1
|
Barhoosh H, Dixit A, Cochrane WG, Cavett V, Prince RN, Blair BO, Ward FR, McClure KF, Patten PA, Paulick MG, Paegel BM. Activity-Based DNA-Encoded Library Screening for Selective Inhibitors of Eukaryotic Translation. ACS CENTRAL SCIENCE 2024; 10:1960-1968. [PMID: 39463829 PMCID: PMC11503492 DOI: 10.1021/acscentsci.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024]
Abstract
Small molecule probes exist for only ∼2% of human proteins because most lack functional binding pockets or cannot be assayed for high-throughput screening. Selective translation modulation circumvents canonical druggability and assay development constraints by using in vitro transcription-translation (IVTT) as a universal biochemical screening assay. We developed an IVTT activity assay by fusing a GFP reporter to various target gene sequences and screened the target sequences for inhibitors in microfluidic picoliter-scale droplets using a 5,348-member translation inhibitor DNA-encoded library (DEL). Screening a proof-of-concept PCSK9-GFP reporter yielded many hits; 6/7 hits inhibited PCSK9-GFP IVTT (IC50 1-20 μM), and the lead hit reduced PCSK9 levels in HepG2 cells. Preliminary selectivity was informed by counterscreening the DEL against a frameshift mutant PCSK9-GFP reporter. A plug-and-play approach to assay development and screening was demonstrated by scouting the DEL for activity using reporter genes of targets with difficult-to-assay or even unknown function (RPL27, KRASG12D, MST1, USO1). This microfluidic IVTT DEL screening platform could scale probe discovery to the human proteome and perhaps more broadly across the tree of life.
Collapse
Affiliation(s)
- Huda Barhoosh
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Anjali Dixit
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Wesley G. Cochrane
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Valerie Cavett
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
| | - Robin N. Prince
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Brooke O. Blair
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Fred R. Ward
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Kim F. McClure
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Phillip A. Patten
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Margot G. Paulick
- Initial
Therapeutics, South San Francisco, California 94080, United States
| | - Brian M. Paegel
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California 92697, United States
- Departments
of Chemistry & Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
2
|
Brylak J, Nowak JK, Dybska E, Glapa-Nowak A, Kierkuś J, Osiecki M, Banaszkiewicz A, Radzikowski A, Szaflarska-Popławska A, Kwiecień J, Buczyńska A, Walkowiak J. Macrophage-Stimulating 1 Polymorphism rs3197999 in Pediatric Patients with Inflammatory Bowel Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1243. [PMID: 39202524 PMCID: PMC11356727 DOI: 10.3390/medicina60081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), often necessitates long-term treatment and hospitalizations and also may require surgery. The macrophage-stimulating 1 (MST1) rs3197999 polymorphism is strongly associated with the risk of IBD but its exact clinical correlates remain under investigation. We aimed to characterize the relationships between the MST1 rs3197999 genotype and the clinical characteristics in children and adolescents with IBD within a multi-center cross-sectional study. Materials and Methods: Clinical data included serum C-reactive protein (CRP), albumin, activity indices (PUCAI, PCDAI), anthropometric data, pharmacotherapy details, surgery, and disease severity. Genotyping for rs3197999 was carried out using TaqMan hydrolysis probes. Results: The study included 367 pediatric patients, 197 with Crohn's disease (CD) (40.6% female; a median age of 15.2 years [interquartile range 13.2-17.0]) and 170 with ulcerative colitis (UC) (45.8% female; a median age of 15.1 years [11.6-16.8]). No significant relationships were found between MST1 genotypes and age upon first biologic use, time from diagnosis to biological therapy introduction, PUCAI, PCDAI, or hospitalizations for IBD flares. However, in IBD, the height Z-score at the worst flare was negatively associated with the CC genotype (p = 0.016; CC: -0.4 [-1.2-0.4], CT: -0.1 [-0.7-0.8], TT: 0.0 [-1.2-0.7)]). The TT genotype was associated with higher C-reactive protein upon diagnosis (p = 0.023; CC: 4.3 mg/dL [0.7-21.8], CT 5.3 mg/dL [1.3-17.9], TT 12.2 mg/dL [3.0-32.9]). Conclusions: This study identified links between MST1 rs3197999 and the clinical characteristics of pediatric IBD: height Z-score and CRP. Further studies of the associations between genetics and the course of IBD are still warranted, with a focus on more extensive phenotyping.
Collapse
Affiliation(s)
- Jan Brylak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Jan K. Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Emilia Dybska
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Aleksandra Glapa-Nowak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| | - Jarosław Kierkuś
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Marcin Osiecki
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Aleksandra Banaszkiewicz
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Andrzej Radzikowski
- Department of Pediatric Gastroenterology and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Anna Szaflarska-Popławska
- Department of Pediatric Endoscopy and Gastrointestinal Function Testing, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland
| | - Jarosław Kwiecień
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Buczyńska
- Department of Pediatrics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 60-572 Poznan, Poland (J.K.N.); (A.G.-N.)
| |
Collapse
|
3
|
Hu Y, Zhong M, Lv Y, Zhao W, Qian B, Song J, Zhang Y. MST1/2 exerts a pivotal role in inducing neuroinflammation and Coxsackievirus-A10 replication by interacting with innate immunity. Virol J 2024; 21:89. [PMID: 38641810 PMCID: PMC11031903 DOI: 10.1186/s12985-024-02355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Coxsackievirus-A10 (CV-A10), responsible for the hand, foot and mouth disease (HFMD) pandemic, could cause serious central nervous system (CNS) complications. The underlying molecular basis of CV-A10 and host interactions inducing neuropathogenesis is still unclear. The Hippo signaling pathway, historically known for a dominator of organ development and homeostasis, has recently been implicated as an immune regulator. However, its role in host defense against CV-A10 has not been investigated. Herein, it was found that CV-A10 proliferated in HMC3 cells and promoted the release of inflammatory cytokines. Moreover, pattern recognition receptors (PRRs)-mediated pathways, including TLR3-TRIF-TRAF3-TBK1-NF-κB axis, RIG-I/MDA5-MAVS-TRAF3-TBK1-NF-κB axis and TLR7-MyD88-IRAK1/IRAK4-TRAF6-TAK1-NF-κB axis, were examined to be elevated under CV-A10 infection. Meanwhile, it was further uncovered that Hippo signaling pathway was inhibited in HMC3 cells with CV-A10 infection. Previous studies have been reported that there exist complex relations between innate immune and Hippo signaling pathway. Then, plasmids of knockdown and overexpression of MST1/2 were transfected into HMC3 cells. Our results showed that MST1/2 suppressed the levels of inflammatory cytokines via interacting with TBK1 and IRAK1, and also enhanced virus production via restricting IRF3 and IFN-β expressions. Overall, these data obviously pointed out that CV-A10 accelerated the formation of neuroinflammation by the effect of the Hippo pathway on the PRRs-mediated pathway, which delineates a negative immunoregulatory role for MST1/2 in CV-A10 infection and the potential for this pathway to be pharmacologically targeted to treat CV-A10.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Minigmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Baojiang Qian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
4
|
Tang D, Xu H, Du X. The role of non-canonical Hippo pathway in regulating immune homeostasis. Eur J Med Res 2023; 28:498. [PMID: 37941053 PMCID: PMC10631157 DOI: 10.1186/s40001-023-01484-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
The Hippo pathway is a crucial signaling pathway that is highly conserved throughout evolution for the regulation of organ size and maintenance of tissue homeostasis. Initial studies have primarily focused on the canonical Hippo pathway, which governs organ development, tissue regeneration, and tumorigenesis. In recent years, extensive research has revealed that the non-canonical Hippo pathway, centered around Mst1/2 as its core molecule, plays a pivotal role in immune response and function by synergistically interacting with other signal transduction pathways. Consequently, the non-canonical Hippo pathway assumes significant importance in maintaining immune system homeostasis. This review concentrates on the research progress of the non-canonical Hippo pathway in regulating innate immune cell anti-infection responses, maintaining redox homeostasis, responding to microenvironmental stiffness, and T-cell differentiation.
Collapse
Affiliation(s)
- Dagang Tang
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Huan Xu
- Department of Ophtalmology, Daping Hospital, Army Medical University, Chongqing, 400012, China
| | - Xing Du
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 YouYi Road, Yuanjiagang, Yu Zhong District, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Sahin AT, Yurtseven A, Dadmand S, Ozcan G, Akarlar BA, Kucuk NEO, Senturk A, Ergonul O, Can F, Tuncbag N, Ozlu N. Plasma proteomics identify potential severity biomarkers from COVID-19 associated network. Proteomics Clin Appl 2023; 17:e2200070. [PMID: 36217943 PMCID: PMC9874836 DOI: 10.1002/prca.202200070] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Coronavirus disease 2019 (COVID-19) continues to threaten public health globally. Severe acute respiratory coronavirus type 2 (SARS-CoV-2) infection-dependent alterations in the host cell signaling network may unveil potential target proteins and pathways for therapeutic strategies. In this study, we aim to define early severity biomarkers and monitor altered pathways in the course of SARS-CoV-2 infection. EXPERIMENTAL DESIGN We systematically analyzed plasma proteomes of COVID-19 patients from Turkey by using mass spectrometry. Different severity grades (moderate, severe, and critical) and periods of disease (early, inflammatory, and recovery) are monitored. Significant alterations in protein expressions are used to reconstruct the COVID-19 associated network that was further extended to connect viral and host proteins. RESULTS Across all COVID-19 patients, 111 differentially expressed proteins were found, of which 28 proteins were unique to our study mainly enriching in immunoglobulin production. By monitoring different severity grades and periods of disease, CLEC3B, MST1, and ITIH2 were identified as potential early predictors of COVID-19 severity. Most importantly, we extended the COVID-19 associated network with viral proteins and showed the connectedness of viral proteins with human proteins. The most connected viral protein ORF8, which has a role in immune evasion, targets many host proteins tightly connected to the deregulated human plasma proteins. CONCLUSIONS AND CLINICAL RELEVANCE Plasma proteomes from critical patients are intrinsically clustered in a distinct group than severe and moderate patients. Importantly, we did not recover any grouping based on the infection period, suggesting their distinct proteome even in the recovery phase. The new potential early severity markers can be further studied for their value in the clinics to monitor COVID-19 prognosis. Beyond the list of plasma proteins, our disease-associated network unravels altered pathways, and the possible therapeutic targets in SARS-CoV-2 infection by connecting human and viral proteins. Follow-up studies on the disease associated network that we propose here will be useful to determine molecular details of viral perturbation and to address how the infection affects human physiology.
Collapse
Affiliation(s)
- Ayse Tugce Sahin
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| | - Ali Yurtseven
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Graduate School of Science and Engineering, Koc University, Istanbul, Turkey
| | - Sina Dadmand
- Graduate School of Science and Engineering, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Gulin Ozcan
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Graduate School of Health Sciences, Koc University, Istanbul, Turkey
| | - Busra A Akarlar
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Nazli Ezgi Ozkan Kucuk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey
| | - Aydanur Senturk
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Onder Ergonul
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Koc University Is Bank Research Center for Infectious Diseases (KUISCID), Istanbul, Turkey
| | - Fusun Can
- Graduate School of Health Sciences, Koc University, Istanbul, Turkey.,Department of Infectious Diseases, School of Medicine, Koc University, Istanbul, Turkey
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Department of Medical Microbiology, School of Medicine, Koc University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.,Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
6
|
Liu L, Wang D, Li X, Adetula AA, Khan A, Zhang B, Liu H, Yu Y, Chu Q. Long-lasting effects of lipopolysaccharide on the reproduction and splenic transcriptome of hens and their offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113527. [PMID: 35453024 DOI: 10.1016/j.ecoenv.2022.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/23/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Lipopolysaccharide (LPS) is ubiquitous in the environment and is released after the death of gram-negative bacteria, which may be related to inflammation and immunosuppression. However, its impact on the reproduction of animals and their offspring, especially the underlying mechanism need further elucidation. Here, we used laying hens as a model organism to investigate the effects of maternal exposure to LPS (LPS maternal stimulation) on animal and their offspring's immunity and reproductive performance, as well as the regulatory role of the transcriptome. We found that the LPS maternal stimulation could reduce the egg-laying rate of hens and their offspring, especially during the early and late laying stages. The transcriptome study of the spleen in F0, F1 and F2 generations showed that the maternal stimulation of the LPS affects the patterns of gene expression in laying hens, and this change has a long-lasting effect. Further analysis of DEGs and their enrichment pathways found that the LPS maternal stimulation mainly affects the reproduction and immunity of laying hens and their offspring. The DEGs such as AVD, HPS5, CATHL2, S100A12, EXFABP, RSFR, LY86, PKD4, XCL1, FOS, TREM2 and MST1 may play an essential role in the regulation of the immunity and egg-laying rate of hens. Furthermore, the MMR1L3, C3, F13A1, LY86 and GDPD2 genes with heritable effects are highly correlated with the egg-laying rate, may have an important reference value for further research. Our study reveals the profound implications of LPS exposure on immunity and reproduction of offspring, elaborating the impact of immune alteration on the egg-laying rate, emphasizing the regulatory role of intergenerational transmission of the transcriptome, implying that the environment parents being exposed to has an important impact on offspring.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Di Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Adnan Khan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100094, China.
| |
Collapse
|
7
|
Liu Y, Chu G, Shen W, Zhang Y, Xu W, Yu Y. XMU-MP-1 protects heart from ischemia/reperfusion injury in mice through modulating Mst1/AMPK pathway. Eur J Pharmacol 2022; 919:174801. [DOI: 10.1016/j.ejphar.2022.174801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
|
8
|
Rosai-Dorfman disease in the central nervous system with two isolated lesions originated from a single clone: a case report. BMC Neurol 2021; 21:352. [PMID: 34517832 PMCID: PMC8436543 DOI: 10.1186/s12883-021-02379-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Rosai-Dorfman disease (RDD) is a rare, benign, idiopathic non-Langerhans cell histiocytosis. Cases of RDD in the CNS are extremely rare but lethal. RDD is thought to represent a reactive process. Recent studies proposed a subset of RDD cases that had a clonal nature. However, its clone origin is poorly understood. CASE PRESENTATION We present a rare case of RDD in the CNS with two isolated lesions. These two lesions were removed successively after two operations. No seizure nor recurrence appears to date (2 years follow-up). Morphological and immunohistochemical profiles of these two lesions support the diagnosis of RDD. Based on the whole-exome sequencing (WES) data, we found the larger lesion has a higher tumor mutational burden (TMB) and more driver gene mutations than the smaller lesion. We also found seven common truncal mutations in these two lesions, raising the possibility that they might stem from the same ancestor clone. CONCLUSIONS Overall, this is the first report about clonal evolution of RDD in the CNS with two isolated lesions. Our findings contribute to the pathology of RDD, and support the notion that a subset of cases with RDD is a clonal histiocytic disorder driven by genetic alterations.
Collapse
|
9
|
Oweida A, Paquette B. Reconciling two opposing effects of radiation therapy: stimulation of cancer cell invasion and activation of anti-cancer immunity. Int J Radiat Biol 2021; 99:951-963. [PMID: 34264178 DOI: 10.1080/09553002.2021.1956005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The damage caused by radiation therapy to cancerous and normal cells inevitably leads to changes in the secretome profile of pro and anti-inflammatory mediators. The inflammatory response depends on the dose of radiation and its fractionation, while the inherent radiosensitivity of each patient dictates the intensity and types of adverse reactions. This review will present an overview of two apparently opposite reactions that may occur after radiation treatment: induction of an antitumor immune response and a protumoral response. Emphasis is placed on the molecular and cellular mechanisms involved. CONCLUSIONS By understanding how radiation changes the balance between anti- and protumoral effects, these forces can be manipulated to optimize radiation oncology treatments.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
10
|
Qiu Y, Huang D, Sheng Y, Huang J, Li N, Zhang S, Hong Z, Yin X, Yan J. Deubiquitinating enzyme USP46 suppresses the progression of hepatocellular carcinoma by stabilizing MST1. Exp Cell Res 2021; 405:112646. [PMID: 34029571 DOI: 10.1016/j.yexcr.2021.112646] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022]
Abstract
The deubiquitinating enzyme USP46 (ubiquitin-specific protease 46) is implicated in various cancers. However, its role and regulatory mechanism in HCC (hepatocellular carcinoma) are still unknown. In this study, we showed that USP46 is downregulated in HCC tissues and that low USP46 levels are associated with poor prognosis in HCC patients. In functional experiments, overexpression of USP46 impaired proliferation and metastasis of HCC cells, whereas knockdown of USP46 enhanced cell proliferation and invasiveness in vitro and in vivo. Furthermore, we found that USP46 suppresses HCC cell proliferation and metastasis by inhibiting YAP1. Ectopic expression of YAP1 rescued the inhibition of cell proliferation and metastasis caused by USP46 overexpression. Mechanistically, USP46 promotes the degradation of YAP1 by increasing expression of MST1, and the increase in MST1 protein antagonizes YAP1 to suppress HCC progression. Finally, we demonstrated that USP46 stabilizes the MST1 protein by directly binding to it and decreasing its ubiquitination. Taken together, our results demonstrated that USP46 may be a novel tumor suppressor in HCC. Moreover, USP46 acts as a deubiquitinating enzyme of MST1 to potentiate MST1 kinase activity to suppress tumor growth and metastasis, indicating that USP46 activation may represent a potential treatment strategy for HCC.
Collapse
Affiliation(s)
- Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Dan Huang
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yanling Sheng
- Department of Ultrasound, The Affliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, 330006, China
| | - Jinshi Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Nuoya Li
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi Province, 330006, China
| | - Zhengdong Hong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiangbao Yin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| |
Collapse
|
11
|
Guo P, Wang Z, Zhou Z, Tai Y, Zhang A, Wei W, Wang Q. Immuno-hippo: Research progress of the hippo pathway in autoimmune disease. Immunol Lett 2020; 230:11-20. [PMID: 33345861 DOI: 10.1016/j.imlet.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Extensive research in Drosophila and mammals has identified the core components of Hippo signaling, which controls gene expression. Studies of Drosophila have demonstrated the highly conserved Hippo pathway controls tissue homeostasis and organ size by regulating the balance between cell proliferation and apoptosis. Recent work has indicated a potential role of the Hippo pathway in regulating the immune system, which is the key player in autoimmune disease (AID). Therefore, the Hippo pathway may become a novel target for curing AID. Although the pivotal role of both the Hippo pathway in tumorigenesis has been thoroughly investigated, the role of it in AID is still poorly understood. Elucidating the role of Hippo signaling pathways in the activation and expression of specific molecules involved in immune regulation is important for understanding the pathogenesis of AID and exploring novel therapeutic targets. To aid in further research, this review describes the relationship between the Hippo pathway and inflammatory signals such as NF-κB and JAK-STAT, the function of the Hippo pathway in the formation and differentiation of immune cells, and the regulatory role of the Hippo pathway in AID.
Collapse
Affiliation(s)
- Paipai Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Zhen Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Zhengwei Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Aijun Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Center of Anti-inflammatory and Immune Medicines, Hefei, Anhui 230032, China.
| |
Collapse
|
12
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
13
|
Xing QR, Farran CAE, Zeng YY, Yi Y, Warrier T, Gautam P, Collins JJ, Xu J, Dröge P, Koh CG, Li H, Zhang LF, Loh YH. Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. Genome Res 2020; 30:1027-1039. [PMID: 32699019 PMCID: PMC7397874 DOI: 10.1101/gr.257840.119] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Joint profiling of transcriptome and chromatin accessibility within single cells allows for the deconstruction of the complex relationship between transcriptional states and upstream regulatory programs determining different cell fates. Here, we developed an automated method with high sensitivity, assay for single-cell transcriptome and accessibility regions (ASTAR-seq), for simultaneous measurement of whole-cell transcriptome and chromatin accessibility within the same single cell. To show the utility of ASTAR-seq, we profiled 384 mESCs under naive and primed pluripotent states as well as a two-cell like state, 424 human cells of various lineage origins (BJ, K562, JK1, and Jurkat), and 480 primary cord blood cells undergoing erythroblast differentiation. With the joint profiles, we configured the transcriptional and chromatin accessibility landscapes of discrete cell states, uncovered linked sets of cis-regulatory elements and target genes unique to each state, and constructed interactome and transcription factor (TF)–centered upstream regulatory networks for various cell states.
Collapse
Affiliation(s)
- Qiao Rui Xing
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Chadi A El Farran
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Ying Ying Zeng
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yao Yi
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Tushar Warrier
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Pradeep Gautam
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Jian Xu
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.,Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Li-Feng Zhang
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
14
|
Beta Human Papillomavirus 8E6 Attenuates LATS Phosphorylation after Failed Cytokinesis. J Virol 2020; 94:JVI.02184-19. [PMID: 32238586 DOI: 10.1128/jvi.02184-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/19/2020] [Indexed: 11/20/2022] Open
Abstract
Beta genus human papillomaviruses (β-HPVs) cause cutaneous squamous cell carcinomas (cSCCs) in a subset of immunocompromised patients. However, β-HPVs are not necessary for tumor maintenance in the general population. Instead, they may destabilize the genome in the early stages of cancer development. Supporting this idea, β-HPV's 8E6 protein attenuates p53 accumulation after failed cytokinesis. This paper offers mechanistic insight into how β-HPV E6 causes this change in cell signaling. An in silico screen and characterization of HCT 116 cells lacking p300 suggested that the histone acetyltransferase is a negative regulator of Hippo pathway (HP) gene expression. HP activation restricts growth in response to stimuli, including failed cytokinesis. Loss of p300 resulted in increased HP gene expression, including proproliferative genes associated with HP inactivation. β-HPV 8E6 expression recapitulates some of these phenotypes. We used a chemical inhibitor of cytokinesis (dihydrocytochalasin B [H2CB]) to induce failed cytokinesis. This system allowed us to show that β-HPV 8E6 reduced activation of large tumor suppressor kinase (LATS), an HP kinase. LATS is required for p53 accumulation following failed cytokinesis. These phenotypes were dependent on β-HPV 8E6 destabilizing p300 and did not completely attenuate the HP. It did not alter H2CB-induced nuclear exclusion of the transcription factor YAP. β-HPV 8E6 also did not decrease HP activation in cells grown to a high density. Although our group and others have previously described inhibition of DNA repair, to the best of our knowledge, this marks the first time that a β-HPV E6 protein has been shown to hinder HP signaling.IMPORTANCE β-HPVs contribute to cSCC development in immunocompromised populations. However, it is unclear if these common cutaneous viruses are tumorigenic in the general population. Thus, a more thorough investigation of β-HPV biology is warranted. If β-HPV infections do promote cSCCs, they are hypothesized to destabilize the cellular genome. In vitro data support this idea by demonstrating the ability of the β-HPV E6 protein to disrupt DNA repair signaling events following UV exposure. We show that β-HPV E6 more broadly impairs cellular signaling, indicating that the viral protein dysregulates the HP. The HP protects genome fidelity by regulating cell growth and apoptosis in response to a myriad of deleterious stimuli, including failed cytokinesis. After failed cytokinesis, β-HPV 8E6 attenuates phosphorylation of the HP kinase (LATS). This decreases some, but not all, HP signaling events. Notably, β-HPV 8E6 does not limit senescence associated with failed cytokinesis.
Collapse
|
15
|
Qi Y, Sun D, Yang W, Xu B, Lv D, Han Y, Sun M, Jiang S, Hu W, Yang Y. Mammalian Sterile 20-Like Kinase (MST) 1/2: Crucial Players in Nervous and Immune System and Neurological Disorders. J Mol Biol 2020; 432:3177-3190. [PMID: 32198112 DOI: 10.1016/j.jmb.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
As central components of the Hippo signaling pathway in mammals, the mammalian sterile 20-like kinase 1 (MST1) and MST2 protein kinases regulate cell proliferation, survival, and death and are involved in the homeostasis of many tissues. Recent studies have elucidated the roles of MST1 and MST2 in the nervous system and immune system, particularly in neurological disorders, which are influenced by aging. In this review, we provide a comprehensive overview of these research areas. First, the activation mechanisms and roles of MST1 and MST2 in neurons, non-neuronal cells, and immune cells are introduced. The roles of MST1 and MST2 in neurological disorders, including brain tumors, cerebrovascular diseases, neurodegenerative disorders, and neuromuscular disorders, are then presented. Finally, the existing obstacles for further research are discussed. Collectively, the information compiled herein provides a common framework for the function of MST1 and MST2 in the nervous system, should contribute to the design of further experiments, and sheds light on potential treatments for aging associated neurological disorders.
Collapse
Affiliation(s)
- Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dewen Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
16
|
Walsh T. Editor’s Pick: Systemic Sclerosis: The Role of YAP/TAZ in Disease Pathogenesis. EUROPEAN MEDICAL JOURNAL 2019. [DOI: 10.33590/emj/10310340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic autoimmune condition of unknown cause. Yes-Associated Protein/Tafazzin (YAP/TAZ) are transcriptional coactivators previously demonstrated to be involved in cellular stretch biology, and form the principal effector molecules of the Hippo signalling pathway. The association between YAP/TAZ and stretch is contingent upon their cytoplasmic localisation (with nuclear translocation, the cell adopts a relaxed state). The author weighs the evidence for a central role for YAP/TAZ signalling in scleroderma spanning the major clinical features of the condition. Several of the features unique to SSc are mediated by cytoplasmic localisation of YAP/TAZ, including the stretch phenotype (through binding to NF-2), arterial lumenal obliteration (through their binding to angiomotin), the promotion of hypergammaglobulinaemia (via feedback to the upstream Hippo signalling molecule Mammalian Ste20-like Kinase 1), and the induction of B-Lymphocyte-Induced Maturation Protein-1 leading to the adoption of Th2 lineage, prominent in SSc. One observes that the induction of the fibrotic phenotype of scleroderma is mediated through GLI1/GLI2 (the effector molecules of the Hedgehog pathway). GLI1/GLI2 are induced to reciprocally enter the nucleus when YAP/TAZ is intracytoplasmic. The latter explains the characteristically increased connective tissue growth factor 2 and endothelin-1 expression. In this article, the author references some examples of the role of YAP/TAZ in the biophysically similar condition nephrogenic systemic fibrosis and suggests a role of YAP/TAZ cytoplasmic sequestration in programmed cell death protein 1-ligand antagonist-induced scleroderma.
Collapse
Affiliation(s)
- Thomas Walsh
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| |
Collapse
|
17
|
Wang X, Chen X, Sun L, Bi X, He H, Chen L, Pang J. MicroRNA‑34a inhibits cell growth and migration in human glioma cells via MMP‑9. Mol Med Rep 2019; 20:57-64. [PMID: 31115528 PMCID: PMC6580036 DOI: 10.3892/mmr.2019.10233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
The present study was designed to investigate the function of matrix metalloproteinase-9 (MMP-9) in human glioma cells and the potential regulatory mechanisms. Reverse transcription-quantitative polymerase chain reaction was used to analyze the expression of MMP-9 and microRNA-34a (miR-34a) in the plasma of patients with glioma and healthy volunteers. MTT and Transwell assays were used to assess cell growth and migration, respectively. Annexin-V/propidium iodide staining was used to measure cell apoptosis. In addition, MMP-9 expression was measured using western blot analysis. In patients with glioma, MMP-9 expression was increased, while miR-34a expression was suppressed, compared with the normal group. Overall survival (OS) and disease-free survival (DFS) of patients with high MMP-9 expression were decreased compared with those with low MMP-9 expression. OS and DFS of patients with low miR-34a expression were decreased compared with those with high miR-34a expression. Downregulation of miR-34a promoted cell growth and migration, and inhibited apoptosis in U251-MG glioma cells. However, overexpression of miR-34a inhibited cell growth and migration, and induced apoptosis in glioma cells. Furthermore, downregulation of miR-34a using anti-miR-34a induced MMP-9 protein expression in glioma cells; whereas, overexpression of miR-34a suppressed MMP-9 protein expression in glioma cells. SB-3CT, an inhibitor of MMP-9, attenuated the effects of miR-34a mimic on glioma cells. Together, these results indicated that miR-34a inhibited cell growth and migration in human glioma cells by regulating MMP-9.
Collapse
Affiliation(s)
- Xuepeng Wang
- Department of Neurosurgery, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| | - Xi Chen
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| | - Lin Sun
- Department of Production, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| | - Xiaoli Bi
- Department of CT, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| | - Haitao He
- Department of Cycle of Ιnternal, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| | - Lei Chen
- Department of Neurosurgery, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| | - Jinfeng Pang
- Department of Neurosurgery, Affiliated Hospital of Beihua University, Jilin City, Jilin 132000, P.R. China
| |
Collapse
|
18
|
The MEK-ERK-MST1 Axis Potentiates the Activation of the Extrinsic Apoptotic Pathway during GDC-0941 Treatment in Jurkat T Cells. Cells 2019; 8:cells8020191. [PMID: 30795621 PMCID: PMC6406719 DOI: 10.3390/cells8020191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 01/16/2023] Open
Abstract
The discrete activation of individual caspases is essential during T-cell development, activation, and apoptosis. Humans carrying nonfunctional caspase-8 and caspase-8 conditional knockout mice exhibit several defects in the progression of naive CD4+ T cells to the effector stage. MST1, a key kinase of the Hippo signaling pathway, is often presented as a substrate of caspases, and its cleavage by caspases potentiates its activity. Several studies have focused on the involvement of MST1 in caspase activation and also reported several defects in the immune system function caused by MST1 deficiency. Here, we show the rapid activation of the MEK-ERK-MST1 axis together with the cleavage and activation of caspase-3, -6, -7, -8, and -9 after PI3K signaling blockade by the selective inhibitor GDC-0941 in Jurkat T cells. We determined the phosphorylation pattern of MST1 using a phosphoproteomic approach and identified two amino acid residues phosphorylated in an ERK-dependent manner after GDC-0941 treatment together with a novel phosphorylation site at S21 residue, which was extensively phosphorylated in an ERK-independent manner during PI3K signaling blockade. Using caspase inhibitors and the inhibition of MST1 expression using siRNA, we identified an exclusive role of the MEK-ERK-MST1 axis in the activation of initiator caspase-8, which in turn activates executive caspase-3/-7 that finally potentiate MST1 proteolytic cleavage. This mechanism forms a positive feed-back loop that amplifies the activation of MST1 together with apoptotic response in Jurkat T cells during PI3K inhibition. Altogether, we propose a novel MEK-ERK-MST1-CASP8-CASP3/7 apoptotic pathway in Jurkat T cells and believe that the regulation of this pathway can open novel possibilities in systemic and cancer therapies.
Collapse
|