1
|
Heger L, Hatscher L, Liang C, Lehmann CHK, Amon L, Lühr JJ, Kaszubowski T, Nzirorera R, Schaft N, Dörrie J, Irrgang P, Tenbusch M, Kunz M, Socher E, Autenrieth SE, Purbojo A, Sirbu H, Hartmann A, Alexiou C, Cesnjevar R, Dudziak D. XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors. Proc Natl Acad Sci U S A 2023; 120:e2300343120. [PMID: 37566635 PMCID: PMC10438835 DOI: 10.1073/pnas.2300343120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/10/2023] [Indexed: 08/13/2023] Open
Abstract
Dendritic cells (DCs) are major regulators of innate and adaptive immune responses. DCs can be classified into plasmacytoid DCs and conventional DCs (cDCs) type 1 and 2. Murine and human cDC1 share the mRNA expression of XCR1. Murine studies indicated a specific role of the XCR1-XCL1 axis in the induction of immune responses. Here, we describe that human cDC1 can be distinguished into XCR1- and XCR1+ cDC1 in lymphoid as well as nonlymphoid tissues. Steady-state XCR1+ cDC1 display a preactivated phenotype compared to XCR1- cDC1. Upon stimulation, XCR1+ cDC1, but not XCR1- cDC1, secreted high levels of inflammatory cytokines as well as chemokines. This was associated with enhanced activation of NK cells mediated by XCR1+ cDC1. Moreover, XCR1+ cDC1 excelled in inhibiting replication of Influenza A virus. Further, under DC differentiation conditions, XCR1- cDC1 developed into XCR1+ cDC1. After acquisition of XCR1 expression, XCR1- cDC1 secreted comparable level of inflammatory cytokines. Thus, XCR1 is a marker of terminally differentiated cDC1 that licenses the antiviral effector functions of human cDC1, while XCR1- cDC1 seem to represent a late immediate precursor of cDC1.
Collapse
Affiliation(s)
- Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
| | - Lukas Hatscher
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
| | - Chunguang Liang
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058Erlangen, Germany
| | - Christian H. K. Lehmann
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
- Medical Immunology Campus Erlangen, 91054Erlangen, Germany
| | - Lukas Amon
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
| | - Jennifer J. Lühr
- Nano-Optics, Max Planck Institute for the Science of Light, 91058Erlangen, Germany
| | - Tomasz Kaszubowski
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
| | - Rayk Nzirorera
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, RNA-based Immunotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
- Deutsches Zentrum Immuntherapie, 91054Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, RNA-based Immunotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
- Deutsches Zentrum Immuntherapie, 91054Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054 Erlangen, Germany
| | - Pascal Irrgang
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
| | - Matthias Tenbusch
- Medical Immunology Campus Erlangen, 91054Erlangen, Germany
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058Erlangen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, 30625Hannover, Germany
| | - Eileen Socher
- Functional and Clinical Anatomy, Institute of Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg, 30625Erlangen, Germany
| | - Stella E. Autenrieth
- Research Group “Dendritic Cells in Infection and Cancer” (F171), German Cancer Research Center (Deutsches Krebsforschungszentrum), 69120Heidelberg, Germany
| | - Ariawan Purbojo
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
| | - Horia Sirbu
- Department of Thoracic Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngoly, Section of Experimental Oncology and Nanomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
| | - Robert Cesnjevar
- Department of Pediatric Cardiac Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91054Erlangen, Germany
- Department of Pediatric Cardiac Surgery, University Zurich, 8032Zurich, Switzerland
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052Erlangen, Germany
- Medical Immunology Campus Erlangen, 91054Erlangen, Germany
- Deutsches Zentrum Immuntherapie, 91054Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Alizadeh Z, Omidnia P, Altalbawy FMA, Gabr GA, Obaid RF, Rostami N, Aslani S, Heidari A, Mohammadi H. Unraveling the role of natural killer cells in leishmaniasis. Int Immunopharmacol 2023; 114:109596. [PMID: 36700775 DOI: 10.1016/j.intimp.2022.109596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022]
Abstract
NK cells are known as frontline responders that are efficient in combating several maladies as well as leishmaniasis caused by Leishmania spp. As such they are being investigated to be used for adoptive transfer therapy and vaccine. In spite of the lack of antigen-specific receptors at their surface, NK cells can selectively recognize pathogens, accomplished by the activation of the receptors on the NK cell surface and also as the result of their effector functions. Activation of NK cells can occur through interaction between TLR-2 expressed on NK cells and. LPG of Leishmania parasites. In addition, NK cell activation can occur by cytokines (e.g., IFN-γ and IL-12) that also lead to producing cytokines and chemokines and lysis of target cells. This review summarizes several evidences that support NK cells activation for controlling leishmaniasis and the potentially lucrative roles of NK cells during leishmaniasis. Furthermore, we discuss strategies of Leishmania parasites in inhibiting NK cell functions. Leishmania LPG can utilizes TLR2 to evade host-immune responses. Also, Leishmania GP63 can directly binds to NK cells and modulates NK cell phenotype. Finally, this review analyzes the potentialities to harness NK cells effectiveness in therapy regimens and vaccinations.
Collapse
Affiliation(s)
- Zahra Alizadeh
- Department of Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Duba 71911, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Narges Rostami
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliehsan Heidari
- Department of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
3
|
Leishmania donovani Impedes Antileishmanial Immunity by Suppressing Dendritic Cells via the TIM-3 Receptor. mBio 2022; 13:e0330921. [PMID: 35924848 PMCID: PMC9426438 DOI: 10.1128/mbio.03309-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An immunological hallmark of visceral leishmaniasis (VL), caused by Leishmania donovani, is profound immunosuppression. However, the molecular basis for this immune dysfunction has remained ill defined. Since dendritic cells (DCs) normally initiate antileishmanial immune responses, we investigated whether DCs are dysregulated during L. donovani infection and assessed its role in immunosuppression. Accordingly, we determined the regulatory effect of L. donovani on DCs. Notably, it is still unclear whether L. donovani activates or suppresses DCs. In addition, the molecular mechanism and the relevant receptor (or receptors) mediating the immunoregulatory effect of L. donovani on DCs are largely undefined. Here, we report that L. donovani inhibited DC activation/maturation by transmitting inhibitory signals through the T cell immunoglobulin and mucin protein-3 (TIM-3) receptor and thereby suppressed antileishmanial immune responses. L. donovani in fact triggered TIM-3 phosphorylation in DCs, which in turn recruited and activated a nonreceptor tyrosine kinase, Btk. Btk then inhibited DC activation/maturation by suppressing the NF-κB pathway in an interleukin-10 (IL-10)-dependent manner. Treatment with TIM-3-specific blocking antibody or suppressed expression of TIM-3 or downstream effector Btk made DCs resistant to the inhibitory effects of L. donovani. Adoptive transfer experiments further demonstrated that TIM-3-mediated L. donovani-induced inhibition of DCs plays a crucial role in the suppression of the antileishmanial immune response in vivo. These findings identify TIM-3 as a new regulator of the antileishmanial immune response and demonstrate a unique mechanism for host immunosuppression associated with L. donovani infection. IMPORTANCE Visceral leishmaniasis (VL), a poverty-related disease caused by Leishmania donovani, is ranked by the World Health Organization as the second largest killer parasitic disease in the world. The protective immune response against VL is primarily regulated by dendritic cells (DCs), which upon activation/maturation initiate an antileishmanial immune response. However, it remains obscure whether L. donovani promotes or inhibits DC activation. In addition, the receptor through which L. donovani exerts immunoregulatory effect on DCs is ill defined. Here, we for the first time report that L. donovani inhibits DC activation and maturation via the T cell immunoglobulin and mucin protein-3 (TIM-3) receptor and thereby attenuates the capacity of DCs to trigger antileishmanial immune responses in vivo. In fact, we demonstrate here that suppression of TIM-3 expression in DCs augments antileishmanial immunity. Our study uncovers a unique mechanism by which L. donovani subverts host immune responses and suggests TIM-3 as a potential new target for immunotherapy against VL.
Collapse
|
4
|
Maruyama SR, Fuzo CA, Oliveira AER, Rogerio LA, Takamiya NT, Pessenda G, de Melo EV, da Silva AM, Jesus AR, Carregaro V, Nakaya HI, Almeida RP, da Silva JS. Insight Into the Long Noncoding RNA and mRNA Coexpression Profile in the Human Blood Transcriptome Upon Leishmania infantum Infection. Front Immunol 2022; 13:784463. [PMID: 35370994 PMCID: PMC8965071 DOI: 10.3389/fimmu.2022.784463] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne infectious disease that can be potentially fatal if left untreated. In Brazil, it is caused by Leishmania infantum parasites. Blood transcriptomics allows us to assess the molecular mechanisms involved in the immunopathological processes of several clinical conditions, namely, parasitic diseases. Here, we performed mRNA sequencing of peripheral blood from patients with visceral leishmaniasis during the active phase of the disease and six months after successful treatment, when the patients were considered clinically cured. To strengthen the study, the RNA-seq data analysis included two other non-diseased groups composed of healthy uninfected volunteers and asymptomatic individuals. We identified thousands of differentially expressed genes between VL patients and non-diseased groups. Overall, pathway analysis corroborated the importance of signaling involving interferons, chemokines, Toll-like receptors and the neutrophil response. Cellular deconvolution of gene expression profiles was able to discriminate cellular subtypes, highlighting the contribution of plasma cells and NK cells in the course of the disease. Beyond the biological processes involved in the immunopathology of VL revealed by the expression of protein coding genes (PCGs), we observed a significant participation of long noncoding RNAs (lncRNAs) in our blood transcriptome dataset. Genome-wide analysis of lncRNAs expression in VL has never been performed. lncRNAs have been considered key regulators of disease progression, mainly in cancers; however, their pattern regulation may also help to understand the complexity and heterogeneity of host immune responses elicited by L. infantum infections in humans. Among our findings, we identified lncRNAs such as IL21-AS1, MIR4435-2HG and LINC01501 and coexpressed lncRNA/mRNA pairs such as CA3-AS1/CA1, GASAL1/IFNG and LINC01127/IL1R1-IL1R2. Thus, for the first time, we present an integrated analysis of PCGs and lncRNAs by exploring the lncRNA–mRNA coexpression profile of VL to provide insights into the regulatory gene network involved in the development of this inflammatory and infectious disease.
Collapse
Affiliation(s)
- Sandra Regina Maruyama
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Alessandro Fuzo
- Department of Clinical Analyses, Toxicology and Food Sciences, Ribeirão Preto School of Pharmaceutics Sciences, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Edson R Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luana Aparecida Rogerio
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Nayore Tamie Takamiya
- Department of Genetics and Evolution, Center for Biological Sciences and Health, Federal University of São Carlos, São Carlos, Brazil
| | - Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enaldo Vieira de Melo
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Angela Maria da Silva
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Amélia Ribeiro Jesus
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Roque Pacheco Almeida
- Department of Medicine, University Hospital-Empresa Brasileira de Serviços Hospitalares (EBSERH), Federal University of Sergipe, Aracaju, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Immune Responses in Leishmaniases: An Overview. Trop Med Infect Dis 2022; 7:tropicalmed7040054. [PMID: 35448829 PMCID: PMC9029249 DOI: 10.3390/tropicalmed7040054] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Leishmaniasis is a parasitic, widespread, and neglected disease that affects more than 90 countries in the world. More than 20 Leishmania species cause different forms of leishmaniasis that range in severity from cutaneous lesions to systemic infection. The diversity of leishmaniasis forms is due to the species of parasite, vector, environmental and social factors, genetic background, nutritional status, as well as immunocompetence of the host. Here, we discuss the role of the immune system, its molecules, and responses in the establishment, development, and outcome of Leishmaniasis, focusing on innate immune cells and Leishmania major interactions.
Collapse
|
6
|
Sanz CR, Miró G, Sevane N, Reyes-Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Front Immunol 2022; 12:794627. [PMID: 35058931 PMCID: PMC8763708 DOI: 10.3389/fimmu.2021.794627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Leishmania infantum, the etiological agent of canine leishmaniosis (CanL) in Europe, was responsible of the largest outbreak of human leishmaniosis in Spain. The parasite infects and survives within myeloid lineage cells, causing a potentially fatal disease if left untreated. The only treatment option relies on chemotherapy, although immunotherapy strategies are being considered as novel approaches to prevent progression of the disease. To this aim, a deeper characterization of the molecular mechanisms behind the immunopathogenesis of leishmaniosis is necessary. Thus, we evaluated, for the first time, the host immune response during L. infantum infection through transcriptome sequencing of the popliteal lymph nodes aspirates of dogs with CanL. Differential expression and weighted gene co-expression network analyses were performed, resulting in the identification of 5,461 differentially expressed genes (DEGs) and four key modules in sick dogs, compared to controls. As expected, defense response was the highest enriched biological process in the DEGs, with six genes related to immune response against pathogens (CHI3L1, SLPI, ACOD1, CCL5, MPO, BPI) included among the ten most expressed genes; and two of the key co-expression modules were associated with regulation of immune response, which also positively correlated with clinical stage and blood monocyte concentration. In particular, sick dogs displayed significant changes in the expression of Th1, Th2, Th17 and Tr1 cytokines (e. g. TNF-α, IFN-γ, IL-21, IL-17, IL-15), markers of T cell and NK cell exhaustion (e. g. LAG3, CD244, Blimp-1, JUN), and B cell, monocyte and macrophage disrupted functionality (e. g. CD40LG, MAPK4, IL-1R, NLRP3, BCMA). In addition, we found an overexpression of XBP1 and some other genes involved in endoplasmic reticulum stress and the IRE1 branch of the unfolded protein response, as well as one co-expression module associated with these processes, which could be induced by L. infantum to prevent host cell apoptosis and modulate inflammation-induced lymphangiogenesis at lymph nodes. Moreover, 21 lncRNAs were differentially expressed in sick dogs, and one key co-expression module was associated with chromatin organization, suggesting that epigenetic mechanisms could also contribute to dampening host immune response during natural L. infantum infection in the lymph nodes of dogs suffering from clinical leishmaniosis.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Susana Dunner
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
7
|
Khademvatan S, Amani S, Mohebodini M, Jafari M, Kumar V. Ficus carica hairy roots: In vitro anti-leishmanial activity against Leishmania major promastigotes and amastigotes. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.345945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
8
|
Serrano-Coll H, Cardona-Castro N, Ramos AP, Llanos-Cuentas A. Innate immune response: ally or enemy in cutaneous leishmaniasis? Pathog Dis 2021; 79:6284792. [PMID: 34037758 DOI: 10.1093/femspd/ftab028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
Cutaneous leishmaniasis (CL) is an infectious and neglected disease caused by parasites of the genus Leishmania, which produces a wide spectrum of cutaneous manifestations. CL research has shown that the innate immune activity of cells such as neutrophils, natural killers, macrophages, dendritic cells and the complement system are capable of controlling this infection. However, Leishmania can also modulate the immune activity of these cells to promote its own survival and proliferation at the intracellular level. This review discusses the role of the innate immune response in the control and spread of this infection.
Collapse
Affiliation(s)
- Héctor Serrano-Coll
- Grupo de Investigación en Ciencias de la Educación y de la Salud (ICES), UNISANGIL, San Gil, Colombia.,Instituto Colombiano de Medicina Tropical-Universidad CES, Medellín, Colombia
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical-Universidad CES, Medellín, Colombia
| | - Ana Pilar Ramos
- Instituto de Medicina Tropical "Alexander Von von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander Von von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
9
|
Jacobs B, Gebel V, Heger L, Grèze V, Schild H, Dudziak D, Ullrich E. Characterization and Manipulation of the Crosstalk Between Dendritic and Natural Killer Cells Within the Tumor Microenvironment. Front Immunol 2021; 12:670540. [PMID: 34054844 PMCID: PMC8160470 DOI: 10.3389/fimmu.2021.670540] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/19/2021] [Indexed: 01/22/2023] Open
Abstract
Cellular therapy has entered the daily clinical life with the approval of CAR T cell therapeutics and dendritic cell (DCs) vaccines in the US and the EU. In addition, numerous other adoptive cellular products, including natural killer (NK) cells, are currently evaluated in early phase I/ II clinical trials for the treatment of cancer patients. Despite these promising accomplishments, various challenges remain to be mastered in order to ensure sustained therapeutic success. These include the identification of strategies by which tumor cells escape the immune system or establish an immunosuppressive tumor microenvironment (TME). As part of the innate immune system, DCs and NK cells are both present within the TME of various tumor entities. While NK cells are well known for their intrinsic anti-tumor activity by their cytotoxicity capacities and the secretion of pro-inflammatory cytokines, the role of DCs within the TME is a double-edged sword as different DC subsets have been described with either tumor-promoting or -inhibiting characteristics. In this review, we will discuss recent findings on the interaction of DCs and NK cells under physiological conditions and within the TME. One focus is the crosstalk of various DC subsets with NK cells and their impact on the progression or inhibition of tumor growth. In addition, we will provide suggestions to overcome the immunosuppressive outcome of the interaction of DCs and NK cells within the TME.
Collapse
Affiliation(s)
- Benedikt Jacobs
- Department of Internal Medicine 5, Haematology and Oncology, Friedrich Alexander University Erlangen-Nuremberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Veronika Gebel
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Lukas Heger
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Victoria Grèze
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Hansjörg Schild
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Evelyn Ullrich
- Children's Hospital, Goethe-University Frankfurt, Frankfurt, Germany.,Experimental Immunology, Goethe University Frankfurt , Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
Cytokine saga in visceral leishmaniasis. Cytokine 2020; 147:155322. [PMID: 33127259 DOI: 10.1016/j.cyto.2020.155322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
In humans, infection with Leishmania manifests into a spectrum of diseases. The manifestation of the diseases depend on the resultant evasion of the parasite to immune responses namely by macrophages, which is an exclusive host of Leishmania. The B cells valiantly mount antibody responses, however, to no avail as the Leishmania parasites occupy the intracellular niches of the macrophages and subvert the immune response. Extensive studies have been documented on the role of cell-mediated immunity (CMI) in protection and counter survival strategies of the parasites leading to downregulation of CMI. The present review attempts to discuss the cytokines in progression or resolution of visceral form of leishmaniasis or kala-azar, predominantly affecting the Indian subcontinent. The components/cytokine(s) responsible for the regulation of the critical balance of T helper cells and their subsets have been discussed in the perspective. Therefore, any strategy involving the treatment of visceral leishmania (VL) needs to consider the balance and regulation of T cell function.
Collapse
|
11
|
Zorgi NE, Arruda LV, Paladine I, Roque GAS, Araújo TF, Brocchi M, Barral M, Sanchiz Á, Requena JM, Abánades DR, Giorgio S. Leishmania infantum transfected with toxic plasmid induces protection in mice infected with wild type L. infantum or L. amazonensis. Mol Immunol 2020; 127:95-106. [PMID: 32949849 DOI: 10.1016/j.molimm.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/08/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
Leishmania infantum infection may cause visceral leishmaniasis (VL), a fatal disease having worldwide distribution, that may be silent or asymptomatic. The latter indicates that immunity is naturally developed in some individuals, and, therefore, a vaccine against VL would be possible. Molecular mechanisms of gene expression are being understood in Leishmania, and this knowledge may be useful for vaccine development. The aim of this study was developing an attenuated strain by regulating the expression of toxic proteins in a stage specific manner. For that purpose, the 3' UTR of an amastin gene, known by its increased expression in the amastigote phase, was selected for direct the expression of exogenous proteins. This construct (pFL-AMA), firstly, was proved effective for the expression of mCherry specifically in the intracellular form of L. infantum, as demonstrated by fluorescence microscopy, flow cytometry and Western blotting. Afterwards, mCherry coding sequence was replaced, in the pFL-AMA plasmid, by either egg avidin or the active form of bovine trypsin. Viability of transfected parasites was evaluated in promastigote axenic cultures and in in vitro infection of macrophages. Both lines of transfected parasites showed a limited capacity to multiply inside macrophages. BALB/c mice were inoculated intraperitoneally (i.p.) with a single dose consisting of 2 × 106L. infantum promastigotes transfected with plasmids bearing the toxic genes. After 10 weeks post-inoculation, no parasites were recovered by limiting dilution in either liver or spleen, but a specific immunological response was detected. The immunization with transfected parasites induced cellular and humoral immune responses with activation of TCD4+, TCD8+ and B cells, having a TH1-type response with increased levels of pro-inflammatory cytokines such as IFN-γ, TNF-α and IL-6. In parallel groups of mice, a challenge consisting on 1 × 106 virulent parasites of either L. infantum (inoculated i.p.) or L. amazonensis subcutaneously (s.c.) was performed. Vaccinated mice, challenged with L. infantum, showed lower parasite burdens in liver, spleen and bone marrow than infected mice with WT L. infantum (non-vaccinated); similarly, vaccinated mice developed smaller footpad inflammation than control group. These data support this strategy as an efficient immunization system aimed to the development of vaccines against different forms of leishmaniasis.
Collapse
Affiliation(s)
- Nahiara Esteves Zorgi
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.
| | - Leonardo V Arruda
- Research Center Gonçalo Moniz, Foundation Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Izadora Paladine
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Guilherme A S Roque
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Thalita F Araújo
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Marcelo Brocchi
- Department of Microbiology and Immunology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Manoel Barral
- Research Center Gonçalo Moniz, Foundation Oswaldo Cruz, Salvador, Bahia, Brazil; School of Medicine of University Federal of Bahia, Salvador, Bahia, Brazil
| | - África Sanchiz
- Departament of Molecular Biology, Center for Molecular Biology "Severo Ochoa", Autonomous University of Madrid, Madrid, Spain
| | - José María Requena
- Departament of Molecular Biology, Center for Molecular Biology "Severo Ochoa", Autonomous University of Madrid, Madrid, Spain
| | - Daniel R Abánades
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
12
|
Kalavi K, Jorjani O, Faghihi MA, Mowla SJ. Cytokine Gene Expression Alterations in Human Macrophages Infected by Leishmania major. CELL JOURNAL 2020; 22:476-481. [PMID: 32347041 PMCID: PMC7211285 DOI: 10.22074/cellj.2021.6524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Objective Leishmaniasis is caused by members of the Leishmania species and constitute a group of infective diseases that range from cutaneous lesions to lethal visceral forms. In infected persons, macrophages recognize and eliminate the parasites via phagocytosis. In order to change a hostile environment into an environment adequate for survival and reproduction, the engulfed Leishmania species needs to modulate the function of its host macrophage. The expression patterns of cytokine genes such as interleukin-12 (IL-12), tumour necrosis factor-alpha (TNF-α), IL-1, and interferon-gamma (IFNγ) represent the immune response. In this study, we employed an RNA-seq approach for human monocyte-derived macrophages infected with Leishmania major (L. major) to decipher cytokine gene expression alterations in host macrophages. Materials and Methods In this descriptive study, human monocytes were isolated by magnetic activated cell sorting (MACS) and cultured in the presence of monocyte colony stimulating factor (M-CSF) to obtain the macrophages. Monocyte-derived macrophages were then co-cultured with metacyclic promastigotes of L. major for 4 hours. RNA isolation was performed using TRIzol reagent. RNA sequencing was performed using the Illumina sequencing platforms. Gene expression analysis was performed using a Bioconductor DESeq2 package. Results Our data revealed significant changes in immune response gene expressions in macrophages infected with L. major, with an up-regulation of cytokines and mostly down-regulation of their receptors. Conclusion The obtained data could shed more light on the biology of L. major and how the host cell responds to leishmaniasis.
Collapse
Affiliation(s)
- Khodaberdi Kalavi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Laboratory Sciences, School of Allied Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ogholniaz Jorjani
- Department of Laboratory Sciences, School of Allied Medical Sciences, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Ali Faghihi
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Miami, FL, USA
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran. Electronic Address:
| |
Collapse
|
13
|
Molkara S, Poursoltani E, Stahl KW, Maleki M, Khamesipour A, Bogdan C, Salehi M, Goyonlo VM. Salvage therapy with Sodium chlorosum (formerly DAC N-055) for cases of refractory lupoid cutaneous leishmaniasis: results from a compassionate use study with 0.09% Sodium chlorosum in amphiphilic basic cream. BMC Infect Dis 2019; 19:1005. [PMID: 31779597 PMCID: PMC6883658 DOI: 10.1186/s12879-019-4518-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 09/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Lupoid cutaneous leishmaniasis (LCL) is known as a rare but serious complication of anthroponotic cutaneous leishmaniasis (ACL) resistant to conventional treatments. Sodium chlorosum, a pro-oxidative preparation of pharmaceutical sodium chlorite (NaClO2), has been successfully used for the treatment of Old World cutaneous leishmaniasis lesions (OWCL) and of some LCL cases in Afghanistan. This clinical trial study aimed to evaluate the effect of a last resort therapy with topical 0.09% sodium chlorosum on LCL in Iran. Methods Twenty Iranian patients (12 women and 8 men) with LCL refractory to treatment were included in this salvage study. A magistral preparation of sodium chlorosum (10 mM NaClO2 in amphiphilic basic cream) was applied twice daily to the lesions for 6 weeks and continued up to 12 weeks in patients who showed a clinical response within the first 6 weeks. Responders were followed up for a maximum of 1 year. Lesions were photographed during weekly visits. Disappearance of erythema and indurated lesions were rated as complete clinical response. Results Patients with a mean age of 28.6 (±24.3) and with an ACL proven lesion history of 3.8 (±1.4) years were treated for an average of 7.9 (±1.8) weeks. At the end of the treatment period (12th week), a complete response was observed in 9 of 20 patients (45%). During the one-year follow-up period, LCL lesions recurred in 4 of these 9 patients (with one patient showing only a tiny lesion) and one case lost to follow up whereas the other four remained completely lesion-free. Mild temporary side-effects such as erythema and itching were seen in 4 of 20 patients (20%). Conclusions Topical sodium chlorosum showed promising therapeutic results and can be considered as safe, painless, and relatively effective treatment for LCL, an ethical prerequisite for a two-armed controlled trial. Trial registration This study was registered in Iranian registry of clinical trials on 2019-02-02 with registration number IRCT20190114042356N1.
Collapse
Affiliation(s)
- Sara Molkara
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Poursoltani
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kurt-Wilhelm Stahl
- Waisenmedizin e. V. Promoting Access to Care with Essential Medicine (PACEM), Non-Profit Non-Governmental Organization, Freiburg, Germany.
| | - Masoud Maleki
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg und Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maryam Salehi
- Community Medicine Department, Faculty of Medicine and Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
14
|
Abulizi A, Shao Y, Aji T, Li Z, Zhang C, Aini A, Wang H, Tuxun T, Li L, Zhang N, Lin R, Wen H. Echinococcus multilocularis inoculation induces NK cell functional decrease through high expression of NKG2A in C57BL/6 mice. BMC Infect Dis 2019; 19:792. [PMID: 31500589 PMCID: PMC6734356 DOI: 10.1186/s12879-019-4417-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is caused by the larval stage of Echinococcus multilocularis (E. multilocularis), and considered as public health issue. Parasite-host immune interaction is pivotal during infection. As a subset of innate lymphoid cells, NK cells are known to play an important role during virus, bacteria, intra/extracellular parasitic infections and tumor progression. However, the possible role of NK cells in E. multilocularis infection in both human and murine is little known. Herein, the functional alteration of hepatic NK cells and their related molecules in E. multilocularis infected mice were studied. METHODS 2000 protoscoleces (PSCs) were injected to C57BL/6 mice via the portal vein to establish secondary E. multilocularis infection. NK cells population and their related molecules (CD69, Ly49D, Ly49G2, Ly49H, Ly49I, NKG2A, NKG2D, granzyme B, IFN-γ, TNF-α) were assessed by using fluorescence-activated cell sorter (FACS) techniques and qRT-PCR. NK cell depletion was performed for further understanding the possible function of NK cells during infection. RESULTS The total frequencies of NK cells and NK-derived IFN-γ production were significantly reduced at designated time points (2, 4, 12 weeks). The liver resident (CD49a+DX5-) NK cells are decreased at 4 weeks after inoculation and which is significantly lower than in control mice. Moreover, in vivo antibody-mediated NK cell depletion increased parasitic load and decreased peri-parasitic fibrosis. Expression of the inhibitory receptor NKG2A was negatively related to NK- derived IFN-γ secretion. CONCLUSIONS Our study showed down regulates of NK cells and upper regulates of NKG2A expression on NK cells during E. multilocularis infection. Reduction of NK cell frequencies and increased NKG2A might result in low cytotoxic activity through decreased IFN-γ secretion in E. multilocularis infection. This result might be helpful to restore NK cell related immunity against E. multilocularis infection to treat alveolar echinococcosis.
Collapse
Affiliation(s)
- Abuduaini Abulizi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Yingmei Shao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Tuerganaili Aji
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Zhide Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Chuanshan Zhang
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- Xinjiang Key Laboratory of Fundamental Research on Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Abudusalamu Aini
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Hui Wang
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- Xinjiang Key Laboratory of Fundamental Research on Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Tuerhongjiang Tuxun
- Department of Liver and Laparoscopic Surgery, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Liang Li
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- Xinjiang Key Laboratory of Fundamental Research on Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Renyong Lin
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- Xinjiang Key Laboratory of Fundamental Research on Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Hepatobiliary & Hydatid Disease Department, Digestive & Vascular Surgery Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- WHO Collaborating Center on Prevention and Management of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
- Xinjiang Key Laboratory of Fundamental Research on Echinococcosis, Clinical Medical Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054 China
| |
Collapse
|
15
|
Van Acker HH, Van Acker ZP, Versteven M, Ponsaerts P, Pende D, Berneman ZN, Anguille S, Van Tendeloo VF, Smits EL. CD56 Homodimerization and Participation in Anti-Tumor Immune Effector Cell Functioning: A Role for Interleukin-15. Cancers (Basel) 2019; 11:E1029. [PMID: 31336622 PMCID: PMC6678613 DOI: 10.3390/cancers11071029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
A particularly interesting marker to identify anti-tumor immune cells is the neural cell adhesion molecule (NCAM), also known as cluster of differentiation (CD)56. Namely, hematopoietic expression of CD56 seems to be confined to powerful effector immune cells. Here, we sought to elucidate its role on various killer immune cells. First, we identified the high motility NCAM-120 molecule to be the main isoform expressed by immune cells. Next, through neutralization of surface CD56, we were able to (1) demonstrate the direct involvement of CD56 in tumor cell lysis exerted by CD56-expressing killer cells, such as natural killer cells, gamma delta (γδ) T cells, and interleukin (IL)-15-cultured dendritic cells (DCs), and (2) reveal a putative crosstalk mechanism between IL-15 DCs and CD8 T cells, suggesting CD56 as a co-stimulatory molecule in their cell-to-cell contact. Moreover, by means of a proximity ligation assay, we visualized the CD56 homophilic interaction among cancer cells and between immune cells and cancer cells. Finally, by blocking the mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase (PI3K)-Akt pathway, we showed that IL-15 stimulation directly led to CD56 upregulation. In conclusion, these results underscore the previously neglected importance of CD56 expression on immune cells, benefiting current and future immune therapeutic options.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Zoë P Van Acker
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling, University of Antwerp, 2610 Antwerp, Belgium
- Laboratory of Membrane Trafficking, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Experimental Cell Transplantation Group (ECTG), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Daniela Pende
- Immunology Laboratory, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Laboratory of Protein Science, Proteomics and Epigenetic Signaling, University of Antwerp, 2610 Antwerp, Belgium
- Division of Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Division of Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
16
|
Zhang X, He D, Gao S, Wei Y, Wang L. Aspergillus fumigatus enhances human NK cell activity by regulating M1 macrophage polarization. Mol Med Rep 2019; 20:1241-1249. [PMID: 31173233 PMCID: PMC6625407 DOI: 10.3892/mmr.2019.10365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/24/2019] [Indexed: 12/22/2022] Open
Abstract
The progression of disease caused by fungal infection is closely associated with the human immune system. Macrophages and natural killer cells (NK cells) are two important types of innate immune cells that serve an important role in anti-infection immunity. There has been limited research into the interactions between fungi and macrophages. In the present in vitro study, reverse transcription-quantitative PCR, ELISA and flow cytometry were performed to reveal that the interaction between macrophages and NK cells, regulated by Aspergillus fumigatus conidia, induced macrophages to polarize into M1 macrophages by secreting large quantities of tumor necrosis factor-α, interleukin-18 and Galectin-9. In addition, when NK cells were co-cultured with the conidia of A. fumigatus-stimulated M1 macrophages, they exhibited increased activation levels and secretion of interferon-γ (IFN-γ). It was further demonstrated via antibody neutralization and gene silencing experiments that galectin-9 served an important role in the interaction between macrophages and NK cells regulated by A. fumigatus. In conclusion, it was demonstrated that A. fumigatus induced the polarization of macrophages into M1 macrophages by secreting Galectin-9, which then promoted NK cell activity and IFN-γ secretion. The results provided improved understanding of the role of innate immune cells in invasive fungal infections. The present study also provided novel insight into the study of macrophages and NK cells in inflammatory infections caused by A. fumigatus and potential strategies to control the progression of inflammation.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Song Gao
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yunyun Wei
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|