1
|
Patin EC, Nenclares P, Chan Wah Hak C, Dillon MT, Patrikeev A, McLaughlin M, Grove L, Foo S, Soliman H, Barata JP, Marsden J, Baldock H, Gkantalis J, Roulstone V, Kyula J, Burley A, Hubbard L, Pedersen M, Smith SA, Clancy-Thompson E, Melcher AA, Ono M, Rullan A, Harrington KJ. Sculpting the tumour microenvironment by combining radiotherapy and ATR inhibition for curative-intent adjuvant immunotherapy. Nat Commun 2024; 15:6923. [PMID: 39134540 PMCID: PMC11319479 DOI: 10.1038/s41467-024-51236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The combination of radiotherapy/chemoradiotherapy and immune checkpoint blockade can result in poor outcomes in patients with locally advanced head and neck squamous cell carcinoma (HNSCC). Here, we show that combining ATR inhibition (ATRi) with radiotherapy (RT) increases the frequency of activated NKG2A+PD-1+ T cells in animal models of HNSCC. Compared with the ATRi/RT treatment regimen alone, the addition of simultaneous NKG2A and PD-L1 blockade to ATRi/RT, in the adjuvant, post-radiotherapy setting induces a robust antitumour response driven by higher infiltration and activation of cytotoxic T cells in the tumour microenvironment. The efficacy of this combination relies on CD40/CD40L costimulation and infiltration of activated, proliferating memory CD8+ and CD4+ T cells with persistent or new T cell receptor (TCR) signalling, respectively. We also observe increased richness in the TCR repertoire and emergence of numerous and large TCR clonotypes that cluster based on antigen specificity in response to NKG2A/PD-L1/ATRi/RT. Collectively, our data point towards potential combination approaches for the treatment of HNSCC.
Collapse
Affiliation(s)
- Emmanuel C Patin
- Targeted Therapy Team, The Institute of Cancer Research, London, UK.
| | - Pablo Nenclares
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Charleen Chan Wah Hak
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Magnus T Dillon
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Anton Patrikeev
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | - Lorna Grove
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Shane Foo
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | | | | | - Holly Baldock
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Jim Gkantalis
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | - Joan Kyula
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Amy Burley
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Lisa Hubbard
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | - Malin Pedersen
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
| | | | | | - Alan A Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Antonio Rullan
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| | - Kevin J Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital, London, UK
| |
Collapse
|
2
|
Abdeladhim M, Karnell JL, Rieder SA. In or out of control: Modulating regulatory T cell homeostasis and function with immune checkpoint pathways. Front Immunol 2022; 13:1033705. [PMID: 36591244 PMCID: PMC9799097 DOI: 10.3389/fimmu.2022.1033705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/16/2022] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Tregs) are the master regulators of immunity and they have been implicated in different disease states such as infection, autoimmunity and cancer. Since their discovery, many studies have focused on understanding Treg development, differentiation, and function. While there are many players in the generation and function of truly suppressive Tregs, the role of checkpoint pathways in these processes have been studied extensively. In this paper, we systematically review the role of different checkpoint pathways in Treg homeostasis and function. We describe how co-stimulatory and co-inhibitory pathways modulate Treg homeostasis and function and highlight data from mouse and human studies. Multiple checkpoint pathways are being targeted in cancer and autoimmunity; therefore, we share insights from the clinic and discuss the effect of experimental and approved therapeutics on Treg biology.
Collapse
|
3
|
Niebuhr M, Bahreini F, Fähnrich A, Bomholt C, Bieber K, Schmidt E, Ibrahim S, Hammers CM, Kalies K. Analysis of T cell repertoires of CD45RO CD4 T cells in cohorts of patients with bullous pemphigoid: A pilot study. Front Immunol 2022; 13:1006941. [DOI: 10.3389/fimmu.2022.1006941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Autoimmune diseases develop over years - starting from a subclinical phenotype to clinically manifest autoimmune disease. The factors that drive this transition are ill-defined. To predict the turning point towards clinical disease and to intervene in the progress of autoimmune-mediated dysfunction, the establishment of new biomarkers is needed. Especially CD4 T cells are crucially involved in autoimmunity: first, during the initiation phase, because they lose their tolerance towards self-peptides, and second, by the subsequent ongoing presentation of self-peptides during the active autoimmune disease. Accordingly, changes in the degree of diversity of T cell receptor (TCR) repertoires in autoimmunity have been reported. These findings led to the hypothesis that transition from pre-disease to autoimmune disease is associated with an increase of abnormally expanded T cell clones that occupy large portions of the TCR repertoire. In this pilot study, we asked whether the ratio and the diversity of the TCR repertoires of circulating memory (CD45RO) and naïve (CD45RA) CD4 T cells could serve as a predictive factor for the development of autoimmunity. To find out, we analyzed the TCRβ repertoires of memory and naïve CD4 T cells in a small cohort of four gender- and age-matched elderly patients having the autoimmune blistering disease bullous pemphigoid or non-melanoma skin cancers. We found that the extent of clonal expansions in the TCRβ repertoires from the circulating memory and naïve CD4 populations did not differ between the patient groups. This result shows that the diversity of TCR repertoires from peripheral CD4 T cells does not reflect the manifestation of the skin-associated autoimmune disease BP and does not qualify as a prognostic factor. We propose that longitudinal TCR repertoire analysis of younger patients might be more informative.
Collapse
|
4
|
Swain SL, Jones MC, Devarajan P, Xia J, Dutton RW, Strutt TM, McKinstry KK. Durable CD4 T-Cell Memory Generation Depends on Persistence of High Levels of Infection at an Effector Checkpoint that Determines Multiple Fates. Cold Spring Harb Perspect Biol 2021; 13:a038182. [PMID: 33903157 PMCID: PMC8559547 DOI: 10.1101/cshperspect.a038182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have discovered that the determination of CD4 effector and memory fates after infection is regulated not only by initial signals from antigen and pathogen recognition, but also by a second round of such signals at a checkpoint during the effector response. Signals to effectors determine their subsequent fate, inducing further progression to tissue-restricted follicular helpers, cytotoxic CD4 effectors, and long-lived memory cells. The follicular helpers help the germinal center B-cell responses that give rise to high-affinity long-lived antibody responses and memory B cells that synergize with T-cell memory to provide robust long-lived protection. We postulate that inactivated vaccines do not provide extended signals from antigen and pathogen beyond a few days, and thus elicit ineffective CD4 T- and B-cell effector responses and memory. Defining the mechanisms that underlie effective responses should provide insights necessary to develop vaccine strategies that induce more effective and durable immunity.
Collapse
Affiliation(s)
- Susan L Swain
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Michael C Jones
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Jingya Xia
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Richard W Dutton
- Department of Pathology, University of Massachusetts Medical School, 368 Plantation Ave, Worcester, Massachusetts 01655, USA
| | - Tara M Strutt
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| | - K Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32827, USA
| |
Collapse
|
5
|
Niebuhr M, Belde J, Fähnrich A, Serge A, Irla M, Ellebrecht CT, Hammers CM, Bieber K, Westermann J, Kalies K. Receptor repertoires of murine follicular T helper cells reveal a high clonal overlap in separate lymph nodes in autoimmunity. eLife 2021; 10:70053. [PMID: 34402793 PMCID: PMC8370764 DOI: 10.7554/elife.70053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022] Open
Abstract
Follicular T helper cells (Tfh) are a specialized subset of CD4 effector T cells that are crucial for germinal center (GC) reactions and for selecting B cells to undergo affinity maturation. Despite this central role for humoral immunity, only few data exist about their clonal distribution when multiple lymphoid organs are exposed to the same antigen (Ag) as it is the case in autoimmunity. Here, we used an autoantibody-mediated disease model of the skin and injected one auto-Ag into the two footpads of the same mouse and analyzed the T cell receptor (TCR)β sequences of Tfh located in GCs of both contralateral draining lymph nodes. We found that over 90% of the dominant GC-Tfh clonotypes were shared in both lymph nodes but only transiently. The initially dominant Tfh clonotypes especially declined after establishment of chronic disease while GC reaction and autoimmune disease continued. Our data demonstrates a dynamic behavior of Tfh clonotypes under autoimmune conditions and emphasizes the importance of the time point for distinguishing auto-Ag-specific Tfh clonotypes from potential bystander activated ones.
Collapse
Affiliation(s)
- Markus Niebuhr
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Julia Belde
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Arnauld Serge
- Laboratoire Adhésion et Inflammation, Inserm U1067 CNRS, Aix-Marseille Université, Marseille, France
| | - Magali Irla
- Centre d'Immunologie de Marseille Luminy (CIML), INSERM U1104, Aix-Marseille Université UM2, Marseille, France
| | - Christoph T Ellebrecht
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Pennsylvania, Philadelphia, United States
| | - Christoph M Hammers
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Kathrin Kalies
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
de Silva K. Developing smarter vaccines for paratuberculosis: From early biomarkers to vaccine design. Immunol Rev 2021; 301:145-156. [PMID: 33619731 DOI: 10.1111/imr.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Vaccines for paratuberculosis have been used for over a hundred years but the disease continues to affect ruminant health and livestock industries globally. Mycobacterium avium subspecies paratuberculosis which causes the disease also known as Johne's disease is a subversive pathogen able to undermine both innate and adaptive host defense mechanisms. This review focuses on early protective immune pathways that lead to some animals becoming resilient to infection to provide a road map for designing better vaccines and emphasizes the need for harnessing the potential of mucosal immunity.
Collapse
Affiliation(s)
- Kumudika de Silva
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Narellan, NSW, Australia
| |
Collapse
|
7
|
Niebuhr M, Bieber K, Banczyk D, Maass S, Klein S, Becker M, Ludwig R, Zillikens D, Westermann J, Kalies K. Epidermal Damage Induces Th1 Polarization and Defines the Site of Inflammation in Murine Epidermolysis Bullosa Acquisita. J Invest Dermatol 2020; 140:1713-1722.e9. [PMID: 32057838 DOI: 10.1016/j.jid.2020.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/10/2020] [Accepted: 01/26/2020] [Indexed: 12/15/2022]
Abstract
Epidermolysis bullosa acquisita is an autoimmune skin disease characterized by subepidermal blisters. The pathogenesis is mediated by deposits of autoantibodies directed against type VII collagen in the skin, but the sequence of events regulating the localization of skin blisters is not fully understood. In this study, using the immunization-induced mouse model of epidermolysis bullosa acquisita, we demonstrate that epidermal disruption induces not only an infiltration of CD4+ T cells but also a T helper type 1 phenotype as it has been described for delayed-type hypersensitivity reactions. This T helper type 1 reaction was not found when different antigens were applied. Deep T-cell receptor β profiling revealed shifts in the V/J gene usage only in epidermolysis bullosa acquisita, suggesting an infiltration of autoantigen-specific T cells. To target these autoantigen-specific T cells, we established an approach with which skin inflammation could be prevented without impairing the functionality of autoantibodies. We conclude that T-cell involvement in skin blistering diseases such as epidermolysis bullosa acquisita relates not only to T-cell help for B cells that produce pathogenic autoantibodies but also to autoreactive T helper type 1 effector cells that migrate into injured skin sites, exacerbate inflammation through production of inflammatory cytokines such as IFNγ, and prevent wound healing.
Collapse
Affiliation(s)
- Markus Niebuhr
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Institute of Anatomy, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David Banczyk
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | | | | | - Mareike Becker
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | | | - Kathrin Kalies
- Institute of Anatomy, University of Lübeck, Lübeck, Germany.
| |
Collapse
|