1
|
Zhang W, Qu H, Ma X, Li L, Wei Y, Wang Y, Zeng R, Nie Y, Zhang C, Yin K, Zhou F, Yang Z. Identification of cuproptosis and immune-related gene prognostic signature in lung adenocarcinoma. Front Immunol 2023; 14:1179742. [PMID: 37622116 PMCID: PMC10445162 DOI: 10.3389/fimmu.2023.1179742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023] Open
Abstract
Background Cuproptosis is a novel form of programmed cell death that differs from other types such as pyroptosis, ferroptosis, and autophagy. It is a promising new target for cancer therapy. Additionally, immune-related genes play a crucial role in cancer progression and patient prognosis. Therefore, our study aimed to create a survival prediction model for lung adenocarcinoma patients based on cuproptosis and immune-related genes. This model can be utilized to enhance personalized treatment for patients. Methods RNA sequencing (RNA-seq) data of lung adenocarcinoma (LUAD) patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The levels of immune cell infiltration in the GSE68465 cohort were determined using gene set variation analysis (GSVA), and immune-related genes (IRGs) were identified using weighted gene coexpression network analysis (WGCNA). Additionally, cuproptosis-related genes (CRGs) were identified using unsupervised clustering. Univariate COX regression analysis and least absolute shrinkage selection operator (LASSO) regression analysis were performed to develop a risk prognostic model for cuproptosis and immune-related genes (CIRGs), which was subsequently validated. Various algorithms were utilized to explore the relationship between risk scores and immune infiltration levels, and model genes were analyzed based on single-cell sequencing. Finally, the expression of signature genes was confirmed through quantitative real-time PCR (qRT-PCR), immunohistochemistry (IHC), and Western blotting (WB). Results We have identified 5 Oncogenic Driver Genes namely CD79B, PEBP1, PTK2B, STXBP1, and ZNF671, and developed proportional hazards regression models. The results of the study indicate significantly reduced survival rates in both the training and validation sets among the high-risk group. Additionally, the high-risk group displayed lower levels of immune cell infiltration and expression of immune checkpoint compared to the low-risk group.
Collapse
Affiliation(s)
- Wentao Zhang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haizeng Qu
- Radiotherapy Department, Dongming People’s Hospital, Heze, Shandong, China
| | - Xiaoqing Ma
- Radiotherapy and Minimally Invasive Group I, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Liang Li
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Yanjun Wei
- Department of Radiation Oncology, Weifang People's Hospital, Weifang, China
| | - Ye Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Renya Zeng
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanliu Nie
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenggui Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ke Yin
- Department of Pathology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fengge Zhou
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Suomi T, Starskaia I, Kalim UU, Rasool O, Jaakkola MK, Grönroos T, Välikangas T, Brorsson C, Mazzoni G, Bruggraber S, Overbergh L, Dunger D, Peakman M, Chmura P, Brunak S, Schulte AM, Mathieu C, Knip M, Lahesmaa R, Elo LL. Gene expression signature predicts rate of type 1 diabetes progression. EBioMedicine 2023; 92:104625. [PMID: 37224769 DOI: 10.1016/j.ebiom.2023.104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Type 1 diabetes is a complex heterogenous autoimmune disease without therapeutic interventions available to prevent or reverse the disease. This study aimed to identify transcriptional changes associated with the disease progression in patients with recent-onset type 1 diabetes. METHODS Whole-blood samples were collected as part of the INNODIA study at baseline and 12 months after diagnosis of type 1 diabetes. We used linear mixed-effects modelling on RNA-seq data to identify genes associated with age, sex, or disease progression. Cell-type proportions were estimated from the RNA-seq data using computational deconvolution. Associations to clinical variables were estimated using Pearson's or point-biserial correlation for continuous and dichotomous variables, respectively, using only complete pairs of observations. FINDINGS We found that genes and pathways related to innate immunity were downregulated during the first year after diagnosis. Significant associations of the gene expression changes were found with ZnT8A autoantibody positivity. Rate of change in the expression of 16 genes between baseline and 12 months was found to predict the decline in C-peptide at 24 months. Interestingly and consistent with earlier reports, increased B cell levels and decreased neutrophil levels were associated with the rapid progression. INTERPRETATION There is considerable individual variation in the rate of progression from appearance of type 1 diabetes-specific autoantibodies to clinical disease. Patient stratification and prediction of disease progression can help in developing more personalised therapeutic strategies for different disease endotypes. FUNDING A full list of funding bodies can be found under Acknowledgments.
Collapse
Affiliation(s)
- Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Maria K Jaakkola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Toni Grönroos
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tommi Välikangas
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Caroline Brorsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gianluca Mazzoni
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Lut Overbergh
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - David Dunger
- Department of Paediatrics, University of Cambridge, Cambridge, England, UK
| | - Mark Peakman
- Immunology & Inflammation Research Therapeutic Area, Sanofi, MA, USA
| | - Piotr Chmura
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Chantal Mathieu
- Katholieke Universiteit Leuven/Universitaire Ziekenhuizen, Leuven, Belgium
| | - Mikael Knip
- Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland; InFLAMES Research Flagship Center, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland.
| |
Collapse
|
3
|
Chang HF, Schirra C, Pattu V, Krause E, Becherer U. Lytic granule exocytosis at immune synapses: lessons from neuronal synapses. Front Immunol 2023; 14:1177670. [PMID: 37275872 PMCID: PMC10233144 DOI: 10.3389/fimmu.2023.1177670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.
Collapse
|
4
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
5
|
Zanchettin AC, Barbosa LV, Dutra AA, Prá DMM, Pereira MRC, Stocco RB, Martins APC, Vaz de Paula CB, Nagashima S, de Noronha L, Machado-Souza C. Role of Genetic Polymorphism Present in Macrophage Activation Syndrome Pathway in Post Mortem Biopsies of Patients with COVID-19. Viruses 2022; 14:v14081699. [PMID: 36016321 PMCID: PMC9415703 DOI: 10.3390/v14081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 is a viral disease associated with an intense inflammatory response. Macrophage Activation Syndrome (MAS), the complication present in secondary hemophagocytic lymphohistiocytosis (sHLH), shares many clinical aspects observed in COVID-19 patients, and investigating the cytolytic function of the responsible cells for the first line of the immune response is important. Formalin-fixed paraffin-embedded lung tissue samples obtained by post mortem necropsy were accessed for three groups (COVID-19, H1N1, and CONTROL). Polymorphisms in MAS cytolytic pathway (PRF1; STX11; STXBP2; UNC13D and GZMB) were selected and genotyping by TaqMan® assays (Thermo Fisher Scientific, MA, USA) using Real-Time PCR (Applied Biosystems, MA USA). Moreover, immunohistochemistry staining was performed with a monoclonal antibody against perforin, CD8+ and CD57+ proteins. Histopathological analysis showed high perforin tissue expression in the COVID-19 group; CD8+ was high in the H1N1 group and CD57+ in the CONTROL group. An association could be observed in two genes related to the cytolytic pathway (PRF1 rs885822 G/A and STXBP2 rs2303115 G/A). Furthermore, PRF1 rs350947132 was associated with increased immune tissue expression for perforin in the COVID-19 group. The genotype approach could help identify patients that are more susceptible, and for this reason, our results showed that perforin and SNPs in the PRF1 gene can be involved in this critical pathway in the context of COVID-19.
Collapse
Affiliation(s)
- Aline Cristina Zanchettin
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
| | - Leonardo Vinicius Barbosa
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
| | - Anderson Azevedo Dutra
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Daniele Margarita Marani Prá
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Marcos Roberto Curcio Pereira
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Rebecca Benicio Stocco
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Ana Paula Camargo Martins
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Caroline Busatta Vaz de Paula
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Seigo Nagashima
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Lucia de Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Cleber Machado-Souza
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
- Correspondence:
| |
Collapse
|
6
|
Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, Gao H, Yang F, Ni Q, Li H, Zhou X, Zhang C, Lu J. Potential prognosis index for m 6A-related mRNA in cholangiocarcinoma. BMC Cancer 2022; 22:620. [PMID: 35672673 PMCID: PMC9170563 DOI: 10.1186/s12885-022-09665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cholangiocarcinoma (CHOL) is a malignant tumor that originates in the extrahepatic bile duct and can extend from the hilar region to the lower end of the common bile duct. The prognosis of CHOL patients is particularly poor; therefore, in this study, we screened mRNAs correlated with N6-methyladenosine (m6A) to construct a risk model for prognosis in CHOL. Methods The TCGA-CHOL dataset was applied to obtain and analyze the coexpression of 1281 m6A-related mRNAs, from which 14 were selected for further analysis through univariate proportional hazards (cox) regression analysis. Aryl hydrocarbon receptor interacting protein (AIP), CCAAT/enhancer binding protein beta (CEBPB), syndecan1 (SDC1), vacuolar protein sorting 25 homolog (VPS25) and syntaxin binding protein 2 (STXBP2) were then screened out through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to develop a precise m6A-related mRNA prognosis risk model (MRMRPM) with an area under curve (AUC) of 0.908 and 0.923 after 1 and 2 years, respectively. We divided the samples into high-risk and low-risk groups using the m6A-related mRNA prognosis risk model. Results Kaplan–Meier analysis indicated poor overall survival (OS) for the high-risk group. Two Gene Expression Omnibus (GEO) datasets (GSE89748 and GSE107943) were used to validate the risk model. The results of drug sensitivity and immune cell infiltration analysis showed that the risk model could serve as a prognosis index of potential immunotherapeutic characteristics and drug sensitivity. Furthermore, the proportion of resting dendritic cells and regulatory T cells was positively associated with an increased expression of four m6A-related mRNAs — AIP, CEBPB, SDC1, and VPS25 — in the high-risk CHOL group. Conclusions Our findings suggest that this model can be a prognostic indicator for CHOL patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09665-3.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Haini Zhao
- Jinan Health Publicity and Education Center, Jinan, 250021, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chaoqun Ma
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dongliang Wang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, 100176, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
7
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Wu Y, Cao F, Zhou D, Chen S, Qi H, Huang T, Tan H, Shen L, Fan W. Cryoablation reshapes the immune microenvironment in the distal tumor and enhances the anti-tumor immunity. Front Immunol 2022; 13:930461. [PMID: 36119081 PMCID: PMC9470839 DOI: 10.3389/fimmu.2022.930461] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
As one of the local treatments, cryoablation plays an increasingly important role in the comprehensive treatment of malignant tumors with its advantages of less trauma, high reproducibility, and minimally invasive. Activation of anti-tumor immunity, another characteristic of cryoablation, has attracted more and more attention with the extensive application of immunotherapy. Unfortunately, the mechanism by which cryoablation enhances anti-tumor immunity is still unclear. In this study, we applied a multi-omics approach to investigate the effects of local cryoablation in the distal tumor microenvironment. The results revealed that large amounts of tumor antigens were released post-cryoablation, leading to a sterile inflammatory response in distant tumors. During this period, activated lysosome-related pathways result in over-expression of SNAP23 (Synaptosome associated protein 23) and STXBP2 (Syntaxin binding protein 2), activation of immune effector cells, suppression of the release of immunosuppressive factors, and finally enhancement of anti-tumor immunity, which shows a broad prospect in combined immunotherapy.
Collapse
Affiliation(s)
- Ying Wu
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Interventional Therapy, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fei Cao
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Danyang Zhou
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuanggang Chen
- Department of Oncology, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, China
| | - Han Qi
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tao Huang
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongtong Tan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lujun Shen
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Fan, ; Lujun Shen,
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Weijun Fan, ; Lujun Shen,
| |
Collapse
|
9
|
Dong M, Zhang T, Hu R, Li M, Wang G, Liu X. Genotype and phenotype spectrum of 10 children with STXBP1 gene-related encephalopathy and epilepsy. Front Pediatr 2022; 10:1010886. [PMID: 36440324 PMCID: PMC9695404 DOI: 10.3389/fped.2022.1010886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE STXBP1 mutations are associated with early onset epileptic encephalopathy (EOEE). Our aim was to explore the phenotype spectrum, clinical treatment and prognosis of STXBP1-related encephalopathy (STXBP1-E). METHODS Clinical and genetic data were collected from 10 patients with STXBP1 mutations. These patients were examined and diagnosed from 2015 to 2021 at the Pediatric Department of Qilu Hospital. Blood samples were collected and sequenced by next generation sequencing and Candidate pathogenic variants were identified using Sanger sequencing in all family members. RESULTS All of the patients showed severe epilepsy, varying degrees of intellectual disability and delayed motor. The patients developed multiple seizure types and abnormal electroencephalography (EEG) results at onset, and focal seizures were the most frequent seizure type. Among the patients, 2 were diagnosed with Ohtahara syndrome, 2 patient was diagnosed with West syndrome. The other 6 patients could not be diagnosed with any specifically recognized epilepsy syndrome. Five of the 10 patients had a history of fever with seizures, 4 of whom had eliminated intracranial infection according to the results of cerebrospinal fluid (CSF) examinations, and the other patient was diagnosed with anti-myelin oligodendrocyte glycoprotein (MOG) -associated encephalitis. We identified one patient with a complete deletion of STXBP1 and 9 patients with de novo heterozygous mutations of STXBP1. Among those mutations, 4 were novel (c.56°C > T, c.1315A > T, c.751G > C, and c.554_559del), and 5 had been previously reported [c.364C > T, c.569G > A (2 cases), c.748C > T, and c.1651C > T]. For 8 of our patients, different combinations of anti-seizure medications (ASMs) led to seizure freedom. One patient with MOG antibodies in his serum obtained a poor therapeutic effect from the traditional ASMs treatment, so he had to achieve seizure-free status through vagus nerve stimulation (VNS), which had little effect on his psychomotor ability. Fortunately, in one case, patient psychomotor ability was improved through VNS. CONCLUSION Our study shows that STXBP1 screening should be considered in patients with neonatal seizures with intellectual disability, and frequent seizures with fever should also be considered with the STXBP1 mutation when intracranial infection is eliminated. VNS has expanded outcome measures to include behavioral and developmental function as well as seizure control.
Collapse
Affiliation(s)
- Meng Dong
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Tianyu Zhang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Ruimei Hu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Meng Li
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Guan Wang
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Xinjie Liu
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Minson A, Voskoboinik I, Grigg A. Dilemmas in the diagnosis and pathogenesis of atypical late-onset familial haemophagocytic lymphohistiocytosis. Clin Transl Immunology 2021; 10:e1320. [PMID: 34336208 PMCID: PMC8312240 DOI: 10.1002/cti2.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/05/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022] Open
Abstract
Objectives A congenital loss of cytotoxic lymphocyte activity leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis. Until recently, this disease was uniformly associated with infants or very young children, but it appears now that the onset may be delayed for decades. As a result, some adults are being mis‐ or under‐diagnosed because of their ‘atypical’ symptoms that are not recognised as immunodeficiency. The clinical picture and histopathology can overlap with those of haematologic malignancy, further complicating the diagnostic thought process. The spectrum of atypical symptoms is poorly defined, and therefore, it is important to describe these cases and the attendant immunological and cellular changes associated with familial haemophagocytic lymphohistiocytosis, in order to improve diagnosis and prevent unintended consequences of symptomatic therapies. Methods A 45‐year‐old patient presented with suspected T‐cell lymphoma and was treated with combination chemotherapy (cyclophosphamide, doxorubicin, vincristine, prednisolone) supplemented with granulocyte‐colony stimulating factor (G‐CSF). To mobilise stem cells for autologous transplantation, the patient was then treated with high‐dose G‐CSF and rapidly developed haemophagocytic lymphohistiocytosis. Symptoms resolved temporarily with intensive immunosuppression with alemtuzumab and durably with a subsequent allograft. Results The patient was found to be a carrier of bi‐allelic mutations in the STXBP2 protein that is essential for cytotoxic lymphocyte function, and the initial diagnosis has been revised as familial haemophagocytic lymphohistiocytosis. Conclusion This case highlights the difficulty in distinguishing atypical/late‐onset familial haemophagocytic lymphohistiocytosis from a malignant process as well as a possible exacerbation of the disease with G‐CSF therapy.
Collapse
Affiliation(s)
- Adrian Minson
- Department of Clinical Haematology Austin Hospital Melbourne VIC Australia.,Peter MacCallum Cancer Centre Melbourne VIC Australia
| | | | - Andrew Grigg
- Department of Clinical Haematology Austin Hospital Melbourne VIC Australia
| |
Collapse
|
11
|
Mastio J, Saeed MB, Wurzer H, Krecke M, Westerberg LS, Thomas C. Higher Incidence of B Cell Malignancies in Primary Immunodeficiencies: A Combination of Intrinsic Genomic Instability and Exocytosis Defects at the Immunological Synapse. Front Immunol 2020; 11:581119. [PMID: 33240268 PMCID: PMC7680899 DOI: 10.3389/fimmu.2020.581119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital defects of the immune system called primary immunodeficiency disorders (PID) describe a group of diseases characterized by a decrease, an absence, or a malfunction of at least one part of the immune system. As a result, PID patients are more prone to develop life-threatening complications, including cancer. PID currently include over 400 different disorders, however, the variety of PID-related cancers is narrow. We discuss here reasons for this clinical phenotype. Namely, PID can lead to cell intrinsic failure to control cell transformation, failure to activate tumor surveillance by cytotoxic cells or both. As the most frequent tumors seen among PID patients stem from faulty lymphocyte development leading to leukemia and lymphoma, we focus on the extensive genomic alterations needed to create the vast diversity of B and T lymphocytes with potential to recognize any pathogen and why defects in these processes lead to malignancies in the immunodeficient environment of PID patients. In the second part of the review, we discuss PID affecting tumor surveillance and especially membrane trafficking defects caused by altered exocytosis and regulation of the actin cytoskeleton. As an impairment of these membrane trafficking pathways often results in dysfunctional effector immune cells, tumor cell immune evasion is elevated in PID. By considering new anti-cancer treatment concepts, such as transfer of genetically engineered immune cells, restoration of anti-tumor immunity in PID patients could be an approach to complement standard therapies.
Collapse
Affiliation(s)
- Jérôme Mastio
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Wurzer
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Max Krecke
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clément Thomas
- Department of Oncology, Cytoskeleton and Cancer Progression, Luxembourg Institute of Health, Luxembourg City, Luxembourg
| |
Collapse
|
12
|
Jang HS, Flinsenberg TWH, Lacaze P, Thia KYT, Noori T, Fernando SL, Kerridge I, Riaz M, McNeil JJ, Blombery PA, Trapani JA, Voskoboinik I. Recovery of natural killer cell cytotoxicity in a p.A91V perforin homozygous patient following severe haemophagocytic lymphohistiocytosis. Br J Haematol 2020; 190:458-461. [PMID: 32342501 DOI: 10.1111/bjh.16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/22/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Helena S Jang
- Immunorheumatology Laboratory, New South Wales Health Pathology, Royal North Shore Hospital, Sydney, Australia.,Department of Clinical Immunology and Allergy, Royal North Shore Hospital, Sydney, Australia
| | - Thijs W H Flinsenberg
- Cancer Immunology Program, Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Paul Lacaze
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Kevin Y T Thia
- Cancer Immunology Program, Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Tahereh Noori
- Cancer Immunology Program, Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Suran L Fernando
- Immunorheumatology Laboratory, New South Wales Health Pathology, Royal North Shore Hospital, Sydney, Australia.,Department of Clinical Immunology and Allergy, Royal North Shore Hospital, Sydney, Australia.,The University of Sydney, Sydney, Australia
| | - Ian Kerridge
- Department of Haematology, Royal North Shore Hospital, Sydney, Australia
| | - Moeen Riaz
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - John J McNeil
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Piers A Blombery
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.,Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Cancer Cell Death Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Ilia Voskoboinik
- Cancer Immunology Program, Killer Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
13
|
Phatarpekar PV, Billadeau DD. Molecular regulation of the plasma membrane-proximal cellular steps involved in NK cell cytolytic function. J Cell Sci 2020; 133:133/5/jcs240424. [PMID: 32086255 DOI: 10.1242/jcs.240424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Natural killer (NK) cells, cytolytic lymphocytes of the innate immune system, play a crucial role in the immune response against infection and cancer. NK cells kill target cells through exocytosis of lytic granules that contain cytotoxic proteins, such as perforin and granzymes. Formation of a functional immune synapse, i.e. the interface between the NK cell and its target cell enhances lysis through accumulation of polymerized F-actin at the NK cell synapse, leading to convergence of lytic granules to the microtubule organizing center (MTOC) and its subsequent polarization along microtubules to deliver the lytic granules to the synapse. In this review, we focus on the molecular mechanisms regulating the cellular processes that occur after the lytic granules are delivered to the cytotoxic synapse. We outline how - once near the synapse - the granules traverse the clearings created by F-actin remodeling to dock, tether and fuse with the plasma membrane in order to secrete their lytic content into the synaptic cleft through exocytosis. Further emphasis is given to the role of Ca2+ mobilization during degranulation and, whenever applicable, we compare these mechanisms in NK cells and cytotoxic T lymphocytes (CTLs) as adaptive immune system effectors.
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Viñas-Giménez L, Donadeu L, Alsina L, Rincón R, de la Campa EÁ, Esteve-Sole A, Català A, Colobran R, de la Cruz X, Sayós J, Martínez-Gallo M. Molecular analysis of the novel L243R mutation in STXBP2 reveals impairment of degranulation activity. Int J Hematol 2019; 111:440-450. [PMID: 31865540 DOI: 10.1007/s12185-019-02796-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/26/2022]
Abstract
The presence of mutations in PRF1, UNC13D, STX11 and STXBP2 genes in homozygosis or compound heterozygosis results in immune deregulation. Most such cases lead to clinical manifestations of haemophagocytic lymphohistiocytosis (HLH). In the present study, we analyzed degranulation and cytotoxicity in a pediatric patient with a late presentation of HLH associated with Epstein-Barr virus infection. Remarkably, the results of the degranulation assay showed reduction of CD107a median fluorescence intensity (MFI) and absent cytotoxicity. Genetic analysis identified compound heterozygous mutations in STXBP2 gene: a previously reported splicing defect in exon 15 (c.1247-1G>C, p.V417LfsX126) and a novel missense mutation in exon 9 (c.728T>G, p.L243R). Transfection experiments of STXBP2-L243R or STXBP2-WT constructs showed an undetectable protein expression of the STXBP2-L243R mutation. The residue L243 is highly preserved evolutionarily; moreover, computational analysis of its structure revealed its participation in the rich network of interactions that stabilizes domains 2 and 3 of the protein. Altogether, we demonstrated by molecular and in silico analysis that the new L243R mutation in STXBP2 plays a pathogenic role that, together with the p.Val417Leufsc mutation, shows the synergistic negative effect of these two mutations on STXBP2 function, leading to a decrease of degranulatory activity in vivo.
Collapse
Affiliation(s)
- Laura Viñas-Giménez
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
| | - Laura Donadeu
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Laia Alsina
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Rafael Rincón
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elena Álvarez de la Campa
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Esteve-Sole
- Functional Unit of Clinical Immunology and Primary Immunodeficiencies, Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, University of Barcelona, Pediatric Research Institute Sant Joan de Déu, Barcelona, Spain
| | - Albert Català
- Hematology Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain
| | - Roger Colobran
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain
- Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Catalonia, Spain
| | - Xavier de la Cruz
- Research Unit in Translational Bioinformatics in Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institut Catala per la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Joan Sayós
- Immune Regulation and Immunotherapy Group, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca, Universitat Autonoma de Barcelona, Barcelona, Spain.
- Institut de Recerca Vall hebron (VHIR), Immune Regulation and Immunotherapy Group, Edifici Mediterrania, Lab 09, Planta baixa, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain.
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron (HUVH), Jeffrey Model Foundation Excellence Center, Barcelona, Catalonia, Spain.
- Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Catalonia, Spain.
| |
Collapse
|
15
|
Jaramillo AM, Piccotti L, Velasco WV, Delgado ASH, Azzegagh Z, Chung F, Nazeer U, Farooq J, Brenner J, Parker-Thornburg J, Scott BL, Evans CM, Adachi R, Burns AR, Kreda SM, Tuvim MJ, Dickey BF. Different Munc18 proteins mediate baseline and stimulated airway mucin secretion. JCI Insight 2019; 4:124815. [PMID: 30721150 PMCID: PMC6483006 DOI: 10.1172/jci.insight.124815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/31/2019] [Indexed: 12/15/2022] Open
Abstract
Airway mucin secretion is necessary for ciliary clearance of inhaled particles and pathogens but can be detrimental in pathologies such as asthma and cystic fibrosis. Exocytosis in mammals requires a Munc18 scaffolding protein, and airway secretory cells express all 3 Munc18 isoforms. Using conditional airway epithelial cell-deletant mice, we found that Munc18a has the major role in baseline mucin secretion, Munc18b has the major role in stimulated mucin secretion, and Munc18c does not function in mucin secretion. In an allergic asthma model, Munc18b deletion reduced airway mucus occlusion and airflow resistance. In a cystic fibrosis model, Munc18b deletion reduced airway mucus occlusion and emphysema. Munc18b deficiency in the airway epithelium did not result in any abnormalities of lung structure, particle clearance, inflammation, or bacterial infection. Our results show that regulated secretion in a polarized epithelial cell may involve more than one exocytic machine at the apical plasma membrane and that the protective roles of mucin secretion can be preserved while therapeutically targeting its pathologic roles.
Collapse
Affiliation(s)
- Ana M. Jaramillo
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Lucia Piccotti
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Walter V. Velasco
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Zoulikha Azzegagh
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Felicity Chung
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Usman Nazeer
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junaid Farooq
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Josh Brenner
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jan Parker-Thornburg
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brenton L. Scott
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher M. Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, Texas, USA
| | - Silvia M. Kreda
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|