fphar.2022.940999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by memory loss and cognitive dysfunction in the elderly, with amyloid-beta (Aβ) deposition and hyperphosphorylation of tau protein as the main pathological feature. Nuclear factor 2 (Nrf2) is a transcription factor that primarily exists in the cytosol of hippocampal neurons, and it is considered as an important regulator of autophagy, oxidative stress, and inflammation. Total saikosaponins (TS) is the main bioactive component of Radix bupleuri (Chaihu). In this study, it was found that TS could ameliorate cognitive dysfunction in APP/PS1 transgenic mice and reduce Aβ generation and senile plaque deposition via activating Nrf2 and downregulating the expression of β-secretase 1 (BACE1). In addition, TS can enhance autophagy by promoting the expression of Beclin-1 and LC3-II, increasing the degradation of p62 and NDP52 and the clearance of phosphorylated tau (p-tau), and reducing the expression of p-tau. It can also downregulate the expression of nuclear factor-κB (NF-κB) to inhibit the activation of glial cells and reduce the release of inflammatory factors. In vitro experiments using PC12 cells induced by Aβ, TS could significantly inhibit the aggregation of Aβ and reduce cytotoxicity. It was found that Nrf2 knock-out weakened the inhibitory effect of TS on BACE1 and NF-κB transcription in PC12 cells. Moreover, the inhibitory effect of TS on BACE1 transcription was achieved by promoting the binding of Nrf2 and the promoter of BACE1 ARE1. Results showed that TS downregulated the expression of BACE1 and NF-κB through Nrf2, thereby reducing the generation of Aβ and inhibiting neuroinflammation. Furthermore, TS can ameliorate synaptic loss and alleviate oxidative stress. In gut microbiota analysis, dysbiosis was demonstrated in APP/PS1 transgenic mice, indicating a potential link between gut microbiota and AD. Furthermore, TS treatment reverses the gut microbiota disorder in APP/PS1 mice, suggesting a therapeutic strategy by remodeling the gut microbe. Collectively, these data shows that TS may serve as a potential approach for AD treatment. Further investigation is needed to clarify the detailed mechanisms underlying TS regulating gut microbiota and oxidative stress.
Collapse
Affiliation(s)
- Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin-He Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Chun-Hui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ji-Xiang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yao Yao, ; Ji-Xiang Tian,
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yao Yao, ; Ji-Xiang Tian,
| |
Collapse
|
17
|
Cucos CA, Cracana I, Dobre M, Popescu BO, Tudose C, Spiru L, Manda G, Niculescu G, Milanesi E. Sulfiredoxin-1 blood mRNA expression levels negatively correlate with hippocampal atrophy and cognitive decline. F1000Res 2022; 11:114. [PMID: 35242306 PMCID: PMC8857523 DOI: 10.12688/f1000research.76191.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Cognitive decline, correlating with hippocampal atrophy, characterizes several neurodegenerative disorders having a background of low-level chronic inflammation and oxidative stress. Methods: In this cross-sectional study, we examined how cognitive decline and hippocampal subfields volume are associated with the expression of redox and inflammatory genes in peripheral blood. We analyzed 34 individuals with different cognitive scores according to Mini-Mental State Examination, corrected by age and education (adjMMSE). We identified a group presenting cognitive decline (CD) with adjMMSE<27 (n=14) and a normal cognition (NC) group with adjMMSE≥27 (n=20). A multiparametric approach, comprising structural magnetic resonance imaging measurement of different hippocampal segments and blood mRNA expression of redox and inflammatory genes was applied. Results: Our findings indicate that hippocampal segment volumes correlate positively with adjMMSE and negatively with the blood transcript levels of 19 genes, mostly redox genes correlating especially with the left subiculum and presubiculum. A strong negative correlation between hippocampal subfields atrophy and Sulfiredoxin-1 (
SRXN1) redox gene was emphasized. Conclusions: Concluding, these results suggest that
SRXN1 might be a valuable candidate blood biomarker for non-invasively monitoring the evolution of hippocampal atrophy in CD patients.
Collapse
Affiliation(s)
| | - Ioana Cracana
- Medinst Diagnostic Romano-German SRL, Bucharest, Romania
| | - Maria Dobre
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Bogdan Ovidiu Popescu
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Clinical Hospital Colentina, Bucharest, Romania
| | - Catalina Tudose
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Prof. Dr. Al. Obregia” Psychiatry Clinical Hospital & the Memory Center of the Romanian Alzheimer Society, Section II, Bucharest, Romania
| | - Luiza Spiru
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- “Ana Aslan” International Foundation, Bucharest, Romania
| | - Gina Manda
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| | - Gabriela Niculescu
- Faculty of Medical Engineering, University Politehnica of Bucharest, Bucharest, Romania
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania
| |
Collapse
|
18
|
Zhang PF, Wang ZT, Liu Y, Hu H, Sun Y, Hu HY, Ma YH, Tan L, Yu JT. Peripheral Immune Cells and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Pathology in Cognitively Intact Older Adults: The CABLE Study. J Alzheimers Dis 2022; 87:721-730. [PMID: 35342094 DOI: 10.3233/jad-220057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Inflammation plays a role in occurrence and progression of Alzheimer's disease (AD). Whether peripheral immune cells are involved in major pathological processes including amyloid-β plaques and tau tangles is still controversial. OBJECTIVE We aimed to examine whether peripheral immune cells counts were associated with early changes in cerebrospinal fluid (CSF) biomarkers of AD pathology in cognitively intact older adults. METHODS This study included 738 objective cognitive normal participants from the Chinese Alzheimer's Biomarker and Lifestyle (CABLE) database. Group comparisons of peripheral immune cells counts were tested by analysis of covariance. Multiple linear regression models were used to examine the associations of peripheral immune cells counts with CSF AD biomarkers. RESULTS In preclinical AD, peripheral lymphocytes and eosinophils changed dynamically along with disease progression. Consistently, regression analysis showed that lymphocytes and eosinophils were associated with Aβ pathology. There were no interaction effects of peripheral immune cells counts with APOE ɛ4, gender, age, and educate. Eosinophil to lymphocyte ratio were also significantly associated with Aβ-related biomarkers. CONCLUSION Our findings showed the relationship between peripheral immune cells and Aβ pathological biomarkers, which indicated that peripheral immune might play a role in progression of AD pathology.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ying Liu
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Sun
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - He-Ying Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Chen JJ, Thiyagarajah M, Song J, Chen C, Herrmann N, Gallagher D, Rapoport MJ, Black SE, Ramirez J, Andreazza AC, Oh P, Marzolini S, Graham SJ, Lanctôt KL. Altered central and blood glutathione in Alzheimer's disease and mild cognitive impairment: a meta-analysis. Alzheimers Res Ther 2022; 14:23. [PMID: 35123548 PMCID: PMC8818133 DOI: 10.1186/s13195-022-00961-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/06/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence implicates oxidative stress (OS) in Alzheimer disease (AD) and mild cognitive impairment (MCI). Depletion of the brain antioxidant glutathione (GSH) may be important in OS-mediated neurodegeneration, though studies of post-mortem brain GSH changes in AD have been inconclusive. Recent in vivo measurements of the brain and blood GSH may shed light on GSH changes earlier in the disease. AIM To quantitatively review in vivo GSH in AD and MCI compared to healthy controls (HC) using meta-analyses. METHOD Studies with in vivo brain or blood GSH levels in MCI or AD with a HC group were identified using MEDLINE, PsychInfo, and Embase (1947-June 2020). Standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for outcomes using random effects models. Outcome measures included brain GSH (Meshcher-Garwood Point Resolved Spectroscopy (MEGA-PRESS) versus non-MEGA-PRESS) and blood GSH (intracellular versus extracellular) in AD and MCI. The Q statistic and Egger's test were used to assess heterogeneity and risk of publication bias, respectively. RESULTS For brain GSH, 4 AD (AD=135, HC=223) and 4 MCI (MCI=213, HC=211) studies were included. For blood GSH, 26 AD (AD=1203, HC=1135) and 7 MCI (MCI=434, HC=408) studies were included. Brain GSH overall did not differ in AD or MCI compared to HC; however, the subgroup of studies using MEGA-PRESS reported lower brain GSH in AD (SMD [95%CI] -1.45 [-1.83, -1.06], p<0.001) and MCI (-1.15 [-1.71, -0.59], z=4.0, p<0.001). AD had lower intracellular and extracellular blood GSH overall (-0.87 [-1. 30, -0.44], z=3.96, p<0.001). In a subgroup analysis, intracellular GSH was lower in MCI (-0.66 [-1.11, -0.21], p=0.025). Heterogeneity was observed throughout (I2 >85%) and not fully accounted by subgroup analysis. Egger's test indicated risk of publication bias. CONCLUSION Blood intracellular GSH decrease is seen in MCI, while both intra- and extracellular decreases were seen in AD. Brain GSH is decreased in AD and MCI in subgroup analysis. Potential bias and heterogeneity suggest the need for measurement standardization and additional studies to explore sources of heterogeneity.
Collapse
Affiliation(s)
- Jinghan Jenny Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mathura Thiyagarajah
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jianmeng Song
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
| | - Clara Chen
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
| | - Nathan Herrmann
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Damien Gallagher
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Mark J Rapoport
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Sandra E Black
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Joel Ramirez
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Paul Oh
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Susan Marzolini
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Krista L Lanctôt
- Neuropsychopharmacology Research Group, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, 2075 Bayview Avenue, Room FG52, Toronto, ON, M4N 3M5, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Geriatric Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Evaluative Clinical Sciences, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
20
|
Lu Y, Li K, Hu Y, Wang X. Expression of Immune Related Genes and Possible Regulatory Mechanisms in Alzheimer's Disease. Front Immunol 2021; 12:768966. [PMID: 34804058 PMCID: PMC8602845 DOI: 10.3389/fimmu.2021.768966] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Immune infiltration of peripheral natural killer (NK) cells in the brain has been observed in Alzheimer's disease (AD). Immunity-related genes (IRGs) play an essential role in immune infiltration; however, the expression of IRGs and possible regulatory mechanisms involved in AD remain unclear. The peripheral blood mononuclear cells (PBMCs) single-cell RNA (scRNA) sequencing data from patients with AD were analyzed and PBMCs obtained from the ImmPort database were screened for cluster marker genes. IRG activity was calculated using the AUCell package. A bulk sequencing dataset of AD brain tissues was analyzed to explore common IRGs between PBMCs and the brain. Relevant regulatory transcription factors (TFs) were identified from the Human TFDB database. The protein-protein interaction network of key TFs were generated using the STRING database. Eight clusters were identified, including memory CD4 T, NKT, NK, B, DC, CD8 T cells, and platelets. NK cells were significantly decreased in patients with AD, while CD4 T cells were increased. NK and DC cells exhibited the highest IRG activity. GO and KEGG analyses of the scRNA and bulk sequencing data showed that the DEGs focused on the immune response. Seventy common IRGs were found in both peripheral NK cells and the brain. Seventeen TFs were associated with IRG expression, and the PPI network indicated that STAT3, IRF1, and REL were the hub TFs. In conclusion, we propose that peripheral NK cells may infiltrate the brain and contribute to neuroinflammatory changes in AD through bioinformatic analysis of scRNA and bulk sequencing data. Moreover, STAT3 may be involved in the transcriptional regulation of IRGs in NK cells.
Collapse
Affiliation(s)
- Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Martínez de Toda I, Ceprián N, Díaz-Del Cerro E, De la Fuente M. The Role of Immune Cells in Oxi-Inflamm-Aging. Cells 2021; 10:2974. [PMID: 34831197 PMCID: PMC8616159 DOI: 10.3390/cells10112974] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is the result of the deterioration of the homeostatic systems (nervous, endocrine, and immune systems), which preserve the organism's health. We propose that the age-related impairment of these systems is due to the establishment of a chronic oxidative stress situation that leads to low-grade chronic inflammation throughout the immune system's activity. It is known that the immune system weakens with age, which increases morbidity and mortality. In this context, we describe how the function of immune cells can be used as an indicator of the rate of aging of an individual. In addition to this passive role as a marker, we describe how the immune system can work as a driver of aging by amplifying the oxidative-inflammatory stress associated with aging (oxi-inflamm-aging) and inducing senescence in far tissue cells. Further supporting our theory, we discuss how certain lifestyle conditions (such as social environment, nutrition, or exercise) can have an impact on longevity by affecting the oxidative and inflammatory state of immune cells, regulating immunosenescence and its contribution to oxi-inflamm-aging.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Noemi Ceprián
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology, and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; (N.C.); (E.D.-D.C.); (M.D.l.F.)
- Institute of Investigation 12 de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
22
|
Vida C, Oliva C, Yuste C, Ceprián N, Caro PJ, Valera G, de Pablos IG, Morales E, Carracedo J. Oxidative Stress in Patients with Advanced CKD and Renal Replacement Therapy: The Key Role of Peripheral Blood Leukocytes. Antioxidants (Basel) 2021; 10:1155. [PMID: 34356387 PMCID: PMC8301096 DOI: 10.3390/antiox10071155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress plays a key role in the pathophysiology of chronic kidney disease (CKD). Most studies have investigated peripheral redox state focus on plasma, but not in different immune cells. Our study analyzed several redox state markers in plasma and isolated peripheral polymorphonuclear (PMNs) and mononuclear (MNs) leukocytes from advanced-CKD patients, also evaluating differences of hemodialysis (HD) and peritoneal dialysis (PD) procedures. Antioxidant (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH)) and oxidant parameters (xanthine oxidase (XO), oxidized glutathione (GSSG), malondialdehyde (MDA)) were assessed in plasma, PMNs and MNs from non-dialysis-dependent-CKD (NDD-CKD), HD and PD patients and healthy controls. Increased oxidative stress and damage were observed in plasma, PMNs and MNs from NDD-CKD, HD and PD patients (increased XO, GSSG and MDA; decreased SOD, CAT, GPX and GSH; altered GSSG/GSH balance). Several oxidative alterations were more exacerbated in PMNs, whereas others were only observed in MNs. Dialysis procedures had a positive effect on preserving the GSSG/GSH balance in PMNs. Interestingly, PD patients showed greater oxidative stress than HD patients, especially in MNs. The assessment of redox state parameters in PMNs and MNs could have potential use as biomarkers of the CKD progression.
Collapse
Affiliation(s)
- Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
| | - Carlos Oliva
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
| | - Claudia Yuste
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Noemí Ceprián
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
| | - Paula Jara Caro
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Gemma Valera
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
| | - Ignacio González de Pablos
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Enrique Morales
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
- Department of Nephrology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Julia Carracedo
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain; (C.O.); (N.C.); (G.V.)
- Research Institute Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (C.Y.); (P.J.C.); (I.G.d.P.); (E.M.)
| |
Collapse
|
23
|
De la Fuente M. The Role of the Microbiota-Gut-Brain Axis in the Health and Illness Condition: A Focus on Alzheimer's Disease. J Alzheimers Dis 2021; 81:1345-1360. [PMID: 33935086 DOI: 10.3233/jad-201587] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trillions of commensal microbes live in our body, the majority in the gut. This gut microbiota is in constant interaction with the homeostatic systems, the nervous, immune and endocrine systems, being fundamental for their appropriate development and function as well as for the neuroimmunoendocrine communication. The health state of an individual is understood in the frame of this communication, in which the microbiota-gut-brain axis is a relevant example. This bidirectional axis is constituted in early age and is affected by many environmental and lifestyle factors such as diet and stress, among others, being involved in the adequate maintenance of homeostasis and consequently in the health of each subject and in his/her rate of aging. For this, an alteration of gut microbiota, as occurs in a dysbiosis, and the associated gut barrier deterioration and the inflammatory state, affecting the function of immune, endocrine and nervous systems, in gut and in all the locations, is in the base of a great number of pathologies as those that involve alterations in the brain functions. There is an age-related deterioration of microbiota and the homeostatic systems due to oxi-inflamm-aging, and thus the risk of aging associated pathologies such as the neurodegenerative illness. Currently, this microbiota-gut-brain axis has been considered to have a relevant role in the pathogenesis of Alzheimer's disease and represents an important target in the prevention and slowdown of the development of this pathology. In this context, the use of probiotics seems to be a promising help.
Collapse
Affiliation(s)
- Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid. Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain
| |
Collapse
|
24
|
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Curr Alzheimer Res 2021; 17:238-258. [PMID: 32321403 DOI: 10.2174/1567205017666200422152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
25
|
Vida C, Carracedo J, de Sequera P, Bodega G, Pérez R, Alique M, Ramírez R. A high magnesium concentration in citrate dialysate prevents oxidative stress and damage in human monocytes in vitro. Clin Kidney J 2021; 14:1403-1411. [PMID: 33959268 PMCID: PMC8087128 DOI: 10.1093/ckj/sfaa131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The use of dialysis fluids (DFs) during haemodialysis has been associated with increased oxidative stress and reduced serum magnesium (Mg) levels, contributing to chronic inflammation. Since the role of Mg in modulating immune function and reducing oxidative stress has been demonstrated, the aim of this study was to characterize in vitro whether increasing the Mg concentration in DFs could protect immune cells from oxidative stress and damage. METHODS The effect of citrate [citrate dialysis fluid (CDF), 1 mM] or acetate [acetate dialysis fluid (ADF), 3 mM] dialysates with low (0.5 mM; routinely used) or high (1 mM, 1.25 mM and 2 mM) Mg concentrations was assessed in THP-1 human monocytes. The levels of reactive oxygen species (ROS), malondialdehyde (MDA) and oxidized/reduced (GSSG/GSH) glutathione were quantified under basal and inflammatory conditions (stimulation with lipopolysaccharide, LPS). RESULTS The increase of Mg in CDF resulted in a significant reduction of ROS production under basal and inflammatory conditions (extremely marked in 2 mM Mg; P < 0.001). These effects were not observed in ADF. Interestingly, in a dose-dependent manner, high Mg doses in CDF reduced oxidative stress in monocytes under both basal and inflammatory conditions. In fact, 2 mM Mg significantly decreased the levels of GSH, GSSG and MDA and the GSSG/GSH ratio in relation to 0.5 mM Mg. CONCLUSIONS CDF produces lower oxidative stress than ADF. The increase of Mg content in DFs, especially in CDF, could have a positive and protective effect in reducing oxidative stress and damage in immune cells, especially under inflammatory conditions.
Collapse
Affiliation(s)
- Carmen Vida
- Dpto de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Julia Carracedo
- Dpto Genética, Fisiología y Microbiología (Sección Fisiología), Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Patricia de Sequera
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
- Dpto de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Guillermo Bodega
- Dpto de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Rafael Pérez
- Sección de Nefrología, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Matilde Alique
- Dpto de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| | - Rafael Ramírez
- Dpto de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), Madrid, Spain
| |
Collapse
|
26
|
Djuretić J, Dimitrijević M, Stojanović M, Stevuljević JK, Hamblin MR, Micov A, Stepanović-Petrović R, Leposavić G. Infrared radiation from cage bedding moderates rat inflammatory and autoimmune responses in collagen-induced arthritis. Sci Rep 2021; 11:2882. [PMID: 33536461 PMCID: PMC7858598 DOI: 10.1038/s41598-021-81999-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
The development of collagen type II (CII)-induced arthritis (CIA), a model of rheumatoid arthritis, in rats housed in cages with bedding composed of Celliant fibres containing ceramic particles, which absorb body heat and re-emit the energy back to the body in the form of infrared radiation (+IRF rats), and those housed in cages with standard wooden shaving bedding (-IRF control rats) was examined. The appearance of the first signs of CIA was postponed, while the disease was milder (judging by the arthritic score, paw volume, and burrowing behaviour) in +IRF compared with -IRF rats. This correlated with a lower magnitude of serum anti-CII IgG antibody levels in +IRF rats, and lower production level of IL-17, the Th17 signature cytokine, in cultures of their paws. This could be partly ascribed to impaired migration of antigen-loaded CD11b + dendritic cells and their positioning within lymph nodes in +IRF rats reflecting diminished lymph node expression of CCL19 /CCL21. Additionally, as confirmed in rats with carrageenan-induced paw inflammation (CIPI), the infrared radiation from Celliant fibres, independently from immunomodulatory effects, exerted anti-inflammatory effects (judging by a shift in pro-inflammatory mediator to anti-inflammatory/immunoregulatory mediator ratio towards the latter in paw cultures) and ameliorated burrowing behaviour in CIA rats.
Collapse
Affiliation(s)
- Jasmina Djuretić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Jelena Kotur Stevuljević
- Department of Biochemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Ana Micov
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Radica Stepanović-Petrović
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
27
|
Martínez de Toda I, Vida C, Garrido A, De la Fuente M. Redox Parameters as Markers of the Rate of Aging and Predictors of Life Span. J Gerontol A Biol Sci Med Sci 2021; 75:613-620. [PMID: 30753310 DOI: 10.1093/gerona/glz033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been reported to increase with aging, and although several age-related changes in redox parameters have been described, none of them have been verified as markers of the rate of aging and life span. Therefore, antioxidant (catalase, glutathione peroxidase, reductase activities, and reduced glutathione) and oxidant (oxidized glutathione, basal superoxide anion, and malondialdehyde concentrations) parameters were studied in whole blood cells from humans divided into different age groups (adult, mature, older adult, nonagenarian, and centenarian) in a cross-sectional study. Moreover, the same parameters were investigated in peritoneal leukocytes of mice at the analogous human ages (adult, mature, old, very old, and long-lived) in a longitudinal study as well as in adult prematurely aging mice. The results reveal that the age-related alterations of these markers are similar in humans and mice, with decreased antioxidants and increased oxidants in old participants, whereas long-lived individuals show similar values to those in adults. In addition, adult prematurely aging mice showed similar values to those in chronologically old mice and had a shorter life span than nonprematurely aging mice. Thus, these parameters could be proposed as markers of the rate of aging and used to ascertain biological age in humans.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| |
Collapse
|
28
|
Wyatt-Johnson SK, Brutkiewicz RR. The Complexity of Microglial Interactions With Innate and Adaptive Immune Cells in Alzheimer's Disease. Front Aging Neurosci 2020; 12:592359. [PMID: 33328972 PMCID: PMC7718034 DOI: 10.3389/fnagi.2020.592359] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
In the naïve mouse brain, microglia and astrocytes are the most abundant immune cells; however, there is a complexity of other immune cells present including monocytes, neutrophils, and lymphocytic cells, such as natural killer (NK) cells, T cells, and B cells. In Alzheimer’s disease (AD), there is high inflammation, reactive microglia, and astrocytes, leaky blood–brain barrier, the buildup of amyloid-beta (Aβ) plaques, and neurofibrillary tangles which attract infiltrating peripheral immune cells that are interacting with the resident microglia. Limited studies have analyzed how these infiltrating immune cells contribute to the neuropathology of AD and even fewer have analyzed their interactions with the resident microglia. Understanding the complexity and dynamics of how these immune cells interact in AD will be important for identifying new and novel therapeutic targets. Thus, this review will focus on discussing our current understanding of how macrophages, neutrophils, NK cells, T cells, and B cells, alongside astrocytes, are altered in AD and what this means for the disorder, as well as how these cells are affected relative to the resident microglia.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
29
|
Martínez de Toda I, Miguélez L, Vida C, Carro E, De la Fuente M. Altered Redox State in Whole Blood Cells from Patients with Mild Cognitive Impairment and Alzheimer's Disease. J Alzheimers Dis 2020; 71:153-163. [PMID: 31356205 DOI: 10.3233/jad-190198] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxidative stress plays an essential and early role in the pathophysiology of Alzheimer's disease (AD). Alterations in the redox state in AD and in mild cognitive impairment (MCI) patients appear in the brain and at peripheral level. Given that it is easier to study the latter, most of the research has been focused on plasma. However, the analysis of redox parameters in whole blood cells (including erythrocytes and leukocytes) has not really been investigated. Moreover, the association of these parameters with Mini-Mental State Examination (MMSE) clinical scores, has scarcely been studied. Therefore, the aim of the present work was to analyze several redox markers in whole blood cells from male and female MCI and AD patients. Antioxidant (superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx), and reductase (GR) activities, and reduced glutathione (GSH) concentration) together with oxidant parameters (oxidized glutathione (GSSG) and thiobarbituric acid-reactive substances (TBARS)) were investigated using MCI and AD (10 women and 10 men in each group) and their age-matched control groups (15 women and 15 men). The results show an altered redox state in whole blood cells from AD patients (higher CAT, GSSG/GSH, TBARS and lower GPx, GR, GSH). Some of these redox parameters are already affected in MCI patients (higher TBARS and lower GPx and GR activities) in both sexes and, consequently, they could be used as markers of prodromal AD. Since GR, GSH, GSSG, and GSSG/GSH were found to be associated with MMSE scores, they seem to be useful clinically to monitor cognitive decline in AD progression.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| | - Lara Miguélez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| | - Eva Carro
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| |
Collapse
|
30
|
NaveenKumar SK, Hemshekhar M, Jagadish S, Manikanta K, Vishalakshi GJ, Kemparaju K, Girish KS. Melatonin restores neutrophil functions and prevents apoptosis amid dysfunctional glutathione redox system. J Pineal Res 2020; 69:e12676. [PMID: 32597503 DOI: 10.1111/jpi.12676] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/26/2022]
Abstract
Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.
Collapse
Affiliation(s)
| | | | - Swamy Jagadish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | | | | | - Kempaiah Kemparaju
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
| | - Kesturu S Girish
- Department of Studies in Biochemistry, University of Mysore, Mysore, India
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru, India
| |
Collapse
|
31
|
Redox signalling and regulation of the blood-brain barrier. Int J Biochem Cell Biol 2020; 125:105794. [PMID: 32562769 DOI: 10.1016/j.biocel.2020.105794] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
Neurological disorders are associated with increased oxidative stress. Reactive oxidants damage tissue and promote cell death, but it is apparent that oxidants can have more subtle effects on cell function through the modulation of redox-sensitive signalling pathways. Cells of the blood-brain barrier regulate the brain microenvironment but become dysfunctional during neurological disease. The blood-brain barrier is maintained by many cell types, and is modulated by redox-sensitive pathways, ranging from the cytoskeletal elements responsible for establishing a barrier, to growth factor and cytokine signalling pathways that influence neurovascular cells. During neurological disease, blood-brain barrier cells are exposed to exogenously generated oxidants from immune cells, as well as increasing endogenously oxidant production. These oxidants impair the function of the blood-brain barrier, leading to increased leakage and reduced blood flow. Reducing the impact of oxidants on the function of blood-brain barrier cells may provide new strategies for delaying the progression of neurological disease.
Collapse
|
32
|
Bermejo-Pareja F, Del Ser T, Valentí M, de la Fuente M, Bartolome F, Carro E. Salivary lactoferrin as biomarker for Alzheimer's disease: Brain-immunity interactions. Alzheimers Dement 2020; 16:1196-1204. [PMID: 32543760 PMCID: PMC7984071 DOI: 10.1002/alz.12107] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Objective We aim to explain why salivary lactoferrin (Lf) levels are reduced in patients suffering mild cognitive impairment (MCI) and sporadic Alzheimer's disease (sAD).1 We also will discuss if such Lf decrease could be due to a downregulation of the sAD associated systemic immunity. Background Several non‐neurological alterations have been described in sAD, mainly in skin, blood cell, and immunological capacities. We reviewed briefly the main pathophysiological theories of sAD (amyloid cascade, tau, unfolder protein tau, and amyloid deposits) emphasizing the most brain based hypotheses such as the updated tau‐related neuron skeletal hypothesis; we also comment on the systemic theories that emphasize the fetal origin of the complex disorders that include the low inflammatory and immunity theories of sAD. New/updated hypothesis Lf has important anti‐infectious and immunomodulatory roles in health and disease. We present the hypothesis that the reduced levels of saliva Lf could be an effect of immunological disturbances associated to sAD. Under this scenario, two alternative pathways are possible: first, whether sAD could be a systemic disorder (or disorders) related to early immunological and low inflammatory alterations; second, if systemic immunity alterations of sAD manifestations could be downstream of early sAD brain affectations. Major challenges for the hypothesis The major challenge of the Lf as early sAD biomarker would be its validation in other clinical and population‐based studies. It is possible the decreased salivary Lf in early sAD could be related to immunological modulation actions, but other different unknown mechanisms could be the origin of such reduction. Linkage to other major theories This hypothesis is in agreement with two physiopathological explanations of the sAD as a downstream process determined by the early lesions of the hypothalamus and autonomic vegetative system (neurodegeneration), or as a consequence of low neuroinflammation and dysimmunity since the early life aggravated in the elderly (immunosenescence).
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- Department of Medicine, Complutense University, Madrid, Spain.,Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Teodoro Del Ser
- Alzheimer's Disease Investigation Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofia Foundation, Alzheimer Research Centre, Madrid, Spain
| | - Meritxell Valentí
- Alzheimer's Disease Investigation Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofia Foundation, Alzheimer Research Centre, Madrid, Spain
| | - Mónica de la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University of Madrid, Madrid, Spain.,Aging, Neuroimmunology and Nutrition Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Fernando Bartolome
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Networking Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eva Carro
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain.,Networking Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
33
|
Lv H, Zhu C, Wei W, Lv X, Yu Q, Deng X, Ci X. Enhanced Keap1-Nrf2/Trx-1 axis by daphnetin protects against oxidative stress-driven hepatotoxicity via inhibiting ASK1/JNK and Txnip/NLRP3 inflammasome activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 71:153241. [PMID: 32454347 DOI: 10.1016/j.phymed.2020.153241] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Oxidative stress-triggered fatal hepatotoxicity is an essential pathogenic factor in acute liver failure (ALF). AIMS To investigate the protective effect of daphnetin (Daph) on tert-butyl hydroperoxide (t-BHP) and acetaminophen (APAP)-induced hepatotoxicity through altering Nrf2/Trx-1 pathway activation. MATERIALS AND METHODS In vivo, male C57BL/6 mice with Wild-type (WT) and Nrf2-/- were divided into five groups and acute liver injury model were established by APAP or LPS/GalN after injection with Daph (20, 40, or 80 mg/kg), seperately. Then, liver tissue and serum were collected for biochemical determination, TUNEL and H & E staining, and western blot analysis. In vitro, HepG2 cells were used to investigate the protective effect and mechanism of daphnetin against ROS and apoptosis induced by t-BHP via apoptosis detection, western blot, immunofluorescence analysis, and sgRNA transfection. RESULTS Our results indicated that Daph efficiently inhibited t-BHP-stimulated hepatotoxicity, and modulated Trx-1 expression and Nrf2 activation which decreased Keap1-overexpression in HepG2 cells. Moreover, Daph inhibited t-BHP-excited hepatotoxicity and enhanced Trx-1 expression, which was reversed in Nrf2-/- HepG2 cells. In vivo, a survival rate analysis first suggested that Daph significantly reduced the lethality induced by APAP or GalN/LPS in a Nrf2-dependent or -independent manner by using Nrf2-/- mice, respectively. Next, further results implicated that Daph not only effectively alleviated APAP-induced an increase of ALT and AST levels, histopathological changes, ROS overproduction, malondialdehyde (MDA) formation and GSH/GSSG reduction, but it also relieved hepatic apoptosis by strengthening the suppression of cleaved-caspase-3 and expression of P53 protein. Additionally, Daph attenuated mitochondrial dysfunction by suppressing ASK1/JNK activation and decreasing apoptosis-inducing factor (AIF) and Cytochrome c release and Bax mitochondrial translocation. Daph inhibited inflammatory responses by inactivating the thioredoxin-interacting protein (Txnip)/NLRP3 inflammasome. Furthermore, Daph efficiently enhanced Nrf2 nuclear translocation and Trx-1 expression. However, these effects in WT mice were eliminated in Nrf2-/- mice. CONCLUSIONS These investigations demonstrated that Daph treatment has protective potential against oxidative stress-driven hepatotoxicity by inhibition of ASK1/JNK and Txnip/NLRP3 activation, which may be strongly related to the Nrf2/Trx-1 upregulation.
Collapse
Affiliation(s)
- Hongming Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Chao Zhu
- Department of Ophthalmology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, China
| | - Wei Wei
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaohong Lv
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Qinlei Yu
- Jilin Provincial Animal Disease Control Center, 4510 Xi'an Road, Changchun 130062, China
| | - Xuming Deng
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
34
|
Dong X, Nao J, Shi J, Zheng D. Predictive Value of Routine Peripheral Blood Biomarkers in Alzheimer's Disease. Front Aging Neurosci 2019; 11:332. [PMID: 31866854 PMCID: PMC6906180 DOI: 10.3389/fnagi.2019.00332] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Background Biomarker screening is of major significance for the early diagnosis and prevention of Alzheimer’s disease (AD). Routine peripheral blood parameters are easy to collect and detect, making them ideal potential biomarkers. Thus, we aimed to evaluate the parameters from routine blood as potential biomarkers for AD. Methods We enrolled 56 AD patients, 57 mild cognitive impairment (MCI) patients, and 59 healthy elderly controls. Receiver operating characteristic (ROC) curves were used to assess the diagnostic values of routine blood biomarkers in patients with cognitive impairment. Results There were significant differences in eight parameters between the groups. Logistic regression revealed that the neutrophil% (odds ratio (OR) 1.34, 95% confidence interval [CI] 1.03–1.75, p = 0.031) and neutrophil-to-lymphocyte ratio (NLR; OR 6.27, 95% CI 3.98–9.82, p = 0.003) differentiated AD patients and controls (areas under the curve [AUCs], 0.728 and 0.721) and that the NLR (OR 1.93, 95% CI 1.07–3.47, p = 0.028) and mean platelet volume (OR 1.67, 95% CI 1.04–2.70, p = 0.036) differentiated MCI patients and controls (AUCs, 0.60 and 0.638). There were no effective diagnostic biomarkers to distinguish AD from MCI. Conclusion Some routine blood biomarkers may correlate with cognitive impairment. Analysis of these biomarkers, such as the NLR, may be useful for the identification of patients with cognitive impairment.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jile Shi
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongming Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8409329. [PMID: 31885820 PMCID: PMC6914903 DOI: 10.1155/2019/8409329] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterised by impairments in the cognitive domains associated with orientation, recording, and memory. This pathology results from an abnormal deposition of the β-amyloid (Aβ) peptide and the intracellular accumulation of neurofibrillary tangles. Mitochondrial dysfunctions play an important role in the pathogenesis of AD, due to disturbances in the bioenergetic properties of cells. To date, the usual therapeutic drugs are limited because of the diversity of cellular routes in AD and the toxic potential of these agents. In this context, alpha-lipoic acid (α-LA) is a well-known fatty acid used as a supplement in several health conditions and diseases, such as periphery neuropathies and neurodegenerative disorders. It is produced in several cell types, eukaryotes, and prokaryotes, showing antioxidant and anti-inflammatory properties. α-LA acts as an enzymatic cofactor able to regulate metabolism, energy production, and mitochondrial biogenesis. In addition, the antioxidant capacity of α-LA is associated with two thiol groups that can be oxidised or reduced, prevent excess free radical formation, and act on improvement of mitochondrial performance. Moreover, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6. Regarding the pharmacokinetic profile, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic. However, α-LA has low risk in prolonged use, although its therapeutic potential, interactions with other substances, and adverse reactions have not been well established in clinical trials with populations at higher risk for diseases of aging. Thus, this review aimed to describe the pharmacokinetic profile, bioavailability, therapeutic efficacy, safety, and effects of combined use with centrally acting drugs, as well as report in vitro and in vivo studies that demonstrate the mitochondrial mechanisms of α-LA involved in AD protection.
Collapse
|
36
|
Where Could Research on Immunosenescence Lead? Int J Mol Sci 2019; 20:ijms20235906. [PMID: 31775238 PMCID: PMC6928833 DOI: 10.3390/ijms20235906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
|
37
|
Volkman R, Ben-Zur T, Kahana A, Garty BZ, Offen D. Myeloperoxidase Deficiency Inhibits Cognitive Decline in the 5XFAD Mouse Model of Alzheimer's Disease. Front Neurosci 2019; 13:990. [PMID: 31611761 PMCID: PMC6769081 DOI: 10.3389/fnins.2019.00990] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
Myeloperoxidase (MPO) is an enzyme expressed mostly by neutrophils and is a primary mediator of neutrophils oxidative stress response. While a profound body of evidence associates neutrophil-derived MPO in the pathogenesis of Alzheimer’s disease (AD), this role has not been assessed in an animal model of AD. Here, we produced hematologic chimerism in the 5XFAD mouse model of AD, with MPO deficient mice, resulting in 5XFAD with hematologic MPO deficiency (5XFAD-MPO KO). Behavioral examinations of 5XFAD-MPO KO showed significant superior performance in spatial learning and memory, associative learning, and anxiety/risk assessment behavior, as compared to 5XFAD mice transplanted with WT cells (5XFAD-WT). Hippocampal immunohistochemical and mRNA expression analyses showed significantly reduced levels of inflammatory mediators in 5XFAD-MPO KO mice with no apparent differences in the numbers of amyloid-β plaques. In addition, immunoblotting and mRNA analyses showed significantly reduced levels of APOE in 5XFAD-MPO KO. Together, these results indicate a substantial involvement of neutrophil-derived MPO in the pathology of 5XFAD model of AD and suggest MPO as a potential therapeutic target in AD.
Collapse
Affiliation(s)
- Rotem Volkman
- Department of Human Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Ben-Zur
- Department of Human Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Daniel Offen
- Department of Human Genetics and Biochemistry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Martínez de Toda I, Miguélez L, Siboni L, Vida C, De la Fuente M. High perceived stress in women is linked to oxidation, inflammation and immunosenescence. Biogerontology 2019; 20:823-835. [PMID: 31396798 DOI: 10.1007/s10522-019-09829-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
Abstract
Chronic stress situations lead to an impairment of immune response and higher oxidative and inflammatory stress, which are important underlying mechanisms of the ageing process. However, given that the physiological stress response depends on the subjective appraisal of a given stressor, the aim of the study was to investigate the effect that different degrees of perceived stress have, regardless of their type, on immune functions, oxidative and inflammatory stress and ageing rate of women (30-50 years old). For that purpose, a group of 49 women was classified, according to their scores obtained in the perceived stress scale (PSS), into low (n = 23), moderate (n = 14) and high (n = 12) degree of perceived stress. The immune functions studied were: neutrophil and lymphocyte chemotaxis, neutrophil phagocytic capacity, natural killer activity, lymphoproliferation and LPS-stimulated cytokine release. Basal cytokine release was studied as an inflammatory stress marker. Antioxidant (superoxide dismutase, glutathione peroxidase and reductase activities, and reduced glutathione) and oxidant compounds (oxidized glutathione and malondialdehyde) were also investigated in whole blood as markers of oxidative stress. The results show that, in general, women with a moderate or high degree of perceived stress have a worse immune functionality and higher oxidative and inflammatory stress compared to women with low stress perception. In addition, a positive correlation was found between PSS scores and the biological age of each woman (P ≤ 0.001). In conclusion, high levels of perceived stress in women are associated with a higher oxidative and inflammatory stress and immunosenescence, which seem to accelerate their ageing rate.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| | - Lara Miguélez
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
| | - León Siboni
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, José Antonio Nováis 12, 28040, Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
39
|
Martínez de Toda I, Vida C, Sanz San Miguel L, De la Fuente M. When will my mouse die? Life span prediction based on immune function, redox and behavioural parameters in female mice at the adult age. Mech Ageing Dev 2019; 182:111125. [PMID: 31381890 DOI: 10.1016/j.mad.2019.111125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
The identification of predictive markers of life span would help to unravel the underlying mechanisms influencing ageing and longevity. For this aim, 30 variables including immune functions, inflammatory-oxidative stress state and behavioural characteristics were investigated in ICR-CD1 female mice at the adult age (N = 38). Mice were monitored individually until they died and individual life spans were registered. Multiple linear regression was carried out to construct an Immunity model (adjusted R2 = 75.8%) comprising Macrophage chemotaxis and phagocytosis and Lymphoproliferation capacity, a Redox model (adjusted R2 = 84.4%) involving Reduced Glutathione and Malondialdehyde concentrations and Glutathione Peroxidase activity and a Behavioural model (adjusted R2 = 79.8%) comprising Internal Locomotion and Time spent in open arms indices. In addition, a Combined model (adjusted R2 = 92.4%) and an Immunity-Redox model (adjusted R2 = 88.7%) were also constructed by combining the above-mentioned selected variables. The models were also cross-validated using two different sets of female mice (N = 30; N = 40). Correlation between predicted and observed life span was 0.849 (P < 0.000) for the Immunity model, 0.691 (P < 0.000) for the Redox, 0.662 (P < 0.000) for the Behavioural and 0.840 (P < 0.000) for the Immunity-Redox model. Thus, these results provide a new perspective on the use of immune function, redox and behavioural markers as prognostic tools in ageing research.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Luis Sanz San Miguel
- Department of Statistics and Operational Research, Faculty of Mathematics, Complutense University, Madrid, Spain
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain; Institute of Investigation Hospital 12 Octubre, Madrid, Spain.
| |
Collapse
|
40
|
Function, Oxidative, and Inflammatory Stress Parameters in Immune Cells as Predictive Markers of Lifespan throughout Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4574276. [PMID: 31281577 PMCID: PMC6589234 DOI: 10.1155/2019/4574276] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022]
Abstract
According to the oxidative-inflammatory theory of aging, there is a link between the function, the oxidative-inflammatory stress state of immune cells, and longevity. However, it is unknown which immune cell parameters can predict lifespan and if there would be any changes in this prediction, depending on the age of the subject. Therefore, a longitudinal study in mice was performed analysing immune function (chemotaxis of macrophages and lymphocytes, phagocytosis of macrophages, natural killer (NK) activity, and lymphoproliferation capacity), antioxidant (catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) activities as well as reduced glutathione (GSH) concentrations), oxidant (oxidized glutathione (GSSG), superoxide anion, and malondialdehyde (MDA) concentrations), and inflammation-related markers (basal release of IL-1β, IL-6, TNF-α, and IL-10) in peritoneal leukocytes from mice at the adult, mature, old, very old, and long-lived ages (40, 56, 72, 96, and 120 ± 4 weeks of age, respectively). The results reveal that some of the investigated parameters are determinants of longevity at the adult age (lymphoproliferative capacity, lymphocyte chemotaxis, macrophage chemotaxis and phagocytosis, GPx activity, and GSH, MDA, IL-6, TNF-α, and IL-10 concentrations), and therefore, they could be proposed as markers of the rate of aging. However, other parameters are predictive of extreme longevity only at the very old age (NK activity, CAT and GR activities, and IL-6 and IL-1β concentrations), and as such, they could reflect some of the adaptive mechanisms underlying the achievement of high longevity. Nevertheless, although preliminary, the results of the present study provide a new perspective on the use of function, redox, and inflammatory parameters in immune cells as prognostic tools in aging research and represent a novel benchmark for future work aimed at prediction of lifespan.
Collapse
|
41
|
Vida C, Kobayashi H, Garrido A, Martínez de Toda I, Carro E, Molina JA, De la Fuente M. Lymphoproliferation Impairment and Oxidative Stress in Blood Cells from Early Parkinson's Disease Patients. Int J Mol Sci 2019; 20:ijms20030771. [PMID: 30759742 PMCID: PMC6386872 DOI: 10.3390/ijms20030771] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/28/2019] [Accepted: 02/02/2019] [Indexed: 12/20/2022] Open
Abstract
In Parkinson’s Disease (PD), the peripheral changes in the functional capacity and redox state of immune cells has been scarcely investigated, especially in the early PD stages. Aging is a risk factor for PD, and the age-related impairment of the immune system, based on a chronic-oxidative stress situation, is involved in the rate of aging. We analyzed several functions in isolated peripheral blood neutrophils and mononuclear cells from PD stage 2 patients, and compared the results to those in healthy elderly and adult controls. Several oxidative stress and damage parameters were studied in whole blood cells. The results showed an impairment of the lymphoproliferative response in stimulated conditions in the PD patients compared with age-matched controls, who also showed typical immunosenescence in comparison with adult individuals. Higher oxidative stress and damage were observed in whole blood cells from PD patients (lower glutathione peroxidase activity, and higher oxidized glutathione and malondialdehyde contents). Our results suggest an accelerated immunosenescence in PD stage 2, and that several of the parameters studied could be appropriate peripheral biomarkers in the early stages of PD.
Collapse
Affiliation(s)
- Carmen Vida
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Hikaru Kobayashi
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Antonio Garrido
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Irene Martínez de Toda
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| | - Eva Carro
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
| | - José Antonio Molina
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28040 Madrid, Spain.
| | - Mónica De la Fuente
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
- Institute of Biomedical Research Hospital 12 Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
42
|
Oxidative Stress and Nutraceuticals in the Modulation of the Immune Function: Current Knowledge in Animals of Veterinary Interest. Antioxidants (Basel) 2019; 8:antiox8010028. [PMID: 30669304 PMCID: PMC6356544 DOI: 10.3390/antiox8010028] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In the veterinary sector, many papers deal with the relationships between inflammation and oxidative stress. However, few studies investigate the mechanisms of action of oxidised molecules in the regulation of immune cells. Thus, authors often assume that these events, sometime leading to oxidative stress, are conserved among species. The aim of this review is to draw the state-of-the-art of the current knowledge about the role of oxidised molecules and dietary antioxidant compounds in the regulation of the immune cell functions and suggest some perspectives for future investigations in animals of veterinary interest.
Collapse
|
43
|
Yang Q, Lin J, Zhang H, Liu Y, Kan M, Xiu Z, Chen X, Lan X, Li X, Shi X, Li N, Qu X. Ginsenoside Compound K Regulates Amyloid β via the Nrf2/Keap1 Signaling Pathway in Mice with Scopolamine Hydrobromide-Induced Memory Impairments. J Mol Neurosci 2018; 67:62-71. [PMID: 30535776 DOI: 10.1007/s12031-018-1210-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
The objective of this study was to investigate the neuroprotective and antioxidant effects of ginsenoside compound K (CK) in a model of scopolamine hydrobromide-induced, memory-impaired mice. The role of CK in the regulation of amyloid β (Aβ) and its capacity to activate the Nrf2/Keap1 signaling pathway were also studied due to their translational relevance to Alzheimer's disease. The Morris water maze was used to assess spatial memory functions. Levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in brain tissues were tested. Cell morphology was detected by hematoxylin and eosin staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Immunohistochemistry and western blotting were used to determine expression levels of Nrf2/Keap1 signaling pathway-related factors and Aβ. Ginsenoside CK was found to enhance memory function, normalize neuronal morphology, decrease neuronal apoptosis, increase superoxide dismutase and glutathione peroxidase levels, reduce malondialdehyde levels, inhibit Aβ expression, and activate the Nrf2/Keap1 signaling pathway in scopolamine-exposed animals. Based on these results, we conclude that CK may improve memory function in scopolamine-injured mice by regulating Aβ aggregation and promoting the transduction of the Nrf2/Keap1 signaling pathway, thereby reducing oxidative damage to neurons and inhibiting neuronal apoptosis. This study suggests that CK may serve as a future preventative agent or treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jianan Lin
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Huiyuan Zhang
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yingna Liu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Mo Kan
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhiru Xiu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xijun Chen
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xingcheng Lan
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaohua Li
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaozheng Shi
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Na Li
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Xiaobo Qu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
44
|
Verdi S, Jackson MA, Beaumont M, Bowyer RCE, Bell JT, Spector TD, Steves CJ. An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Front Aging Neurosci 2018; 10:398. [PMID: 30564113 PMCID: PMC6288358 DOI: 10.3389/fnagi.2018.00398] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022] Open
Abstract
The preservation of cognitive abilities with aging is a priority both for individuals and nations given the aging populations of many countries. Recently the gut microbiome has been identified as a new territory to explore in relation to cognition. Experiments using rodents have identified a link between the gut microbiome and cognitive function, particularly that low microbial diversity leads to poor cognition function. Similar studies in humans could identify novel targets to encourage healthy cognition in an aging population. Here, we investigate the association of gut microbiota and cognitive function in a human cohort considering the influence of physical frailty. We analyzed 16S rRNA gene sequence data, derived from fecal samples obtained from 1,551 individuals over the age of 40. Cognitive data was collected using four cognitive tests: verbal fluency (n = 1,368), Deary-Liewald Reaction Time Test (DLRT; n = 873), Mini Mental State Examination (recall; n = 1,374) and Paired Associates Learning from the Cambridge Neuropsychological Test Automated Battery (CANTAB-PAL; n = 405). We use mixed effects models to identify associations with alpha diversity, operational taxonomic units (OTUs) and taxa and performed further analyses adjusting for physical frailty. We then repeated the analyses in a subset of individuals with dietary data, also excluding those using medications shown to influence gut microbiome composition. DLRT and verbal fluency were negatively associated with alpha diversity of the gut microbiota (False-Discovery Rate, FDR, p < 0.05). However, when considering frailty as a covariate, only associations between the DLRT and diversity measures remained. Repeating analyses excluding Proton pump inhibitor (PPI) and antibiotic users and accounting for diet, we similarly observe significant negative associations between the DLRT and alpha diversity measures and a further negative association between DLRT and the abundance of the order Burkholderiales that remains significant after adjusting for host frailty. This highlights the importance of considering concurrent differences in physical health in studies of cognitive performance and suggests that physical health has a relatively larger association with the gut microbiome. However, the frailty independent cognitive-gut microbiota associations that were observed might represent important targets for further research, with potential for use in diagnostic surveillance in cognitive aging and interventions to improve vitality.
Collapse
Affiliation(s)
- Serena Verdi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Neuropsychopharmacology Unit, Centre for Psychiatry, Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Matthew A. Jackson
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Michelle Beaumont
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Ruth C. E. Bowyer
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Tim D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Claire J. Steves
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
- Clinical Age Research Unit, Department of Clinical Gerontology, King’s College Hospital, NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
45
|
Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci 2018; 19:ijms19092745. [PMID: 30217028 PMCID: PMC6165031 DOI: 10.3390/ijms19092745] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress, defined as a disequilibrium between pro-oxidants and antioxidants, can result in histopathological lesions with a broad spectrum, ranging from asymptomatic hepatitis to hepatocellular carcinoma in an orchestrated manner. Although cells are equipped with sophisticated strategies to maintain the redox biology under normal conditions, the abundance of redox-sensitive xenobiotics, such as medicinal ingredients originated from herbs or animals, can dramatically invoke oxidative stress. Growing evidence has documented that the hepatotoxicity can be triggered by traditional Chinese medicine (TCM) during treating various diseases. Meanwhile, TCM-dependent hepatic disorder represents a strong correlation with oxidative stress, especially the persistent accumulation of intracellular reactive oxygen species. Of note, since TCM-derived compounds with their modulated targets are greatly diversified among themselves, it is complicated to elaborate the potential pathological mechanism. In this regard, data mining approaches, including network pharmacology and bioinformatics enrichment analysis have been utilized to scientifically disclose the underlying pathogenesis. Herein, top 10 principal TCM-modulated targets for oxidative hepatotoxicity including superoxide dismutases (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), glutathione peroxidase (GPx), Bax, caspase-3, Bcl-2, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nitric oxide (NO) have been identified. Furthermore, hepatic metabolic dysregulation may be the predominant pathological mechanism involved in TCM-induced hepatotoxic impairment.
Collapse
|