1
|
Hoque M, Grigg JB, Ramlall T, Jones J, McGoldrick LL, Lin JC, Olson WC, Smith E, Franklin MC, Zhang T, Saotome K. Structural characterization of two γδ TCR/CD3 complexes. Nat Commun 2025; 16:318. [PMID: 39747888 PMCID: PMC11697310 DOI: 10.1038/s41467-024-55467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The T-cell receptor (TCR)/CD3 complex plays an essential role in the immune response and is a key player in cancer immunotherapies. There are two classes of TCR/CD3 complexes, defined by their TCR chain usage (αβ or γδ). Recently reported structures have revealed the organization of the αβ TCR/CD3 complex, but similar studies regarding the γδ TCR/CD3 complex have lagged behind. Here, we report cryoelectron microscopy (cryoEM) structural analysis of two γδ TCRs, G115 (Vγ9 Vδ2) and 9C2 (Vγ5 Vδ1), in complex with CD3 subunits. Our results show that the overall subunit organization of the γδ TCR/CD3 complexes is similar to αβ TCRs. However, both γδ TCRs display highly mobile extracellular domains (ECDs), unlike αβ TCRs, which have TCR ECDs that are rigidly coupled to its transmembrane (TM) domains. We corroborate this finding in cells by demonstrating that a γδ T-cell specific antibody can bind a site that would be inaccessible in the more rigid αβ TCR/CD3 complex. Furthermore, we observed that the Vγ5 Vδ1 complex forms a TCR γ5 chain-mediated dimeric species whereby two TCR/CD3 complexes are assembled. Collectively, these data shed light on γδ TCR/CD3 complex formation and may aid the design of γδ TCR-based therapies.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Cryoelectron Microscopy
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- CD3 Complex/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Models, Molecular
- Protein Domains
Collapse
Affiliation(s)
- Mohammed Hoque
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | | | - Trudy Ramlall
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Jennifer Jones
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | | | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| | - Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA.
| |
Collapse
|
2
|
Russo AE, Memon A, Ahmed S. Bladder Cancer and the Urinary Microbiome-New Insights and Future Directions: A Review. Clin Genitourin Cancer 2024; 22:434-444. [PMID: 38220540 DOI: 10.1016/j.clgc.2023.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The presence of a microbiome in the urinary system has been established through recent advancements in technology and investigation of microbial communities in the human body. The study of the taxonomic and genomic ecology of microbial communities has been greatly improved by the use of metagenomics. The research in this area has expanded our understanding of microbial ecosystems and shows that the urinary tract contains over 100 species from over 50 genera, with Lactobacillus, Gardnerella, and Streptococcus being the most common. Previous studies have suggested that the microbiota in the urinary tract may play a role in carcinogenesis by causing chronic inflammation and genotoxicity, but more research is needed to reach a definite conclusion. This is a narrative review. We conducted a search for relevant publications by using the databases Medline/PubMed and Google Scholar. The search was based on keywords such as "urinary microbiome," "bladder cancer," "carcinogenesis," "urothelial carcinoma," and "next-generation sequencing." The retrieved publications were then reviewed to study the contribution of the urinary microbiome in the development of bladder cancer. The results have been categorized into four sections to enhance understanding of the urinary microbiome and to highlight its role in the emergence of bladder cancer through alterations in the immune response that involve T-cells and antibodies. The immune system and microbiome play crucial roles in maintaining health and preventing disease. Manipulating the immune system is a key aspect of various cancer treatments, and certain gut bacteria have been linked to positive responses to immunotherapies. However, the impact of these treatments on the urinary microbiome, and how diet and lifestyle affect it, are not well understood. Research in this area could have significant implications for improving bladder cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Angela E Russo
- Larner College of Medicine, University of Vermont, Burlington, VT.
| | - Areeba Memon
- Medical College, Aga Khan University, Karachi, Sindh, Pakistan
| | - Shahid Ahmed
- Department of Hematology and Oncology, University of Vermont, Burlington, VT
| |
Collapse
|
3
|
Sorokina EV, Bisheva IV. The role of cells of the innate immune system in psoriasis. VESTNIK DERMATOLOGII I VENEROLOGII 2022. [DOI: 10.25208/vdv1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Psoriasis is an immune-mediated disease with a complex pathogenesis. The close relationship between the development of psoriasis and the adaptive immune response is already known. However, recent data have shown that innate immune cells also play an important role in the development of psoriasis. Congenital lymphoid cells, dendritic cells, T cells, NK cells, and NKT lymphocytes are activated in psoriasis, contributing to disease pathology through IL-17-dependent and independent mechanisms. During disease progression, T cells secrete proinflammatory cytokines that induce and exacerbate the course of psoriasis. T cells have memory cell properties that respond rapidly to secondary stimulation, which contributes to disease relapse. This article presents an overview of recent findings demonstrating the role of innate immunity in psoriasis.
Collapse
|
4
|
McGraw JM, Witherden DA. γδ T cell costimulatory ligands in antitumor immunity. EXPLORATION OF IMMUNOLOGY 2022; 2:79-97. [PMID: 35480230 PMCID: PMC9041367 DOI: 10.37349/ei.2022.00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Antitumor immunity relies on the ability of T cells to recognize and kill tumor targets. γδ T cells are a specialized subset of T cells that predominantly localizes to non-lymphoid tissue such as the skin, gut, and lung where they are actively involved in tumor immunosurveillance. γδ T cells respond to self-stress ligands that are increased on many tumor cells, and these interactions provide costimulatory signals that promote their activation and cytotoxicity. This review will cover costimulatory molecules that are known to be critical for the function of γδ T cells with a specific focus on mouse dendritic epidermal T cells (DETC). DETC are a prototypic tissue-resident γδ T cell population with known roles in antitumor immunity and are therefore useful for identifying mechanisms that may control activation of other γδ T cell subsets within non-lymphoid tissues. This review concludes with a brief discussion on how γδ T cell costimulatory molecules can be targeted for improved cancer immunotherapy.
Collapse
Affiliation(s)
- Joseph M. McGraw
- 1Department of Biology, Calibr at The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deborah A. Witherden
- 2Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
6
|
Dogan S, Terzioglu E, Ucar S. Innate immune response against HPV: Possible crosstalking with endocervical γδ T cells. J Reprod Immunol 2021; 148:103435. [PMID: 34741834 DOI: 10.1016/j.jri.2021.103435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Cervical carcinoma is significantly associated with the human papillomavirus (HPV). Persistent infection with high risk-HPV is necessary but not sufficient for the development of cervical cancer. It is not fully understood which immunological mechanisms lead to persistence in some patients. During the life cycle, HPV uses excellent immune evasion mechanisms. Keratinocytes, Langerhans cells (LC), dendritic cells (DC), tissue-resident macrophages, and intraepithelial gamma-delta T cells (γδ T cells) are cellular components of the mucosal immune defense of the female genital tract against HPV. γδ T cells, the prototype of unconventional T cells, play a major role in the first line defense of epithelial barrier protection. γδ T cells connect the innate and adaptive immunity and behave like a guardian of the epithelium against any form of damage such as trauma and infection. Any changes in γδ T cell distribution and functional capability may have a role in persistent HPV infection and cervical carcinogenesis in the early phase. Poor stimulation and maturation of APCs (LC/DC) might lead to persistent HPV infection which all point out pivotal role of γδ T cells in HPV persistence. If such an intriguing link is proven, γδ T cells can be used in potential therapeutics against HPV in infected patients.
Collapse
Affiliation(s)
- Selen Dogan
- Akdeniz University, Department of Gynecologic Oncology, Antalya, Turkey.
| | - Ender Terzioglu
- Akdeniz University, Department of Rheumatology, Antalya, Turkey
| | - Selda Ucar
- Akdeniz University, Department of Medical Oncology, Antalya, Turkey
| |
Collapse
|
7
|
Luff DH, Wojdyla K, Oxley D, Chessa T, Hudson K, Hawkins PT, Stephens LR, Barry ST, Okkenhaug K. PI3Kδ Forms Distinct Multiprotein Complexes at the TCR Signalosome in Naïve and Differentiated CD4 + T Cells. Front Immunol 2021; 12:631271. [PMID: 33763075 PMCID: PMC7982423 DOI: 10.3389/fimmu.2021.631271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/02/2021] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) play a central role in adaptive immunity by transducing signals from the T cell antigen receptor (TCR) via production of PIP3. PI3Kδ is a heterodimer composed of a p110δ catalytic subunit associated with a p85α or p85β regulatory subunit and is preferentially engaged by the TCR upon T cell activation. The molecular mechanisms leading to PI3Kδ recruitment and activation at the TCR signalosome remain unclear. In this study, we have used quantitative mass spectrometry, biochemical approaches and CRISPR-Cas9 gene editing to uncover the p110δ interactome in primary CD4+ T cells. Moreover, we have determined how the PI3Kδ interactome changes upon the differentiation of small naïve T cells into T cell blasts expanded in the presence of IL-2. Our interactomic analyses identified multiple constitutive and inducible PI3Kδ-interacting proteins, some of which were common to naïve and previously-activated T cells. Our data reveals that PI3Kδ rapidly interacts with as many as seven adaptor proteins upon TCR engagement, including the Gab-family proteins, GAB2 and GAB3, a CD5-CBL signalosome and the transmembrane proteins ICOS and TRIM. Our results also suggest that PI3Kδ pre-forms complexes with the adaptors SH3KBP1 and CRKL in resting cells that could facilitate the localization and activation of p110δ at the plasma membrane by forming ternary complexes during early TCR signalling. Furthermore, we identify interactions that were not previously known to occur in CD4+ T cells, involving BCAP, GAB3, IQGAP3 and JAML. We used CRISPR-Cas9-mediated gene knockout in primary T cells to confirm that BCAP is a positive regulator of PI3K-AKT signalling in CD4+ T cell blasts. Overall, our results provide evidence for a large protein network that regulates the recruitment and activation of PI3Kδ in T cells. Finally, this work shows how the PI3Kδ interactome is remodeled as CD4+ T cells differentiate from naïve T cells to activated T cell blasts. These activated T cells upregulate additional PI3Kδ adaptor proteins, including BCAP, GAB2, IQGAP3 and ICOS. This rewiring of TCR-PI3K signalling that occurs upon T cell differentiation may serve to reduce the threshold of activation and diversify the inputs for the PI3K pathway in effector T cells.
Collapse
Affiliation(s)
- Daisy H Luff
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Katarzyna Wojdyla
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom.,Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - David Oxley
- Mass Spectrometry Facility, The Babraham Institute, Cambridge, United Kingdom
| | - Tamara Chessa
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Kevin Hudson
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Phillip T Hawkins
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Len R Stephens
- Signalling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Simon T Barry
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Biradar S, Lotze MT, Mailliard RB. The Unknown Unknowns: Recovering Gamma-Delta T Cells for Control of Human Immunodeficiency Virus (HIV). Viruses 2020; 12:v12121455. [PMID: 33348583 PMCID: PMC7766279 DOI: 10.3390/v12121455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advances in γδ T cell biology have focused on the unique attributes of these cells and their role in regulating innate and adaptive immunity, promoting tissue homeostasis, and providing resistance to various disorders. Numerous bacterial and viral pathogens, including human immunodeficiency virus-1 (HIV), greatly alter the composition of γδ T cells in vivo. Despite the effectiveness of antiretroviral therapy (ART) in controlling HIV and restoring health in those affected, γδ T cells are dramatically impacted during HIV infection and fail to reconstitute to normal levels in HIV-infected individuals during ART for reasons that are not clearly understood. Importantly, their role in controlling HIV infection, and the implications of their failure to rebound during ART are also largely unknown and understudied. Here, we review important aspects of human γδ T cell biology, the effector and immunomodulatory properties of these cells, their prevalence and function in HIV, and their immunotherapeutic potential.
Collapse
Affiliation(s)
- Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Michael T. Lotze
- Departments of Surgery, Immunology, and Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robbie B. Mailliard
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
- Correspondence:
| |
Collapse
|
9
|
Munoz LD, Sweeney MJ, Jameson JM. Skin Resident γδ T Cell Function and Regulation in Wound Repair. Int J Mol Sci 2020; 21:E9286. [PMID: 33291435 PMCID: PMC7729629 DOI: 10.3390/ijms21239286] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
The skin is a critical barrier that protects against damage and infection. Within the epidermis and dermis reside γδ T cells that play a variety of key roles in wound healing and tissue homeostasis. Skin-resident γδ T cells require T cell receptor (TCR) ligation, costimulation, and cytokine reception to mediate keratinocyte activity and inflammatory responses at the wound site for proper wound repair. While both epidermal and dermal γδ T cells regulate inflammatory responses in wound healing, the timing and factors produced are distinct. In the absence of growth factors, cytokines, and chemokines produced by γδ T cells, wound repair is negatively impacted. This disruption in γδ T cell function is apparent in metabolic diseases such as obesity and type 2 diabetes. This review provides the current state of knowledge on skin γδ T cell activation, regulation, and function in skin homeostasis and repair in mice and humans. As we uncover more about the complex roles played by γδ T cells in wound healing, novel targets can be discovered for future clinical therapies.
Collapse
Affiliation(s)
| | | | - Julie M. Jameson
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92096, USA; (L.D.M.); (M.J.S.)
| |
Collapse
|
10
|
Zhao H, Yu C, He C, Mei C, Liao A, Huang D. The Immune Characteristics of the Epididymis and the Immune Pathway of the Epididymitis Caused by Different Pathogens. Front Immunol 2020; 11:2115. [PMID: 33117332 PMCID: PMC7561410 DOI: 10.3389/fimmu.2020.02115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023] Open
Abstract
The epididymis is an important male accessory sex organ where sperm motility and fertilization ability develop. When spermatozoa carrying foreign antigens enter the epididymis, the epididymis shows "immune privilege" to tolerate them. It is well-known that a tolerogenic environment exists in the caput epididymis, while pro-inflammatory circumstances prefer the cauda epididymis. This meticulously regulated immune environment not only protects spermatozoa from autoimmunity but also defends spermatozoa against pathogenic damage. Epididymitis is one of the common causes of male infertility. Up to 40% of patients suffer from permanent oligospermia or azoospermia. This is related to the immune characteristics of the epididymis itself. Moreover, epididymitis induced by different pathogenic microbial infections has different characteristics. This article elaborates on the distribution and immune response characteristics of epididymis immune cells, the role of epididymis epithelial cells (EECs), and the epididymis defense against different pathogenic infections (such as uropathogenic Escherichia coli, Chlamydia trachomatis, and viruses to provide therapeutic approaches for epididymitis and its subsequent fertility problems.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu He
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Uchida Y, Gherardini J, Schulte-Mecklenbeck A, Alam M, Chéret J, Rossi A, Kanekura T, Gross CC, Arakawa A, Gilhar A, Bertolini M, Paus R. Pro-inflammatory Vδ1 +T-cells infiltrates are present in and around the hair bulbs of non-lesional and lesional alopecia areata hair follicles. J Dermatol Sci 2020; 100:129-138. [PMID: 33039243 DOI: 10.1016/j.jdermsci.2020.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND It is widely accepted that NKG2D+cells are critically involved in alopecia areata (AA) pathogenesis. However, besides being expressed in CD8+T-cells and NK cells, NKG2D is also found in human γδT-cells. AA lesional hair follicles (HFs) overexpress NKG2D and γδTCR activating ligands, e.g. MICA and CD1d, and chemoattractants for γδT-cells, such as CXCL10. OBJECTIVE To investigate whether abnormal activities of γδT-cells may be involved in AA pathogenesis. METHODS We analyzed the number and activation status of γδT-cells in human healthy, lesional and non-lesional AA scalp biopsies by FACS and/or quantitative (immuno-)histomorphometry. RESULTS In healthy human scalp skin, the few skin-resident γδT-cells were found to be mostly Vδ1+, non-activated (CD69-NKG2Ddim) and positive for CXCL10, and CXCL12 receptors. These Vδ1+T-cells predominantly localized in/around the HF infundibulum. In striking contrast, the number of Vδ1+T-cells was significantly higher around and even inside the proximal (suprabulbar and bulbar) epithelium of lesional AA HFs. These cells also showed a pro-inflammatory phenotype, i.e. higher NKG2D, and IFN-γ and lower CD200R expression. Importantly, more pro-inflammatory Vδ1+T-cells were seen also around non-lesional AA HFs. Lesional AA HFs also showed significantly higher expression of CXCL12. CONCLUSION Our pilot study introduces skin-resident γδT-cells as a previously overlooked, but potentially important, mostly (auto-)antigen-independent, new innate immunity protagonist in AA pathobiology. The HF infiltration of these activated, IFN-γ-releasing cells already around non-lesional AA HFs suggest that Vδ1+T-cells are involved in the early stages of human AA pathobiology, and may thus deserve therapeutic targeting for optimal AA management.
Collapse
Affiliation(s)
- Youhei Uchida
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Jennifer Gherardini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology & Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Majid Alam
- Department of Dermatology & Venereology, Hamad Medical Corporation & Translational Research Institute, Academic Health System, Doha, Qatar
| | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alfredo Rossi
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, University "La Sapienza'', Rome, Italy
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Catharina C Gross
- Department of Neurology & Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Akiko Arakawa
- Department of Dermatology, University of Munich (LMU), Munich, Germany
| | - Amos Gilhar
- Skin Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marta Bertolini
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory, Skin and Hair Research Solutions GmbH, Münster, Germany; Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester, MAHSC, and Manchester NIHR Biomedical Research Centre, Manchester, UK.
| |
Collapse
|
12
|
Sato Y, Ogawa E, Okuyama R. Role of Innate Immune Cells in Psoriasis. Int J Mol Sci 2020; 21:ijms21186604. [PMID: 32917058 PMCID: PMC7554918 DOI: 10.3390/ijms21186604] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin condition caused by a combination of hereditary and environmental factors. Its development is closely related to the adaptive immune response. T helper 17 cells are major IL-17-producing cells, a function that plays an important role in the pathogenesis of psoriasis. However, recent findings have demonstrated that innate immune cells also contribute to the development of psoriasis. Innate lymphoid cells, γδ T cells, natural killer T cells, and natural killer cells are activated in psoriasis, contributing to disease pathology through IL-17-dependent and -independent mechanisms. The present review provides an overview of recent findings, demonstrating a role for innate immunity in psoriasis.
Collapse
Affiliation(s)
| | | | - Ryuhei Okuyama
- Correspondence: ; Tel.: +81-263-37-2645; Fax: +81-263-37-2646
| |
Collapse
|
13
|
Gubenzhike Recipe Ameliorates Respiratory Mucosal Immunity in Mice with Chronic Obstructive Pulmonary Disease through Upregulation of the γδT Lymphocytes and KGF Levels. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3056797. [PMID: 32280354 PMCID: PMC7128036 DOI: 10.1155/2020/3056797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/22/2020] [Indexed: 11/18/2022]
Abstract
Background Gubenzhike recipe, a traditional Chinese herbal compound, was assumed to have a possible beneficial effect on COPD. This study was designed to elucidate the mechanism from the perspective of respiratory mucosal immunity. Methods COPD model was induced by exposure to cigarette smoke and LPS instillation in mice for 12 weeks. Animals were administered solution of Gubenzhike recipe by intragastric gavage daily for 4 weeks. After that, mice were sacrificed for lung function test and histological examination of lung tissues. The levels of IL-6 and IL-13 in serum, bronchoalveolar lavage fluid (BALF), and intestinal mucus were measured by ELISA. The KGF and KGFR in lung tissue were analysed by immunohistochemical staining, ELISA, and western blotting, and the mRNA expressions were assessed by PCR. γδT lymphocytes in the lungs were isolated and analysed by immunohistochemical staining and flow cytometry. Results Gubenzhike recipe improved the structure of airway and damage of lung tissue and also the respiratory status and lung function, reduced the content of IL-6 in serum and BALF and IL-13 in BALF and intestinal mucus, increased the proportion of γδT cells in lung tissue, and promoted the secretion of KGF and KGFR (P < 0.05). Conclusion We for the first time demonstrated an experimental procedure for the isolation of γδT lymphocytes from lung tissue. This study suggested that Gubenzhike recipe could enhance the respiratory mucosal immunity which provided experimental evidence for its effects of reinforcing "wei qi" by means of strengthening vital qi, tonifying spleen and kidney, relieving cough, and reducing phlegm in TCM.
Collapse
|