1
|
Inoue K, Hori S, Tomizawa M, Yoneda T, Nakai Y, Miyake M, Tanaka N, Fujimoto K. Evaluating Graft Loss Risk in Living-Donor Kidney Transplants with Multiple Renal Arteries. Ann Transplant 2024; 29:e946489. [PMID: 39801158 PMCID: PMC11699694 DOI: 10.12659/aot.946489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Despite its surgical complexity, kidney transplantation (KT) with multiple renal arteries (MRA) is comparable in performance to KT with a single renal artery (SRA). This study aimed to evaluate the effect of MRA and to investigate risk factors for graft loss in living-donor KT with MRA. MATERIAL AND METHODS This study included living-donor KT recipients who underwent KT in our hospital from February 2002 to March 2023. The primary outcome was whether MRA decreased the prognosis of transplanted kidneys. The secondary outcomes were the risk factors for graft loss in KT with MRA, such as recipients' characteristic. RESULTS Out of 197 recipients, 47 (23.8%) received kidneys with MRA. In inverse probability of treatment weighting, the risk of graft loss did not increase in KT with MRA, as compared to that in KT with SRA (hazard ratio [HR]: 1.46; 95% confidence interval [CI]: 0.68-3.14). MRA were associated with graft loss in ABO blood-incompatible KT (HR: 5.09, 95% CI: 1.75-14.7). CONCLUSIONS In ABO blood-incompatible KT, MRA can increase risk of graft loss.
Collapse
Affiliation(s)
- Kuniaki Inoue
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Mitsuru Tomizawa
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Tatsuo Yoneda
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| | - Nobumichi Tanaka
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
- Department of Prostate Brachytherapy, Nara Medical University, Kashihara, Nara, Japan
| | - Kiyohide Fujimoto
- Department of Urology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
2
|
Owen MC, Kopecky BJ. Targeting Macrophages in Organ Transplantation: A Step Toward Personalized Medicine. Transplantation 2024; 108:2045-2056. [PMID: 38467591 PMCID: PMC11390981 DOI: 10.1097/tp.0000000000004978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organ transplantation remains the most optimal strategy for patients with end-stage organ failure. However, prevailing methods of immunosuppression are marred by adverse side effects, and allograft rejection remains common. It is imperative to identify and comprehensively characterize the cell types involved in allograft rejection, and develop therapies with greater specificity. There is increasing recognition that processes mediating allograft rejection are the result of interactions between innate and adaptive immune cells. Macrophages are heterogeneous innate immune cells with diverse functions that contribute to ischemia-reperfusion injury, acute rejection, and chronic rejection. Macrophages are inflammatory cells capable of innate allorecognition that strengthen their responses to secondary exposures over time via "trained immunity." However, macrophages also adopt immunoregulatory phenotypes and may promote allograft tolerance. In this review, we discuss the roles of macrophages in rejection and tolerance, and detail how macrophage plasticity and polarization influence transplantation outcomes. A comprehensive understanding of macrophages in transplant will guide future personalized approaches to therapies aimed at facilitating tolerance or mitigating the rejection process.
Collapse
Affiliation(s)
- Macee C Owen
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
| | - Benjamin J Kopecky
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MI
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Blades CM, Navarro-Alvarez N, Huang CA, Mathes DW. The Impact of Alloantibodies on Clinical VCA Outcomes and the Need for Immune Tolerance. TRANSPLANTOLOGY 2024; 5:148-162. [DOI: 10.3390/transplantology5030015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
The functional outcomes and restoration of form after vascularized composite allotransplantation (VCA) have exceeded the results that could be achieved with current autologous surgical techniques. However, the longevity of VCA grafts has been limited due to the development of donor-specific antibodies (DSAs), and chronic rejection and graft failure occur despite long-term immunotherapy. Furthermore, despite widespread consensus that these non-life-saving transplants are beneficial for select patients, the application of VCA is limited by the need for lifelong immunosuppression. Therefore, attempts to achieve drug-free tolerance through safe and effective therapies are critical. This review highlights recent publications regarding alloantibody-mediated rejection (AMR) in various VCAs with a focus on the critical need for novel tolerance-inducing strategies. The development and implementation of effective methods of inducing tolerance, such as the use of anti-CD3 immunotoxins, could drastically improve VCA graft outcomes and recipient quality of life.
Collapse
Affiliation(s)
- Caitlin M. Blades
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nalu Navarro-Alvarez
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David W. Mathes
- Department of Surgery, University of Colorado Denver/Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Kauke-Navarro M, Noel OF, Knoedler L, Knoedler S, Panayi AC, Stoegner VA, Huelsboemer L, Pomahac B. Novel Strategies in Transplantation: Genetic Engineering and Vascularized Composite Allotransplantation. J Surg Res 2023; 291:176-186. [PMID: 37429217 DOI: 10.1016/j.jss.2023.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/18/2023] [Accepted: 04/30/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Despite the clinical success in vascularized composite allotransplantation (VCA), systemic immunosuppression remains necessary to prevent allograft rejection. Even with potent immunosuppressive regimens (tacrolimus, mycophenolate mofetil, and steroids), most patients experience several rejection episodes, often within the same year. The risk of systemic side effects must constantly be weighed against the risk of under-immunosuppression and, thus, acute and chronic rejection. In this context, genomic editing has emerged as a potential tool to minimize the need for toxic immunosuppressive regimens and has gained attention in the fields of solid organ transplantation and xenotransplantation. This strategy may also be relevant for the future of VCA. METHODS We discuss the topic of genetic engineering and review recent developments in this field that justify investigating tools such as clustered regularly interspaced short palindromic repeats/Cas9 in the context of VCA. RESULTS We propose specific strategies for VCA based on the most recent gene expression data. This includes the well-known strategy of tolerance induction. Specifically, targeting the interaction between antigen-presenting cells and recipient-derived T cells by CD40 knockout may be effective. The novelty for VCA is a discovery that donor-derived T lymphocytes may play a special role in allograft rejection of facial transplants. We suggest targeting these cells prior to transplantation (e.g., by ex vivo perfusion of the transplant) by knocking out genes necessary for the long-term persistence of donor-derived immune cells in the allograft. CONCLUSION Despite the demonstrated feasibility of VCA in recent years, continued improvements to immunomodulatory strategies using tools like clustered regularly interspaced short palindromic repeats/Cas9 could lead to the development of approaches that mitigate the limitations associated with rejection of this life-giving procedure.
Collapse
Affiliation(s)
- Martin Kauke-Navarro
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Olivier F Noel
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Samuel Knoedler
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adriana C Panayi
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viola A Stoegner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut; Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Lioba Huelsboemer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut; Institute of Musculoskeletal Medicine, University Hospital Muenster, Münster, Germany
| | - Bohdan Pomahac
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
5
|
Saldan A, Mengoli C, Sgarabotto D, Fedrigo M, Angelini A, Feltrin G, Gambino A, Gerosa G, Barzon L, Abate D. Human cytomegalovirus and Epstein-Barr virus infections occurring early after transplantation are risk factors for antibody-mediated rejection in heart transplant recipients. Front Immunol 2023; 14:1171197. [PMID: 37256129 PMCID: PMC10225529 DOI: 10.3389/fimmu.2023.1171197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Background Antibody-mediated rejection (AMR) is a serious complication affecting the survival of patients receiving transplantation. Human cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common viral infections that occur after transplantation, frequently emerging as viral reactivation in donor grafts or transplant recipients. The present study aimed to investigate the association between CMV and EBV infections and early-onset AMR. Materials and methods This study was conducted at the Heart Transplantation Center of Padova General Hospital and included a cohort of 47 heart transplant recipients (HTxs), including 24 HTxs diagnosed with AMR and 23 control HTxs with no episodes of AMR. Only early cases of CMV and/or EBV infections (1-90 days after transplantation) were considered. Fisher's exact test and logistic regression analysis were used to statistically analyze the correlation and association between AMR and CMV or EBV infection. Results We observed a positive statistical association between CMV and EBV infections (two-sided Fisher's exact test, p = 0.0136) and between EBV infection and AMR (two-sided Fisher's exact test, p = 0.0034). Logistic regression analysis revealed a direct statistical association between CMV and EBV infections and AMR risk (p = 0.037 and 0.006 and odds ratio = 1.72 and 2.19, respectively). AMR occurrence was associated with increased viral loads of both CMV and EBV early after transplantation. Discussion These findings suggest the role of CMV and EBV infections as relevant risk factors for AMR in HTxs for the first time.
Collapse
Affiliation(s)
- Alda Saldan
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Carlo Mengoli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Dino Sgarabotto
- Transplant Infectious Disease Unit, Padova General Hospital, Padova, Italy
| | - Marny Fedrigo
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Annalisa Angelini
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | | | - Antonio Gambino
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Gino Gerosa
- Department of Cardiothoracic and Vascular Sciences, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Abate
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Pace A, Steiner ME, Vercellotti GM, Somani A. Endothelial cell provenance: an unclear role in transplant medicine. FRONTIERS IN TRANSPLANTATION 2023; 2:1130941. [PMID: 38993867 PMCID: PMC11235371 DOI: 10.3389/frtra.2023.1130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/11/2023] [Indexed: 07/13/2024]
Abstract
An understanding of the interplay between both donor endothelial progenitors and the recipient endothelium (in the case of hematopoietic cell transplant) and recipient endothelial provenance upon the established donor endothelium (in the case of solid organ transplant) is unknown. It is postulated that this interplay and consequences of purported dual endothelial populations may be a component of the post-transplant disease process and contribute to complications of engraftment or rejection. To address this potential confounding and often overlooked arena of vascular biology, a directed brief overview primarily focused on literature presented over the last decade is presented herein.
Collapse
Affiliation(s)
- Autumn Pace
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Marie E. Steiner
- Department of Pediatrics, Division of Hematology/Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Arif Somani
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
7
|
Anwar T, Sinnett-Smith J, Jin YP, Reed EF, Rozengurt E. Lipophilic Statins Inhibit YAP Nuclear Localization, Coactivator Activity, and Migration in Response to Ligation of HLA Class I Molecules in Endothelial Cells: Role of YAP Multisite Phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1134-1145. [PMID: 36881871 PMCID: PMC10073314 DOI: 10.4049/jimmunol.2200568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023]
Abstract
Solid-organ transplant recipients exhibiting HLA donor-specific Abs are at risk for graft loss due to chronic Ab-mediated rejection. HLA Abs bind HLA molecules expressed on the surface of endothelial cells (ECs) and induce intracellular signaling pathways, including the activation of the transcriptional coactivator yes-associated protein (YAP). In this study, we examined the impact of lipid-lowering drugs of the statin family on YAP localization, multisite phosphorylation, and transcriptional activity in human ECs. Exposure of sparse cultures of ECs to cerivastatin or simvastatin induced striking relocalization of YAP from the nucleus to the cytoplasm and inhibited the expression of the YAP/TEA domain DNA-binding transcription factor-regulated genes connective tissue growth factor and cysteine-rich angiogenic inducer 61. In dense cultures of ECs, statins prevented YAP nuclear import and expression of connective tissue growth factor and cysteine-rich angiogenic inducer 61 stimulated by the mAb W6/32 that binds HLA class I. Exposure of ECs to either cerivastatin or simvastatin completely blocked the migration of ECs stimulated by ligation of HLA class I. Exogenously supplied mevalonic acid or geranylgeraniol reversed the inhibitory effects of statins on YAP localization either in low-density ECs or high-density ECs challenged with W6/32. Mechanistically, cerivastatin increased the phosphorylation of YAP at Ser127, blunted the assembly of actin stress fiber, and inhibited YAP phosphorylation at Tyr357 in ECs. Using mutant YAP, we substantiated that YAP phosphorylation at Tyr357 is critical for YAP activation. Collectively, our results indicate that statins restrain YAP activity in EC models, thus providing a plausible mechanism underlying their beneficial effects in solid-organ transplant recipients.
Collapse
Affiliation(s)
- Tarique Anwar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - James Sinnett-Smith
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- VA Greater Los Angeles Health System
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- VA Greater Los Angeles Health System
| |
Collapse
|
8
|
Yeh H. Applications of Transcriptomics in the Research of Antibody-Mediated Rejection in Kidney Transplantation: Progress and Perspectives. Organogenesis 2022; 18:2131357. [PMID: 36259540 PMCID: PMC9586696 DOI: 10.1080/15476278.2022.2131357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Antibody-mediated rejection (ABMR) is the major cause of chronic allograft dysfunction and loss in kidney transplantation. The immunological mechanisms of ABMR that have been featured in the latest studies indicate a highly complex interplay between various immune and nonimmune cell types. Clinical diagnostic standards have long been criticized for being arbitrary and the lack of accuracy. Transcriptomic approaches, including microarray and RNA sequencing of allograft biopsies, enable the identification of differential gene expression and the continuous improvement of diagnostics. Given that conventional bulk transcriptomic approaches only reflect the average gene expression but not the status at the single-cell level, thereby ignoring the heterogeneity of the transcriptome across individual cells, single-cell RNA sequencing is rising as a powerful tool to provide a high-resolution transcriptome map of immune cells, which allows the elucidation of the pathogenesis and may facilitate the development of novel strategies for clinical treatment of ABMR.
Collapse
Affiliation(s)
- Hsuan Yeh
- Division of Renal-Electrolyte, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hsuan Yeh S976 Scaife Hall 3550 Terrace Street Pittsburgh, PA 15261
| |
Collapse
|
9
|
Unraveling complexity of antibody-mediated rejections, the mandatory way towards an accurate diagnosis and a personalized treatment. Presse Med 2022; 51:104141. [PMID: 36209931 DOI: 10.1016/j.lpm.2022.104141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Antibody-mediated rejection (ABMR) remains one of the most challenging issues after organ transplantation and particularly after kidney transplantation. Despite many progresses during the last decade, ABMR is still the main cause of kidney graft loss and this all over the post- transplant period. In this review, we describe the recent knowledge about molecular and cellular mechanisms involved in ABMR. We focused our report on the role of the complement pathway in the process of ABMR and we give some insights into the role of inflammatory cells, NK lymphocytes and the role of endothelial cells. We further describe the potential role of non-HLA antibodies, of which the importance has been increasingly emphasized in recent years. Overall, this report could be of interest for all physicians who are working in the field of organ transplantation or who are working in the field of immunology. It gives essential information to understand new diagnosis advances and further therapeutic approaches. Antibody-mediated rejection (ABMR) is the leading cause of graft failure ([1,2]). In contrast to T-cell mediated rejection usually sensitive to steroids, active ABMR remains a therapeutic challenge. ABMR diagnosis relies on the presence of renal injuries and donor-specific antibodies (DSA) (HLA and non HLA antibodies) with sometimes the evidence of interaction between DSA and graft endothelium. Regularly revised during expert conferences, ABMR definition is currently categorized as active or chronic active. [3] The emergence of validated molecular assays targeting a better phenotyping of ABMR and the recent advances regarding the detrimental effect of DSA directed against minor antigens open the way to a better assessment of the heterogeneity of ABMR. In this review, we will address new aspects of ABMR regarding its mechanisms, diagnosis and treatments.
Collapse
|
10
|
The Immunohistochemical Expression of the Von Willebrand Factor: A Potential Tool to Predict Kidney Allograft Outcomes. Appl Immunohistochem Mol Morphol 2022; 30:687-693. [PMID: 36251974 DOI: 10.1097/pai.0000000000001078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
Abstract
Few reports assessed endothelial activation biomarkers in kidney allograft biopsies using immunohistochemistry. This retrospective cohort study evaluated the association between posttransplant outcomes and the immunohistochemistry expression of Caveolin-1, Von Willebrand Factor (Vwf), and T-Cadherin in for-cause biopsies diagnosed as interstitial fibrosis and tubular atrophy of unknown etiology. Samples with antibody-mediated changes were excluded. The patients were followed for 3 years after the biopsy or until graft loss/death. Seventy-one (71) samples from 66 patients were included. Eighteen (25.4%) patients lost their grafts, mainly due to chronic rejection (33.3%). Caveolin-1 and T-Cadherin were not associated with graft loss. Vwf had good accuracy in predicting graft failure (AUC 0.637, 95% CI 0.486 to 0.788 P=0.101). The presence of more than 10% of Vwf positivity in the microvasculature (Vwf >10%) was associated with reduced death-censored graft survival (58.2% vs. 85.4% P=0.006), and this result was also observed in the subgroup presenting mild interstitial fibrosis (ci=1) (65.7% vs. 88.6% P=0.033). The multivariate analysis showed that Vwf >10% was an independent risk factor for graft loss (HR=2.88, 95% CI 1.03 to 8.02 P=0.043). In conclusion, Vwf might be an additional tool to predict allograft outcomes in kidney transplant recipients with interstitial fibrosis and tubular atrophy of unknown etiology, probably reflecting immune endothelial activation.
Collapse
|
11
|
Song G, Wang S, Barkestani MN, Mullan C, Fan M, Jiang B, Jiang Q, Li X, Jane-wit D. Membrane attack complexes, endothelial cell activation, and direct allorecognition. Front Immunol 2022; 13:1020889. [PMID: 36211400 PMCID: PMC9539657 DOI: 10.3389/fimmu.2022.1020889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cells (ECs) form a critical immune interface regulating both the activation and trafficking of alloreactive T cells. In the setting of solid organ transplantation, donor-derived ECs represent sites where alloreactive T cells encounter major and minor tissue-derived alloantigens. During this initial encounter, ECs may formatively modulate effector responses of these T cells through expression of inflammatory mediators. Direct allorecognition is a process whereby recipient T cells recognize alloantigen in the context of donor EC-derived HLA molecules. Direct alloresponses are strongly modulated by human ECs and are galvanized by EC-derived inflammatory mediators. Complement are immune proteins that mark damaged or foreign surfaces for immune cell activation. Following labeling by natural IgM during ischemia reperfusion injury (IRI) or IgG during antibody-mediated rejection (ABMR), the complement cascade is terminally activated in the vicinity of donor-derived ECs to locally generate the solid-phase inflammatory mediator, the membrane attack complex (MAC). Via upregulation of leukocyte adhesion molecules, costimulatory molecules, and cytokine trans-presentation, MAC strengthen EC:T cell direct alloresponses and qualitatively shape the alloimmune T cell response. These processes together promote T cell-mediated inflammation during solid organ transplant rejection. In this review we describe molecular pathways downstream of IgM- and IgG-mediated MAC assembly on ECs in the setting of IRI and ABMR of tissue allografts, respectively. We describe work demonstrating that MAC deposition on ECs generates 'signaling endosomes' that sequester and post-translationally enhance the stability of inflammatory signaling molecules to promote EC activation, a process potentiating EC-mediated direct allorecognition. Additionally, with consideration to first-in-human xenotransplantation procedures, we describe clinical therapeutics based on inhibition of the complement pathway. The complement cascade critically mediates EC activation and improved understanding of relevant effector pathways will uncover druggable targets to obviate dysregulated alloimmune T cell infiltration into tissue allografts.
Collapse
Affiliation(s)
- Guiyu Song
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaoxun Wang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
| | - Mahsa Nouri Barkestani
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Clancy Mullan
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Matthew Fan
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, CT, United States
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Quan Jiang
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xue Li
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Dan Jane-wit
- Section of Cardiovascular Medicine, Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiology, West Haven VA Medical Center, West Haven, CT, United States
| |
Collapse
|
12
|
Chamoun B, Sánchez-Sancho P, Torres IB, Gabaldon A, Perelló M, Sellarés J, Moreso F, Serón D. Tocilizumab in the treatment of active chronic humoral rejection resistant to standard therapy. Nefrologia 2022; 42:578-584. [PMID: 36717307 DOI: 10.1016/j.nefroe.2021.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 06/18/2023] Open
Abstract
INTRODUCTION There is no consensus on the most appropriate treatment for chronic active antibody-mediated rejection (cAMR). Recent studies suggest that treatment with tocilizumab (TCZ) may stabilize graft function, decrease the intensity of donor-specific HLA antibodies (DSAs) and reduce inflammation of microcirculation. PATIENTS AND METHODS Observational study with renal allograft recipients diagnosed with cAMR (n = 5) who had not submitted a response to traditional treatment based on the combination of plasma replacements, immunoglobulins, and rituximab. Patients were told to be treated with TCZ as compassionate use in six doses per month (8 mg/kg/month). Renal function, proteinuria, and the intensity of DSAs were monitored during follow-up. RESULTS Five patients, average age 60 ± 13 years, three male and two retrasplants (cPRA average 55%) with preformed DSAs. Treatment with TCZ was initiated within 47 ± 52 days of biopsy. In two cases treatment was discontinued after the first dose, by severe bicitopenia with cytomegalovirus viremia and by graft failure, respectively. In the three patients who completed treatment, no stability of renal function (serum creatinine from 1.73 ± 0.70 to 2.04 ± 0.52 mg/dL, e-FGR 4 6 ± 15 to 36 ± 16 mL/min), showed increased proteinuria (3.2 ± 4.0 to 6.9 ± 11.0 g/g) and the intensity of DSAs maintain stable. No changes were observed in the degree of inflammation of microcirculation (g+pt 4.2 ± 0.8 vs. 4.3 ± 1.0) or in the degree of transplant glomerulopathy (cg 1.2 ± 0.4 vs. 1.8 ± 1.0). CONCLUSIONS TCZ therapy does not appear to be effective in modifying the natural history of chronic active antibody-mediated rejection, does not improve the degree of inflammation of microcirculation and does not reduces the intensity of DSAs.
Collapse
Affiliation(s)
- Betty Chamoun
- Servicio de Nefrología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Pablo Sánchez-Sancho
- Servicio de Farmacia, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Irina B Torres
- Servicio de Nefrología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Alejandra Gabaldon
- Servicio de Patología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Manel Perelló
- Servicio de Nefrología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Joana Sellarés
- Servicio de Nefrología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Francesc Moreso
- Servicio de Nefrología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Daniel Serón
- Servicio de Nefrología, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Chamoun B, Sánchez-Sancho P, Torres IB, Gabaldon A, Perelló M, Sellarés J, Moreso F, Serón D. Tocilizumab en el tratamiento del rechazo humoral crónico activo resistente a terapia estándar. Nefrologia 2022. [DOI: 10.1016/j.nefro.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Kervella D, Le Bas-Bernardet S, Bruneau S, Blancho G. Protection of transplants against antibody-mediated injuries: from xenotransplantation to allogeneic transplantation, mechanisms and therapeutic insights. Front Immunol 2022; 13:932242. [PMID: 35990687 PMCID: PMC9389360 DOI: 10.3389/fimmu.2022.932242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Long-term allograft survival in allotransplantation, especially in kidney and heart transplantation, is mainly limited by the occurrence of antibody-mediated rejection due to anti-Human Leukocyte Antigen antibodies. These types of rejection are difficult to handle and chronic endothelial damages are often irreversible. In the settings of ABO-incompatible transplantation and xenotransplantation, the presence of antibodies targeting graft antigens is not always associated with rejection. This resistance to antibodies toxicity seems to associate changes in endothelial cells phenotype and modification of the immune response. We describe here these mechanisms with a special focus on endothelial cells resistance to antibodies. Endothelial protection against anti-HLA antibodies has been described in vitro and in animal models, but do not seem to be a common feature in immunized allograft recipients. Complement regulation and anti-apoptotic molecules expression appear to be common features in all these settings. Lastly, pharmacological interventions that may promote endothelial cell protection against donor specific antibodies will be described.
Collapse
Affiliation(s)
- Delphine Kervella
- CHU Nantes, Nantes Université, Néphrologie et Immunologie Clinique, Institut Transplantation Urologie Néphrologie (ITUN), Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Stéphanie Le Bas-Bernardet
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Sarah Bruneau
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Gilles Blancho
- CHU Nantes, Nantes Université, Néphrologie et Immunologie Clinique, Institut Transplantation Urologie Néphrologie (ITUN), Nantes, France
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
- *Correspondence: Gilles Blancho,
| |
Collapse
|
15
|
Liburd ST, Shi AA, Pober JS, Tietjen GT. Wanted: An endothelial cell targeting atlas for nanotherapeutic delivery in allograft organs. Am J Transplant 2022; 22:1754-1759. [PMID: 35373446 PMCID: PMC9651180 DOI: 10.1111/ajt.17050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023]
Abstract
Despite the profound shortage of organs available for transplant in the U.S., over 5,000 donated organs were declined for use in 2020. Many of these organs were declined due to donor comorbidities or preservation injuries that predispose grafts to rejection and loss. The risks of these poor outcomes can potentially be reduced by pre-transplant application of normothermic machine perfusion (NMP). To date, the clinical use of NMP has focused on extending preservation and improving organ assessment, but the opportunity for ex situ therapeutic delivery may be the most transformative aspect of this technology. In this Personal Viewpoint, we argue that the endothelial cells (ECs) that line the graft vasculature are an accessible, under-exploited, and attractive target for transplant therapeutics delivered during NMP. We further contend that molecularly targeted nanoparticles (NPs) represent a promising therapeutic vehicle particularly well-suited to NMP. However, to achieve this potential, we need to answer the following three key questions: (1) What EC sub-populations exist within an organ? (2) How can these cells be accessed? (3) And most important, how can preferential retention of NPs by the cells of interest be maximized? Here we argue for creating an EC-targeting atlas as a body of knowledge that answers these questions.
Collapse
Affiliation(s)
- Samuel T. Liburd
- MD-PhD Program, Yale School of Medicine, New Haven, Connecticut
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Audrey A. Shi
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Jordan S. Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | - Gregory T. Tietjen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
16
|
Tiller G, Lammerts RGM, Karijosemito JJ, Alkaff FF, Diepstra A, Pol RA, Meter-Arkema AH, Seelen MA, van den Heuvel MC, Hepkema BG, Daha MR, van den Born J, Berger SP. Weak Expression of Terminal Complement in Active Antibody-Mediated Rejection of the Kidney. Front Immunol 2022; 13:845301. [PMID: 35493506 PMCID: PMC9044906 DOI: 10.3389/fimmu.2022.845301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe role of the complement system in antibody-mediated rejection (ABMR) is insufficiently understood. We aimed to investigate the role of local and systemic complement activation in active (aABMR). We quantified complement activation markers, C3, C3d, and C5b-9 in plasma of aABMR, and acute T-cell mediated rejection (aTCMR), and non-rejection kidney transplant recipients. Intra-renal complement markers were analyzed as C4d, C3d, C5b-9, and CD59 deposition. We examined in vitro complement activation and CD59 expression on renal endothelial cells upon incubation with human leukocyte antigen antibodies.MethodsWe included 50 kidney transplant recipients, who we histopathologically classified as aABMR (n=17), aTCMR (n=18), and non-rejection patients (n=15).ResultsComplement activation in plasma did not differ across groups. C3d and C4d deposition were discriminative for aABMR diagnosis. Particularly, C3d deposition was stronger in glomerular (P<0,01), and peritubular capillaries (P<0,05) comparing aABMR to aTCMR rejection and non-rejection biopsies. In contrast to C3d, C5b-9 was only mildly expressed across all groups. For C5b-9, no significant difference between aABMR and non-rejection biopsies regarding peritubular and glomerular C5b-9 deposition was evident. We replicated these findings in vitro using renal endothelial cells and found complement pathway activation with C4d and C3d, but without terminal C5b-9 deposition. Complement regulator CD59 was variably present in biopsies and constitutively expressed on renal endothelial cells in vitro.ConclusionOur results indicate that terminal complement might only play a minor role in late aABMR, possibly indicating the need to re-evaluate the applicability of terminal complement inhibitors as treatment for aABMR.
Collapse
Affiliation(s)
- Gesa Tiller
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Rosa G. M. Lammerts
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jessy J. Karijosemito
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Firas F. Alkaff
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
- Division of Pharmacology and Therapy, Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Arjan Diepstra
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Robert A. Pol
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anita H. Meter-Arkema
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Marc. A. Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Marius C. van den Heuvel
- Division of Pathology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bouke G. Hepkema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Department of Nephrology, University of Leiden, Leiden, Netherlands
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Stefan P. Berger,
| |
Collapse
|
17
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
18
|
Rashmi P, Sur S, Sigdel TK, Boada P, Schroeder AW, Damm I, Kretzler M, Hodgin J, Sarwal MM. Multiplexed droplet single-cell sequencing (Mux-Seq) of normal and transplant kidney. Am J Transplant 2022; 22:876-885. [PMID: 34687145 PMCID: PMC8897263 DOI: 10.1111/ajt.16871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/06/2021] [Accepted: 10/09/2021] [Indexed: 01/25/2023]
Abstract
Maintenance of systemic homeostasis by kidney requires the coordinated response of diverse cell types. The use of single-cell RNA sequencing (scRNAseq) for patient tissue samples remains fraught with difficulties with cell isolation, purity, and experimental bias. The ability to characterize immune and parenchymal cells during transplant rejection will be invaluable in defining transplant pathology where tissue availability is restricted to needle biopsy fragments. Herein, we present feasibility data for multiplexing approach for droplet scRNAseq (Mux-Seq). Mux-Seq has the potential to minimize experimental batch bias and variation even with very small sample input. In this first proof-of-concept study for this approach, explant tissues from six normal and two transplant recipients after multiple early post-transplant rejection episodes leading to nephrectomy due to aggressive antibody mediated rejection, were pooled for Mux-Seq. A computational tool, Demuxlet was applied for demultiplexing the individual cells from the pooled experiment. Each sample was also applied individually in a single microfluidic run (singleplex) to correlate results with the pooled data from the same sample. Our applied protocol demonstrated that data from Mux-Seq correlated highly with singleplex (Pearson coefficient 0.982) sequencing results, with the ability to identify many known and novel kidney cell types including different infiltrating immune cells. Trajectory analysis of proximal tubule and endothelial cells demonstrated separation between healthy and injured kidney from transplant explant suggesting evolving stages of cell- specific differentiation in alloimmune injury. This study provides the technical groundwork for understanding the pathogenesis of alloimmune injury and host tissue response in transplant rejection and normal human kidney and provides a protocol for optimized processing precious and low input human kidney biopsy tissue for larger scale studies.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Swastika Sur
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Patrick Boada
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Andrew W. Schroeder
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA
| | - Matthias Kretzler
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Jeff Hodgin
- Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, MI
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA,Corresponding author: Minnie Sarwal, MD, PhD, MRCP, FRCP, Professor in Residence, Surgery/Medicine/Pediatrics, UCSF, Medical Director, Kidney Pancreas Transplant Program, UCSF, Co-Director, T32 Training Program, Transplant Surgery, UCSF, Director, Precision Transplant Medicine, UCSF,
| | | |
Collapse
|
19
|
Seiler LK, Phung NL, Nikolin C, Immenschuh S, Erck C, Kaufeld J, Haller H, Falk CS, Jonczyk R, Lindner P, Thoms S, Siegl J, Mayer G, Feederle R, Blume CA. An Antibody-Aptamer-Hybrid Lateral Flow Assay for Detection of CXCL9 in Antibody-Mediated Rejection after Kidney Transplantation. Diagnostics (Basel) 2022; 12:diagnostics12020308. [PMID: 35204399 PMCID: PMC8871475 DOI: 10.3390/diagnostics12020308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic antibody-mediated rejection (AMR) is a key limiting factor for the clinical outcome of a kidney transplantation (Ktx), where early diagnosis and therapeutic intervention is needed. This study describes the identification of the biomarker CXC-motif chemokine ligand (CXCL) 9 as an indicator for AMR and presents a new aptamer-antibody-hybrid lateral flow assay (hybrid-LFA) for detection in urine. Biomarker evaluation included two independent cohorts of kidney transplant recipients (KTRs) from a protocol biopsy program and used subgroup comparisons according to BANFF-classifications. Plasma, urine and biopsy lysate samples were analyzed with a Luminex-based multiplex assay. The CXCL9-specific hybrid-LFA was developed based upon a specific rat antibody immobilized on a nitrocellulose-membrane and the coupling of a CXCL9-binding aptamer to gold nanoparticles. LFA performance was assessed according to receiver operating characteristic (ROC) analysis. Among 15 high-scored biomarkers according to a neural network analysis, significantly higher levels of CXCL9 were found in plasma and urine and biopsy lysates of KTRs with biopsy-proven AMR. The newly developed hybrid-LFA reached a sensitivity and specificity of 71% and an AUC of 0.79 for CXCL9. This point-of-care-test (POCT) improves early diagnosis-making in AMR after Ktx, especially in KTRs with undetermined status of donor-specific HLA-antibodies.
Collapse
Affiliation(s)
- Lisa K. Seiler
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Ngoc Linh Phung
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Christoph Nikolin
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (C.N.); (S.I.)
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany; (C.N.); (S.I.)
| | - Christian Erck
- Helmholtz Centre for Infection Research, Cellular Proteome Research Group, 38124 Braunschweig, Germany;
| | - Jessica Kaufeld
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (H.H.)
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, 30625 Hannover, Germany; (J.K.); (H.H.)
| | - Christine S. Falk
- Institute for Transplant Immunology, Hannover Medical School, 30625 Hannover, Germany;
| | - Rebecca Jonczyk
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Patrick Lindner
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Stefanie Thoms
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
| | - Julia Siegl
- Chemical Biology & Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany; (J.S.); (G.M.)
- Center of Aptamer Research & Development (CARD), University of Bonn, 53121 Bonn, Germany
| | - Günter Mayer
- Chemical Biology & Chemical Genetics, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53121 Bonn, Germany; (J.S.); (G.M.)
- Center of Aptamer Research & Development (CARD), University of Bonn, 53121 Bonn, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Cornelia A. Blume
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (L.K.S.); (N.L.P.); (R.J.); (P.L.); (S.T.)
- Correspondence:
| |
Collapse
|
20
|
Failing Heart Transplants and Rejection-A Cellular Perspective. J Cardiovasc Dev Dis 2021; 8:jcdd8120180. [PMID: 34940535 PMCID: PMC8708043 DOI: 10.3390/jcdd8120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field—how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.
Collapse
|
21
|
Valdivia E, Rother T, Yuzefovych Y, Hack F, Wenzel N, Blasczyk R, Krezdorn N, Figueiredo C. Genetic modification of limbs using ex vivo machine perfusion. Hum Gene Ther 2021; 33:460-471. [PMID: 34779223 DOI: 10.1089/hum.2021.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Genetic engineering is a promising tool to repair genetic disorders, improve graft function or to reduce immune responses towards the allografts. Ex vivo organ perfusion systems have the potential to mitigate ischemic-reperfusion injury, prolong preservation time or even rescue organ function. We aim to combine both technologies to develop a modular platform allowing the genetic modification of vascularized composite (VC) allografts. Rat hind limbs were perfused ex vivo under subnormothermic conditions with lentiviral vectors. Specific perfusion conditions such as controlled pressure, temperature and flow rates were optimized to support the genetic modification of the limbs. Genetic modification was detected in vascular, muscular and dermal limb tissues. Remarkably, skin follicular and interfollicular keratinocytes as well as endothelial cells (ECs) showed stable transgene expression. Furthermore, levels of injury markers such as lactate, myoglobin and lactate dehydrogenase (LDH) as well as histological analyses showed that ex vivo limb perfusion with lentiviral vectors did not cause tissue damage and limb cytokine secretion signatures were not significantly affected. The use of ex vivo VC perfusion in combination with lentiviral vectors allows an efficient and stable genetic modification of limbs representing a robust platform to genetically engineer limbs towards increasing graft survival after transplantation.
Collapse
Affiliation(s)
- Emilio Valdivia
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Tamina Rother
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Yuliia Yuzefovych
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Franziska Hack
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nadine Wenzel
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Rainer Blasczyk
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| | - Nicco Krezdorn
- Hannover Medical School, 9177, Clinic for Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover, Niedersachsen, Germany;
| | - Constanca Figueiredo
- Hannover Medical School, 9177, Institute of Transfusion Medicine and Transplant Engineering, Hannover, Niedersachsen, Germany;
| |
Collapse
|
22
|
Siren EMJ, Luo HD, Tam F, Montgomery A, Enns W, Moon H, Sim L, Rey K, Guan Q, Wang JJ, Wardell CM, Monajemi M, Mojibian M, Levings MK, Zhang ZJ, Du C, Withers SG, Choy JC, Kizhakkedathu JN. Prevention of vascular-allograft rejection by protecting the endothelial glycocalyx with immunosuppressive polymers. Nat Biomed Eng 2021; 5:1202-1216. [PMID: 34373602 DOI: 10.1038/s41551-021-00777-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Systemic immunosuppression for the mitigation of immune rejection after organ transplantation causes adverse side effects and constrains the long-term benefits of the transplanted graft. Here we show that protecting the endothelial glycocalyx in vascular allografts via the enzymatic ligation of immunosuppressive glycopolymers under cold-storage conditions attenuates the acute and chronic rejection of the grafts after transplantation in the absence of systemic immunosuppression. In syngeneic and allogeneic mice that received kidney transplants, the steric and immunosuppressive properties of the ligated polymers largely protected the transplanted grafts from ischaemic reperfusion injury, and from immune-cell adhesion and thereby immunocytotoxicity. Polymer-mediated shielding of the endothelial glycocalyx following organ procurement should be compatible with clinical procedures for transplant preservation and perfusion, and may reduce the damage and rejection of transplanted organs after surgery.
Collapse
Affiliation(s)
- Erika M J Siren
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franklin Tam
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ashani Montgomery
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Winnie Enns
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Haisle Moon
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lyann Sim
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Rey
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiao-Jing Wang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mahdis Monajemi
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.,Department of Surgery, The University of British Columbia, Vancouver, British Columbia, Canada.,School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Zheng J Zhang
- Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Caigan Du
- Department of Urologic Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G Withers
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada. .,School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
23
|
Moris D, Cendales LC. Sensitization and Desensitization in Vascularized Composite Allotransplantation. Front Immunol 2021; 12:682180. [PMID: 34456906 PMCID: PMC8385557 DOI: 10.3389/fimmu.2021.682180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/27/2021] [Indexed: 01/02/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is a field under research and has emerged as an alternative option for the repair of severe disfiguring defects that result from severe tissue loss in a selected group of patients. Lifelong immunosuppressive therapy, immunosuppression associated complications, and the effects of the host immune response in the graft are major concerns in this type of quality-of-life transplant. The initial management of extensive soft tissue injury can lead to the development of anti-HLA antibodies through injury-related factors, transfusion and cadaveric grafting. The role of antibody-mediated rejection, donor-specific antibody (DSA) formation and graft rejection in the context of VCA still remain poorly understood. The most common antigenic target of preexisting alloantibodies are MHC mismatches, though recognition of ABO incompatible antigens, minor histocompatibility complexes and endothelial cells has also been shown to contribute to rejection. Mechanistically, alloantibody-mediated tissue damage occurs primarily through complement fixation as well as through antibody-dependent cellular toxicity. If DSA exist, activation of complement and coagulation cascades can result in vascular thrombosis and infarction and thus rejection and graft loss. Both preexisting DSA but especially de-novo DSA are currently considered as main contributors to late allograft injury and graft failure. Desensitization protocols are currently being developed for VCA, mainly including removal of alloantibodies whereas treatment of established antibody-mediated rejection is achieved through high dose intravenous immunoglobulins. The long-term efficacy of such therapies in sensitized VCA recipients is currently unknown. The current evidence base for sensitizing events and outcomes in reconstructive transplantation is limited. However, current data show that VCA transplantation has been performed in the setting of HLA-sensitization.
Collapse
Affiliation(s)
| | - Linda C. Cendales
- Department of Surgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
24
|
Rossi AP, Alloway RR, Hildeman D, Woodle ES. Plasma cell biology: Foundations for targeted therapeutic development in transplantation. Immunol Rev 2021; 303:168-186. [PMID: 34254320 DOI: 10.1111/imr.13011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/20/2022]
Abstract
Solid organ transplantation is a life-saving procedure for patients with end-stage organ disease. Over the past 70 years, tremendous progress has been made in solid organ transplantation, particularly in T-cell-targeted immunosuppression and organ allocation systems. However, humoral alloimmune responses remain a major challenge to progress. Patients with preexisting antibodies to human leukocyte antigen (HLA) are at significant disadvantages in regard to receiving a well-matched organ, moreover, those who develop anti-HLA antibodies after transplantation face a significant foreshortening of renal allograft survival. Historical therapies to desensitize patients prior to transplantation or to treat posttransplant AMR have had limited effectiveness, likely because they do not significantly reduce antibody levels, as plasma cells, the source of antibody production, remain largely unaffected. Herein, we will discuss the significance of plasma cells in transplantation, aspects of their biology as potential therapeutic targets, clinical challenges in developing strategies to target plasma cells in transplantation, and lastly, novel approaches that have potential to advance the field.
Collapse
Affiliation(s)
- Amy P Rossi
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rita R Alloway
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - David Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
25
|
Peelen DM, Hoogduijn MJ, Hesselink DA, Baan CC. Advanced in vitro Research Models to Study the Role of Endothelial Cells in Solid Organ Transplantation. Front Immunol 2021; 12:607953. [PMID: 33664744 PMCID: PMC7921837 DOI: 10.3389/fimmu.2021.607953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
The endothelium plays a key role in acute and chronic rejection of solid organ transplants. During both processes the endothelium is damaged often with major consequences for organ function. Also, endothelial cells (EC) have antigen-presenting properties and can in this manner initiate and enhance alloreactive immune responses. For decades, knowledge about these roles of EC have been obtained by studying both in vitro and in vivo models. These experimental models poorly imitate the immune response in patients and might explain why the discovery and development of agents that control EC responses is hampered. In recent years, various innovative human 3D in vitro models mimicking in vivo organ structure and function have been developed. These models will extend the knowledge about the diverse roles of EC in allograft rejection and will hopefully lead to discoveries of new targets that are involved in the interactions between the donor organ EC and the recipient's immune system. Moreover, these models can be used to gain a better insight in the mode of action of the currently prescribed immunosuppression and will enhance the development of novel therapeutics aiming to reduce allograft rejection and prolong graft survival.
Collapse
Affiliation(s)
- Daphne M Peelen
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Martin J Hoogduijn
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dennis A Hesselink
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carla C Baan
- Rotterdam Transplant Group, Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
26
|
Clotet-Freixas S, McEvoy CM, Batruch I, Pastrello C, Kotlyar M, Van JAD, Arambewela M, Boshart A, Farkona S, Niu Y, Li Y, Famure O, Bozovic A, Kulasingam V, Chen P, Kim SJ, Chan E, Moshkelgosha S, Rahman SA, Das J, Martinu T, Juvet S, Jurisica I, Chruscinski A, John R, Konvalinka A. Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. J Am Soc Nephrol 2020; 31:2705-2724. [PMID: 32900843 DOI: 10.1681/asn.2020030286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie Anh Dung Van
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Madhurangi Arambewela
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun Niu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yanhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Olusegun Famure
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrea Bozovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peixuen Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - S Joseph Kim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Emilie Chan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Syed Ashiqur Rahman
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Karava V, Gakiopoulou H, Zampetoglou A, Marinaki S, Havaki S, Bitsori M, Stefanidis CJ, Mitsioni A. Antibody-mediated rejection with the presence of glomerular crescents in a pediatric kidney transplant recipient: A case report. Pediatr Transplant 2020; 24:e13722. [PMID: 32437064 DOI: 10.1111/petr.13722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 05/18/2019] [Accepted: 04/05/2020] [Indexed: 12/01/2022]
Abstract
Glomerular crescents in kidney transplantation are indicative of severe glomerular injury and constitute a hallmark of RPGN. Their concurrence with ABMR has been rarely described only in adult patients. We report a case of 10-year-old boy with compound heterozygous Fin-major Finnish-type congenital nephrotic syndrome, who had received a deceased-donor kidney transplant 5 years before onset of acute kidney injury and nephrotic range proteinuria without hematuria. Kidney allograft biopsy illustrated 6 glomeruli with global sclerosis and 6 with remarkable circumferential or segmental cellular crescents. Negative glomerular immunofluorescence for immune-complex deposits and the absence of serum ANCA eliminated the presence of immune-mediated and ANCA-positive pauci-immune crescentic glomerulonephritis. Diagnosis of ABMR was based on the high levels of HLA class II DSA and the histological evidence of glomerulitis, peritubular capillaritis, and acute tubular injury with positive linear peritubular capillary C4d staining. The patient despite plasmapheresis and enhanced immunosuppressive treatment progressed to end-stage renal disease. We conclude that glomerular crescents may represent a finding of AMBR and possibly a marker of poor allograft prognosis in pediatric patients.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Department, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Hara Gakiopoulou
- 1st Department of Pathology, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Argyroula Zampetoglou
- Pediatric Nephrology Department, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| | - Smaragdi Marinaki
- Nephrology Department and Renal Transplantation Unit, Laiko Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Sofia Havaki
- Division of Histology - Embryology, National & Kapodistrian University of Athens, Athens, Greece
| | - Maria Bitsori
- Department of Paediatrics, Heraklion University Hospital, Heraklion, Greece
| | | | - Andromach Mitsioni
- Pediatric Nephrology Department, Panagiotis & Aglaia Kyriakou Children's Hospital, Athens, Greece
| |
Collapse
|
28
|
Xie CB, Jiang B, Qin L, Tellides G, Kirkiles-Smith NC, Jane-wit D, Pober JS. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. J Clin Invest 2020; 130:3437-3452. [PMID: 32191642 PMCID: PMC7324183 DOI: 10.1172/jci135060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Alloantibodies in presensitized transplant candidates deposit complement membrane attack complexes (MACs) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed that human ECs endocytose MACs into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB-inducing kinase (NIK) protein. Endosomal NIK activates both noncanonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β. IL-1β activates ECs, increasing recruitment and activation of alloreactive effector memory CD4+ T (Tem) cells. Here, we report that IFN-γ priming induced nuclear expression of IL-15/IL-15Rα complexes in cultured human ECs and that MAC-induced IL-1β stimulated translocation of IL-15/IL-15Rα complexes to the EC surface in a canonical NF-κB-dependent process in which IL-15/IL-15Rα transpresentation increased activation and maturation of alloreactive CD8+ Tem cells. Blocking NLRP3 inflammasome assembly, IL-1 receptor, or IL-15 on ECs inhibited the augmented CD8+ Tem cell responses, indicating that this pathway is not redundant. Adoptively transferred alloantibody and mouse complement deposition induced IL-15/IL-15Rα expression by human ECs lining human coronary artery grafts in immunodeficient mice, and enhanced intimal CD8+ T cell infiltration, which was markedly reduced by inflammasome inhibition, linking alloantibody to acute rejection. Inhibiting MAC signaling may similarly limit other complement-mediated pathologies.
Collapse
Affiliation(s)
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Dan Jane-wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
29
|
Gloude NJ, Dandoy CE, Davies SM, Myers KC, Jordan MB, Marsh RA, Kumar A, Bleesing J, Teusink-Cross A, Jodele S. Thinking Beyond HLH: Clinical Features of Patients with Concurrent Presentation of Hemophagocytic Lymphohistiocytosis and Thrombotic Microangiopathy. J Clin Immunol 2020; 40:699-707. [PMID: 32447592 PMCID: PMC7245179 DOI: 10.1007/s10875-020-00789-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a syndrome of excessive immune system activation driven mainly by high levels of interferon gamma. The clinical presentation of HLH can have considerable overlap with other inflammatory conditions. We present a cohort of patients with therapy refractory HLH referred to our center who were found to have a simultaneous presentation of complement-mediated thrombotic microangiopathy (TMA). Twenty-three patients had therapy refractory HLH (13 primary, 4 EVB-HLH, 6 HLH without known trigger). Sixteen (69.6%) met high-risk TMA criteria. Renal failure requiring renal replacement therapy, severe hypertension, serositis, and gastrointestinal bleeding were documented only in patients with HLH who had concomitant complement-mediated TMA. Patients with HLH and without TMA required ventilator support mainly due to CNS symptoms, while those with HLH and TMA had respiratory failure predominantly associated with pulmonary hypertension, a known presentation of pulmonary TMA. Ten patients received eculizumab for complement-mediated TMA management while being treated for HLH. All patients who received the complement blocker eculizumab in addition to the interferon gamma blocker emapalumab had complete resolution of their TMA and survived. Our observations suggest co-activation of both interferon and complement pathways as a potential culprit in the evolution of thrombotic microangiopathy in patients with inflammatory disorders like refractory HLH and may offer novel therapeutic approaches for these critically ill patients. TMA should be considered in children with HLH and multi-organ failure, as an early institution of a brief course of complement blocking therapy in addition to HLH-targeted therapy may improve clinical outcomes in these patients.
Collapse
Affiliation(s)
- Nicholas J Gloude
- Department of Pediatrics, University of California San Diego, San Diego, USA.,Division of Hematology Oncology, Rady Children's Hospital, San Diego, USA
| | - Christopher E Dandoy
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Stella M Davies
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Kasiani C Myers
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Michael B Jordan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Rebecca A Marsh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Ashish Kumar
- Division of Hematology Oncology, Rady Children's Hospital, San Diego, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jack Bleesing
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA.,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Ashley Teusink-Cross
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.,Division of Pharmacy, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
| | - Sonata Jodele
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA. .,Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, USA.
| |
Collapse
|
30
|
Kopecky BJ, Frye C, Terada Y, Balsara KR, Kreisel D, Lavine KJ. Role of donor macrophages after heart and lung transplantation. Am J Transplant 2020; 20:1225-1235. [PMID: 31850651 PMCID: PMC7202685 DOI: 10.1111/ajt.15751] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 01/25/2023]
Abstract
Since the 1960s, heart and lung transplantation has remained the optimal therapy for patients with end-stage disease, extending and improving quality of life for thousands of individuals annually. Expanding donor organ availability and immunologic compatibility is a priority to help meet the clinical demand for organ transplant. While effective, current immunosuppression is imperfect as it lacks specificity and imposes unintended adverse effects such as opportunistic infections and malignancy that limit the health and longevity of transplant recipients. In this review, we focus on donor macrophages as a new target to achieve allograft tolerance. Donor organ-directed therapies have the potential to improve allograft survival while minimizing patient harm related to global suppression of recipient immune responses. Topics highlighted include the role of ontogenically distinct donor macrophage populations in ischemia-reperfusion injury and rejection, including their interaction with allograft-infiltrating recipient immune cells and potential therapeutic approaches. Ultimately, a better understanding of how donor intrinsic immunity influences allograft acceptance and survival will provide new opportunities to improve the outcomes of transplant recipients.
Collapse
Affiliation(s)
| | - Christian Frye
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Yuriko Terada
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Keki R. Balsara
- Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, Missouri
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| | - Kory J. Lavine
- Department of Medicine, Washington University, Saint Louis, Missouri
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
- Department of Developmental Biology, Washington University, Saint Louis, Missouri
| |
Collapse
|
31
|
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
|
32
|
Compelling scientific and clinical evidence that non-HLA specific antibodies impact graft outcome independently and in concert with donor HLA specific antibodies. Hum Immunol 2019; 80:555-560. [PMID: 31279533 DOI: 10.1016/j.humimm.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Chang JC. Sepsis and septic shock: endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J 2019; 17:10. [PMID: 31160889 PMCID: PMC6542012 DOI: 10.1186/s12959-019-0198-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
In addition to protective “immune response”, sepsis is characterized by destructive “endothelial response” of the host, leading to endotheliopathy and its molecular dysfunction. Complement activation generates membrane attack complex (MAC). MAC causes channel formation to the cell membrane of pathogen, leading to death of microorganisms. In the host, MAC also may induce channel formation to innocent bystander endothelial cells (ECs) and ECs cannot be protected. This provokes endotheliopathy, which activates two independent molecular pathways: inflammatory and microthrombotic. Activated inflammatory pathway promotes the release of inflammatory cytokines and triggers inflammation. Activated microthrombotic pathway mediates platelet activation and exocytosis of unusually large von Willebrand factor multimers (ULVWF) from ECs and initiates microthrombogenesis. Excessively released ULVWF become anchored to ECs as long elongated strings and recruit activated platelets to assemble platelet-ULVWF complexes and form “microthrombi”. These microthrombi strings trigger disseminated intravascular microthrombosis (DIT), which is the underlying pathology of endotheliopathy-associated vascular microthrombotic disease (EA-VMTD). Sepsis-induced endotheliopathy promotes inflammation and DIT. Inflammation produces inflammatory response and DIT orchestrates consumptive thrombocytopenia, microangiopathic hemolytic anemia, and multiorgan dysfunction syndrome (MODS). Systemic inflammatory response syndrome (SIRS) is a combined phenotype of inflammation and endotheliopathy-associated (EA)-VMTD. Successful therapeutic design for sepsis can be achieved by counteracting the pathologic microthrombogenesis.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA USA
| |
Collapse
|
34
|
Does the antibody mediated rejection grading scale have prognostic prediction? Yes, but the picture is still blurry. Curr Opin Organ Transplant 2019; 24:265-270. [PMID: 31090634 DOI: 10.1097/mot.0000000000000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (ABMR) is a condition difficult to diagnose and treat, which may significantly impair the outcome of heart transplant recipients. In clinical practice, diagnosis is based on immunopathology grading of endomyocardial biopsies (EMB). Despite its value, the current diagnostic system has several pitfalls that have been addressed in recent literature. RECENT FINDINGS Pathology grading of ABMR (pAMR) has a relevant prognostic factor. However, it does not capture several nuances, such as chronic vs. acute ABMR, mixed rejection or microvascular inflammation. Molecular biology-based assays are shedding new light on the mechanisms of ABMR, which could improve the precision of ABMR diagnosis. SUMMARY These new findings have the potential to rearrange EMB grading system and to guide more precisely decision-making, but studies validating the therapeutic management based on molecular-pathology coupling are still missing.
Collapse
|
35
|
Sensitization to endothelial cell antigens: Unraveling the cause or effect paradox. Hum Immunol 2019; 80:614-620. [PMID: 31054781 DOI: 10.1016/j.humimm.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/03/2023]
Abstract
Anti-endothelial cell antibodies (AECAs) have been correlated with increased acute and chronic rejection across all organ types and early graft dysfunction in kidney and heart transplantation. Nevertheless, the lack of appropriate tools and clear criteria for defining injurious versus non-injurious AECAs prohibits their routine inclusion in clinical risk assessments and diagnostic algorithms for antibody mediated injury. Clinical characterization of AECAs is complicated due to the wide range of polymorphic and non-polymorphic antigens expressed across different vascular tissues and the diverse array of specificities observed between individuals. This complexity is also reflected in the broad spectrum of reported injury phenotypes. AECAs detected at time of allograft dysfunction may represent biomarkers of past vascular injury or active contributors to a current rejection process. New tools within the fields of proteomics, genomics, bioinformatics, and imaging are currently being validated and hold great promise for unraveling the AECA paradox.
Collapse
|
36
|
Xie CB, Qin L, Li G, Fang C, Kirkiles-Smith NC, Tellides G, Pober JS, Jane-Wit D. Complement Membrane Attack Complexes Assemble NLRP3 Inflammasomes Triggering IL-1 Activation of IFN-γ-Primed Human Endothelium. Circ Res 2019; 124:1747-1759. [PMID: 31170059 DOI: 10.1161/circresaha.119.314845] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Complement activation contributes to multiple immune-mediated pathologies. In late allograft failure, donor-specific antibody deposits complement membrane attack complexes (MAC) on graft endothelial cells (ECs), substantially increasing their immunogenicity without causing lysis. Internalized MAC stabilize NIK (NF-κB [nuclear factor kappa-light-chain-enhancer of activated B cells]-inducing kinase) protein on Rab5+MAC+ endosomes, activating noncanonical NF-κB signaling. However, the link to increased immunogenicity is unclear. OBJECTIVE To identify mechanisms by which alloantibody and internalized MAC activate ECs to enhance their ability to increase T-cell responses. METHODS AND RESULTS In human EC cultures, internalized MAC also causes NLRP3 (NOD-like receptor family pyrin domain containing 3) translocation from endoplasmic reticulum to Rab5+MAC+NIK+ endosomes followed by endosomal NIK-dependent inflammasome assembly. Cytosolic NIK, stabilized by LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells), does not trigger inflammasome assembly, and ATP-triggered inflammasome assembly does not require NIK. IFN-γ (interferon-γ) primes EC responsiveness to MAC by increasing NLRP3, pro-caspase 1, and gasdermin D expression. NIK-activated noncanonical NF-κB signaling induces pro-IL (interleukin)-1β expression. Inflammasome processed pro-IL-1β, and gasdermin D results in IL-1β secretion that increases EC immunogenicity through IL-1 receptor signaling. Activation of human ECs lining human coronary artery grafts in immunodeficient mouse hosts by alloantibody and complement similarly depends on assembly of an NLRP3 inflammasome. Finally, in renal allograft biopsies showing chronic rejection, caspase-1 is activated in C4d+ ECs of interstitial microvessels, supporting the relevance of the cell culture findings. CONCLUSIONS In response to antibody-mediated complement activation, IFN-γ-primed human ECs internalize MAC, triggering both endosomal-associated NIK-dependent NLRP3 inflammasome assembly and IL-1 synthesis, resulting in autocrine/paracrine IL-1β-mediated increases in EC immunogenicity. Similar responses may underlie other complement-mediated pathologies.
Collapse
Affiliation(s)
- Catherine B Xie
- From the Department of Immunobiology (C.B.X., N.C.K.-S., J.S.P.), Yale University School of Medicine, New Haven, CT
| | - Lingfeng Qin
- Department of Surgery (L.Q., G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Guangxin Li
- Department of Surgery (L.Q., G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Caodi Fang
- Division of Cardiovascular Medicine (C.F., D.J.-w), Yale University School of Medicine, New Haven, CT
| | - Nancy C Kirkiles-Smith
- From the Department of Immunobiology (C.B.X., N.C.K.-S., J.S.P.), Yale University School of Medicine, New Haven, CT
| | - George Tellides
- Department of Surgery (L.Q., G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Jordan S Pober
- From the Department of Immunobiology (C.B.X., N.C.K.-S., J.S.P.), Yale University School of Medicine, New Haven, CT
| | - Dan Jane-Wit
- Division of Cardiovascular Medicine (C.F., D.J.-w), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
37
|
Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallée M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019. [PMID: 30607032 DOI: 10.1038/s4158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The kidney harbours different types of endothelia, each with specific structural and functional characteristics. The glomerular endothelium, which is highly fenestrated and covered by a rich glycocalyx, participates in the sieving properties of the glomerular filtration barrier and in the maintenance of podocyte structure. The microvascular endothelium in peritubular capillaries, which is also fenestrated, transports reabsorbed components and participates in epithelial cell function. The endothelium of large and small vessels supports the renal vasculature. These renal endothelia are protected by regulators of thrombosis, inflammation and complement, but endothelial injury (for example, induced by toxins, antibodies, immune cells or inflammatory cytokines) or defects in factors that provide endothelial protection (for example, regulators of complement or angiogenesis) can lead to acute or chronic renal injury. Moreover, renal endothelial cells can transition towards a mesenchymal phenotype, favouring renal fibrosis and the development of chronic kidney disease. Thus, the renal endothelium is both a target and a driver of kidney and systemic cardiovascular complications. Emerging therapeutic strategies that target the renal endothelium may lead to improved outcomes for both rare and common renal diseases.
Collapse
Affiliation(s)
- Noemie Jourde-Chiche
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France.
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France.
| | - Fadi Fakhouri
- Centre de Recherche en Transplantation et Immunologie, INSERM, Université de Nantes and Department of Nephrology, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Laetitia Dou
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Jeremy Bellien
- Department of Pharmacology, Rouen University Hospital and INSERM, Normandy University, Université de Rouen Normandie, Rouen, France
| | - Stéphane Burtey
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Marie Frimat
- Université de Lille, INSERM, Centre Hospitalier Universitaire de Lille, U995, Lille Inflammation Research International Center (LIRIC), Lille, France
- Nephrology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Pierre-André Jarrot
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Gilles Kaplanski
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
- Assistance Publique-Hôpitaux de Marseille, Service de Médecine Interne et d'Immunologie Clinique, Hôpital de La Conception, Marseille, France
| | - Moglie Le Quintrec
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Vincent Pernin
- Centre Hospitalier Universitaire de Lapeyronie, Département de Néphrologie Dialyse et Transplantation Rénale, Montpellier, France
- Institute for Regenerative Medicine and Biotherapy (IRMB), Montpellier, France
| | - Claire Rigothier
- Tissue Bioengineering, Université de Bordeaux, Bordeaux, France
- Service de Néphrologie Transplantation, Dialyse et Aphérèse, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Marion Sallée
- Aix-Marseille University, Centre de Nephrologie et Transplantation Renale, AP-HM Hopital de la Conception, Marseille, France
- Aix-Marseille University, C2VN, INSERM 1263, Institut National de la Recherche Agronomique (INRA) 1260, Faculte de Pharmacie, Marseille, France
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Dominique Guerrot
- Normandie Université, Université de Rouen Normandie, Rouen University Hospital, Department of Nephrology, Rouen, France
| | - Lubka T Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, F-75006, Paris, France.
- Sorbonne Universités, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|