1
|
Zhang E, Shi Y, Han X, Zhu H, Song B, Yang C, Cao Z. An injectable and biodegradable zwitterionic gel for extending the longevity and performance of insulin infusion catheters. Nat Biomed Eng 2024; 8:1197-1213. [PMID: 37884794 DOI: 10.1038/s41551-023-01108-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Continuous subcutaneous insulin infusion (CSII) is an essential insulin replacement therapy in the management of diabetes. However, the longevity of clinical CSII is limited by skin complications, by impaired insulin absorption and by occlusions associated with the subcutaneous insertion of CSII catheters, which require replacement and rotation of the insertion site every few days. Here we show that a biodegradable zwitterionic gel covering the tip end of commercial off-the-shelf CSII catheters fully resolves early skin irritations, extends the longevity of catheters and improves the rate of insulin absorption (also with respect to conventional syringe-based subcutaneous injection) for longer than 6 months in diabetic mice, and by 11 days in diabetic minipigs (from 2 to 13 days, under standard CSII-wearing conditions of insulin pump therapy and in a continuous basal-plus-bolus-infusion setting). The implanted gel displayed anti-inflammatory and anti-foreign-body-reaction properties and promoted the local formation of new blood vessels. The gel is subcutaneously injected before the tip of catheter is inserted into it, and should be generally applicable to CSII catheters and other implantable devices.
Collapse
Affiliation(s)
- Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Chengbiao Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Bahal M, Pande V, Dua J, Mane S. Advances in Type 1 Diabetes Mellitus Management in Children. Cureus 2024; 16:e67377. [PMID: 39310514 PMCID: PMC11416143 DOI: 10.7759/cureus.67377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Recent advancements in the management of type 1 diabetes mellitus (T1DM) have significantly improved outcomes and quality of life for patients, particularly children. Technological innovations, such as continuous glucose monitoring (CGM) systems and insulin pump therapy, including hybrid closed-loop systems, have enhanced glycemic control by providing real-time data and automated insulin delivery. Ultrarapid-acting insulins and adjunctive pharmacotherapies, like sodium-glucose transport protein 2 (SGLT2) inhibitors and glucagon-like peptide 1 (GLP-1) receptor agonists, offer improved postprandial glucose management and reduced insulin requirements. Immunotherapy and beta-cell replacement therapies, including stem cell research and encapsulation devices, aim to preserve or restore endogenous insulin production. Digital health platforms and telemedicine have expanded access to education and support, fostering better self-management. Future directions in precision medicine, artificial intelligence, and microbiome research hold promise for personalized and potentially curative treatments. Collectively, these advances are transforming T1DM management, reducing disease burden, and enhancing the prospects for children with T1DM.
Collapse
Affiliation(s)
- Mridu Bahal
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Vineeta Pande
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Jasleen Dua
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Shailaja Mane
- Pediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
3
|
Garcia-Loza I, Perna-Barrull D, Aguilera E, Almenara-Fuentes L, Gomez-Muñoz L, Greco D, Vila M, Salvado M, Mancera-Arteu M, Olszowy MW, Petriz J, Dalmases M, Rodriguez-Vidal S, Barneda-Zahonero B, Vives-Pi M. Targeting macrophages with phosphatidylserine-rich liposomes as a potential antigen-specific immunotherapy for type 1 diabetes. J Autoimmun 2024; 145:103196. [PMID: 38458075 DOI: 10.1016/j.jaut.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024]
Abstract
Type 1 diabetes (T1D) results from a breakdown in immunological tolerance, with pivotal involvement of antigen-presenting cells. In this context, antigen-specific immunotherapies have been developed to arrest autoimmunity, such as phosphatidylserine (PS)-liposomes. However, the role of certain antigen-presenting cells in immunotherapy, particularly human macrophages (Mφ) in T1D remains elusive. The aim of this study was to determine the role of Mφ in antigen-specific immune tolerance and T1D. To that end, we evaluated Mφ ability to capture apoptotic-body mimicking PS-liposomes in mice and conducted a phenotypic and functional characterisation of four human monocyte-derived Mφ (MoMφ) subpopulations (M0, M1, M2a and M2c) after PS-liposomes uptake. Our findings in mice identified Mφ as the most phagocytic cell subset in the spleen and liver. In humans, while phagocytosis rates were comparable between T1D and control individuals, PS-liposome capture dynamics differed among Mφ subtypes, favouring inflammatory (M1) and deactivated (M2c) Mφ. Notably, high nanoparticle concentrations did not affect macrophage viability. PS-liposome uptake by Mφ induced alterations in membrane molecule expression related to immunoregulation, reduced secretion of IL-6 and IL-12, and diminished autologous T-cell proliferation in the context of autoantigen stimulation. These results underscore the tolerogenic effects of PS-liposomes and emphasize their potential to target human Mφ, providing valuable insights into the mechanism of action of this preclinical immunotherapy.
Collapse
Affiliation(s)
- Ivan Garcia-Loza
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain; Neuromuscular Diseases Group, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Eva Aguilera
- Endocrinology Dept, Germans Trias I Pujol University Hospital, Badalona, Spain
| | | | - Laia Gomez-Muñoz
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | | | | | - Jordi Petriz
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | | | | | - Marta Vives-Pi
- Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain; Endocrinology Dept, Germans Trias I Pujol University Hospital, Badalona, Spain; Ahead Therapeutics SL, Barcelona, Spain.
| |
Collapse
|
4
|
Samadi A, Moammeri A, Azimi S, Bustillo-Perez BM, Mohammadi MR. Biomaterial engineering for cell transplantation. BIOMATERIALS ADVANCES 2024; 158:213775. [PMID: 38252986 DOI: 10.1016/j.bioadv.2024.213775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The current paradigm of medicine is mostly designed to block or prevent pathological events. Once the disease-led tissue damage occurs, the limited endogenous regeneration may lead to depletion or loss of function for cells in the tissues. Cell therapy is rapidly evolving and influencing the field of medicine, where in some instances attempts to address cell loss in the body. Due to their biological function, engineerability, and their responsiveness to stimuli, cells are ideal candidates for therapeutic applications in many cases. Such promise is yet to be fully obtained as delivery of cells that functionally integrate with the desired tissues upon transplantation is still a topic of scientific research and development. Main known impediments for cell therapy include mechanical insults, cell viability, host's immune response, and lack of required nutrients for the transplanted cells. These challenges could be divided into three different steps: 1) Prior to, 2) during the and 3) after the transplantation procedure. In this review, we attempt to briefly summarize published approaches employing biomaterials to mitigate the above technical challenges. Biomaterials are offering an engineerable platform that could be tuned for different classes of cell transplantation to potentially enhance and lengthen the pharmacodynamics of cell therapies.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Ali Moammeri
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bexi M Bustillo-Perez
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92866, USA.
| |
Collapse
|
5
|
Fabrication of nanofibrous mat surrounded hydrogel scaffold as an encapsulation device for encapsulating pancreas β cells. Sci Rep 2022; 12:21910. [PMID: 36535972 PMCID: PMC9763327 DOI: 10.1038/s41598-022-25736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The main barriers to cells or organ transplantation such as pancreatic β-cells are the need for lifelong immune suppression and the shortage of donors. It may be overcome via cell encapsulation and transplantation techniques. Hydrogels provide a suitable ECM-like microenvironment for cells to adhere, survive, and function, while weakly performing as an immune barrier. In this study, we aimed to macro-encapsulate islet cells in a dual encapsulation device with collagen hydrogel and PCL nanofiber to provide an immune-isolated environment for cells to function more efficiently, where immune cells are not allowed to enter but oxygen, insulin, and nutrients can pass through. PCL thin mats with the pores diameter of 500 nm were synthesized by electrospinning and characterized by scanning electron microscope, porosity measurement, tensile strength test, and contact angle measurement. Collagen hydrogel was fabricated by extracting collagen fibers from rat tail tendons and solving them in acetic acid. β-cells (CRI-D2 cell line) encapsulated after neutralizing collagen solution (pH ≈ 7.4). Cell-collagen gel complex was poured into the nanofibrous mat packets to fabricate the whole device. Histology evaluation, cell viability, and cell function tests were done in 10 days. Live/dead assay of Cri-D2 cells encapsulated within the device showed that cells have diffuse distribution at the core of the hydrogel and the device. Also, cluster formation was seen and shows these cells can live in groups. To identify cells' function within the device in these 10 days samples' supernatant insulin level was measured by chemiluminescent immunoassay. It just showed a positive result for existing insulin within the medium. Based on our results, this device presents adequate features to be a good immune-isolation device for cell transplanting.
Collapse
|
6
|
Lawand PV, Desai S. Nanobiotechnology-Modified Cellular and Molecular Therapy as a Novel Approach for Autoimmune Diabetes Management. Pharm Nanotechnol 2022; 10:279-288. [PMID: 35927916 DOI: 10.2174/2211738510666220802111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/26/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Several cellular and molecular therapies such as stem cell therapy, cell replacement therapy, gene modification therapy, and tolerance induction therapy have been researched to procure a permanent cure for Type 1 Diabetes. However, due to the induction of undesirable side effects, their clinical utility is questionable. These anti-diabetic therapies can be modified with nanotechnological tools for reducing adverse effects by selectively targeting genes and/or receptors involved directly or indirectly in diabetes pathogenesis, such as the glucagon-like peptide 1 receptor, epidermal growth factor receptor, human leukocyte antigen (HLA) gene, miRNA gene and hepatocyte growth factor (HGF) gene. This paper will review the utilities of nanotechnology in stem cell therapy, cell replacement therapy, beta-cell proliferation strategies, immune tolerance induction strategies, and gene therapy for type 1 diabetes management.
Collapse
Affiliation(s)
- Priyanka Vasant Lawand
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| | - Shivani Desai
- Department of Pharmacy Practice, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India
| |
Collapse
|
7
|
Nanotechnology in Immunotherapy for Type 1 Diabetes: Promising Innovations and Future Advances. Pharmaceutics 2022; 14:pharmaceutics14030644. [PMID: 35336018 PMCID: PMC8955746 DOI: 10.3390/pharmaceutics14030644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a chronic condition which affects the glucose metabolism in the body. In lieu of any clinical “cure,” the condition is managed through the administration of pharmacological aids, insulin supplements, diet restrictions, exercise, and the like. The conventional clinical prescriptions are limited by their life-long dependency and diminished potency, which in turn hinder the patient’s recovery. This necessitated an alteration in approach and has instigated several investigations into other strategies. As Type 1 diabetes (T1D) is known to be an autoimmune disorder, targeting the immune system in activation and/or suppression has shown promise in reducing beta cell loss and improving insulin levels in response to hyperglycemia. Another strategy currently being explored is the use of nanoparticles in the delivery of immunomodulators, insulin, or engineered vaccines to endogenous immune cells. Nanoparticle-assisted targeting of immune cells holds substantial potential for enhanced patient care within T1D clinical settings. Herein, we summarize the knowledge of etiology, clinical scenarios, and the current state of nanoparticle-based immunotherapeutic approaches for Type 1 diabetes. We also discuss the feasibility of translating this approach to clinical practice.
Collapse
|
8
|
Chen Y, Qie X, Quan W, Zeng M, Qin F, Chen J, Adhikari B, He Z. Omnifarious fruit polyphenols: an omnipotent strategy to prevent and intervene diabetes and related complication? Crit Rev Food Sci Nutr 2021:1-37. [PMID: 34792409 DOI: 10.1080/10408398.2021.2000932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a metabolic syndrome which cannot be cured. Recently, considerable interest has been focused on food ingredients to prevent and intervene in complications of diabetes. Polyphenolic compounds are one of the bioactive phytochemical constituents with various biological activities, which have drawn increasing interest in human health. Fruits are part of the polyphenol sources in daily food consumption. Fruit-derived polyphenols possess the anti-diabetic activity that has already been proved either from in vitro studies or in vivo studies. The mechanisms of fruit polyphenols in treating diabetes and related complications are under discussion. This is a comprehensive review on polyphenols from the edible parts of fruits, including those from citrus, berries, apples, cherries, mangoes, mangosteens, pomegranates, and other fruits regarding their potential benefits in preventing and treating diabetes mellitus. The signal pathways of characteristic polyphenols derived from fruits in reducing high blood glucose and intervening hyperglycemia-induced diabetic complications were summarized.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuejiao Qie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Quan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Kharbikar BN, Chendke GS, Desai TA. Modulating the foreign body response of implants for diabetes treatment. Adv Drug Deliv Rev 2021; 174:87-113. [PMID: 33484736 PMCID: PMC8217111 DOI: 10.1016/j.addr.2021.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Diabetes Mellitus is a group of diseases characterized by high blood glucose levels due to patients' inability to produce sufficient insulin. Current interventions often require implants that can detect and correct high blood glucose levels with minimal patient intervention. However, these implantable technologies have not reached their full potential in vivo due to the foreign body response and subsequent development of fibrosis. Therefore, for long-term function of implants, modulating the initial immune response is crucial in preventing the activation and progression of the immune cascade. This review discusses the different molecular mechanisms and cellular interactions involved in the activation and progression of foreign body response (FBR) and fibrosis, specifically for implants used in diabetes. We also highlight the various strategies and techniques that have been used for immunomodulation and prevention of fibrosis. We investigate how these general strategies have been applied to implants used for the treatment of diabetes, offering insights on how these devices can be further modified to circumvent FBR and fibrosis.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gauree S Chendke
- University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; University of California Berkeley - University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA; Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
10
|
Moser O, Eckstein ML, West DJ, Goswami N, Sourij H, Hofmann P. Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy. Curr Pharm Des 2020; 26:946-957. [PMID: 31912769 DOI: 10.2174/1381612826666200108113002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is characterized by an autoimmune β-cell destruction resulting in endogenous insulin deficiency, potentially leading to micro- and macrovascular complications. Besides an exogenous insulin therapy and continuous glucose monitoring, physical exercise is recommended in adults with type 1 diabetes to improve overall health. The close relationship between physical exercise, inflammation, muscle contraction, and macronutrient intake has never been discussed in detail about type 1 diabetes. The aim of this narrative review was to detail the role of physical exercise in improving clinical outcomes, physiological responses to exercise and different nutrition and therapy strategies around exercise. Physical exercise has several positive effects on glucose uptake and systemic inflammation in adults with type 1 diabetes. A new approach via personalized therapy adaptations must be applied to target beneficial effects on complications as well as on body weight management. In combination with pre-defined macronutrient intake around exercise, adults with type 1 diabetes can expect similar physiological responses to physical exercise, as seen in their healthy counterparts. This review highlights interesting findings from recent studies related to exercise and type 1 diabetes. However, there is limited research available accompanied by a proper number of participants in the cohort of type 1 diabetes. Especially for this group of patients, an increased understanding of the impact of physical exercise can improve its effectiveness as an adjuvant therapy to move (forward).
Collapse
Affiliation(s)
- Othmar Moser
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Max L Eckstein
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Daniel J West
- Institute of Cellular Medicine, Newcastle University, Newcastle, United Kingdom
| | - Nandu Goswami
- Physiology Division, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Cardiovascular Diabetology Research Group, Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Exercise Physiology, Training & Training Therapy Research Group, Institute of Sports Science, University of Graz, Graz, Austria
| |
Collapse
|
11
|
Mohammadi MR, Dehkordi-Vakil F, Ricks-Oddie J, Mansfield R, Kashimiri H, Daniels M, Zhao W, Lakey JR. Preferences of Type 1 Diabetic Patients on Devices for Islet Transplantation. Cell Transplant 2020; 29:963689720952343. [PMID: 33023311 PMCID: PMC7784499 DOI: 10.1177/0963689720952343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transplantation of pancreatic islets within a biomaterial device is currently
under investigation in clinical trials for the treatment of patients with type 1
diabetes (T1D). Patients’ preferences on such implants could guide the designs
of next-generation implantable devices; however, such information is not
currently available. We surveyed the preferences of 482 patients with T1D on the
size, shape, visibility, and transplantation site of islet containing implants.
More than 83% of participants were willing to receive autologous stem cells, and
there was no significant association between implant fabricated by one’s own
stem cell with gender (χ2 (1, n = 468) = 0.28; P = 0.6) or
with age (χ2 (4, n = 468) = 2.92; P = 0.6).
Preferred location for islet transplantation within devices was under the skin
(52.7%). 48.3% preferred microscopic disks, and 32.3% preferred a thin device
(like a credit card). Moreover, 58.4% preferred the implant to be as small as
possible, 25.4% did not care about visibility, and 16.2% preferred their
implants not to be visible. Among female participants, 81% cared about the
implant visibility, whereas this number was 64% for male respondents
(χ2 test (1, n = 468) = 16.34; P <
0.0001). 22% of those younger than 50 years of age and 30% of those older than
50 did not care about the visibility of implant (χ2 test (4, n = 468) = 23.69; P <
0.0001). These results suggest that subcutaneous sites and micron-sized devices
are preferred choices among patients with T1D who participated in our
survey.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Materials Science and Engineering, 8788University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA
| | - Farideh Dehkordi-Vakil
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Joni Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Robert Mansfield
- 369679Juvenile Diabetes Research Foundation Orange County Chapter, Irvine, CA, USA
| | | | - Mark Daniels
- CHOC Children's Endocrine & Diabetes Center, Orange, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Pharmaceutical Sciences, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biological Chemistry, 8788University of California, Irvine, Irvine, CA, USA
| | - Jonathan Rt Lakey
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Surgery and Biomedical Engineering, 8788University of California Irvine, Orange, CA, USA
| |
Collapse
|
12
|
Ma S, Yang M, Zhou W, Dai L, Ding Y, Guo X, Yuan Y, Tang J, Li D, Wang X. An Efficient and Footprint-Free Protocol for the Transdifferentiation of Hepatocytes Into Insulin-Producing Cells With IVT mRNAs. Front Genet 2020; 11:575. [PMID: 32655618 PMCID: PMC7325981 DOI: 10.3389/fgene.2020.00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background Direct transdifferentiation of adult somatic cells into insulin-producing cells (IPCs) is a promising approach for cell-based therapies for type 1 diabetes mellitus. Liver cells are an ideal source for generating IPCs because they have regenerative ability and a developmental process similar to that of the pancreas. Pancreas versus liver fate is regulated by TALE homeoprotein (TGIF2) during development. Here, we wanted to investigate whether TGIF2 could enhance the efficiency of transdifferentiation of hepatocytes into IPCs induced by three pancreatic transcription factors (pTFs), i.e., Pdx1, NeuroD, and Mafa, which are crucial for pancreatic development in the embryo. Methods The in vitro transcribed (IVT) mRNAs of TGIF2 and the three pTFs were synthesized in vitro and sequentially supplemented in hepatocytes. On day 6, the expression of transcription factors was assessed by quantitative real-time polymerase chain reaction (qRT-PCR), and insulin expression was detected by immunofluorescence. Glucose-stimulated insulin secretion was assessed by enzyme-linked immunosorbent assay (ELISA). The key genes controlling cell polarity and the Wnt/PCP signaling pathway were assayed by qRT-PCR, and the level of JNK protein phosphorylation, which regulates the Wnt/PCP signaling pathway, was detected by western blotting. Results IVT mRNAs could be efficiently transfected into hepatocytes. Quantitative real-time polymerase chain reaction results revealed that compared with ectopic expression of the three pTFs alone, ectopic expression of the three pTFs plus TGIF2 could strongly reduce hepatic gene expression and subsequently improve the induction of a set of pancreatic genes. Immunofluorescence analysis showed that TGIF2 expression could double the transdifferentiation yield; 30% of the cells were insulin positive if induced by TGIF2 plus the 3 pTFs, while only 15% of the cells were insulin positive if induced by the three pTFs alone. ELISA analysis confirmed that glucose-stimulated insulin secretion was less efficient after transfection with the three pTFs alone. The differentiated cells derived from the addition of TGIF2 mRNA could form islet-like clusters. By contrast, the cells differentiated with the three pTFs did not form clusters under the same conditions. Tgif2 induced transdifferentiation more efficiently by remodeling the expression of genes in the Wnt/PCP pathway. Overexpression of TGIF2 in hepatocytes could activate the expression of key genes controlling cell polarity and genes in the Wnt/PCP signaling pathway, increasing the level of JNK protein phosphorylation. Conclusions Our study established a novel footprint-free protocol for efficient transdifferentiation of hepatocytes into IPCs using IVT mRNAs of TGIF2 and 3 pTFs, which paved the way toward a clinical application.
Collapse
Affiliation(s)
- Shinan Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengjie Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Medical, Southeast University, Nanjing, China
| | - Wenhui Zhou
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Longjun Dai
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Yan Ding
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yahong Yuan
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Junming Tang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Dongsheng Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaoli Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
13
|
Cobo-Vuilleumier N, Gauthier BR. Time for a paradigm shift in treating type 1 diabetes mellitus: coupling inflammation to islet regeneration. Metabolism 2020; 104:154137. [PMID: 31904355 DOI: 10.1016/j.metabol.2020.154137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/26/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that targets the destruction of islet beta-cells resulting in insulin deficiency, hyperglycemia and death if untreated. Despite advances in medical devices and longer-acting insulin, there is still no robust therapy to substitute and protect beta-cells that are lost in T1DM. Attempts to refrain from the autoimmune attack have failed to achieve glycemic control in patients highlighting the necessity for a paradigm shift in T1DM treatment. Paradoxically, beta-cells are present in T1DM patients indicating a disturbed equilibrium between the immune attack and beta-cell regeneration reminiscent of unresolved wound healing that under normal circumstances progression towards an anti-inflammatory milieu promotes regeneration. Thus, the ultimate T1DM therapy should concomitantly restore immune self-tolerance and replenish the beta-cell mass similar to wound healing. Recently the agonistic activation of the nuclear receptor LRH-1/NR5A2 was shown to induce immune self-tolerance, increase beta-cell survival and promote regeneration through a mechanism of alpha-to-beta cell phenotypic switch. This trans-regeneration process appears to be facilitated by a pancreatic anti-inflammatory environment induced by LRH-1/NR5A2 activation. Herein, we review the literature on the role of LRH1/NR5A2 in immunity and islet physiology and propose that a cross-talk between these cellular compartments is mandatory to achieve therapeutic benefits.
Collapse
Affiliation(s)
- Nadia Cobo-Vuilleumier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R Gauthier
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucia-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, 28029 Spain.
| |
Collapse
|
14
|
Ashrafizadeh M, Yaribeygi H, Atkin SL, Sahebkar A. Effects of newly introduced antidiabetic drugs on autophagy. Diabetes Metab Syndr 2019; 13:2445-2449. [PMID: 31405658 DOI: 10.1016/j.dsx.2019.06.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus is a chronic metabolic disorder that has a complex molecular and cellular pathophysiology, resulting in its dynamic progression and that may show differing responses to therapy. The incidence of diabetes mellitus increases with age and requires additive therapeutic agents for its management. SGLT2i and DPP-4 inhibitors and GLP-1 receptor agonists (GLP-1RA) are newly introduced antidiabetic drugs that work through differing mechanisms; DPP-4 inhibitors maintain the endogenous level of GLP1; GLP-1RA result in pharmacological levels of GLP1, whilst SGLT2i act on the proximal tubules of the kidney. They have shown efficacy in the management of diabetes and in contrast to other antidiabetic drugs, do not inherently cause hypoglycemia in therapeutic doses. Autophagy as a highly conserved mechanism to maintain cell survival and homeostasis by degradation of damaged or aged organelles and components, and recognised to be increasingly important in diabetes. In the present review, we discuss the modulatory effects of these newly introduced antidiabetic drugs on the autophagy process.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Pathak V, Pathak NM, O'Neill CL, Guduric-Fuchs J, Medina RJ. Therapies for Type 1 Diabetes: Current Scenario and Future Perspectives. CLINICAL MEDICINE INSIGHTS-ENDOCRINOLOGY AND DIABETES 2019; 12:1179551419844521. [PMID: 31105434 PMCID: PMC6501476 DOI: 10.1177/1179551419844521] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β cells located in the endocrine pancreas in areas known as islets of Langerhans. The current standard-of-care for T1D is exogenous insulin replacement therapy. Recent developments in this field include the hybrid closed-loop system for regulated insulin delivery and long-acting insulins. Clinical studies on prediction and prevention of diabetes-associated complications have demonstrated the importance of early treatment and glucose control for reducing the risk of developing diabetic complications. Transplantation of primary islets offers an effective approach for treating patients with T1D. However, this strategy is hampered by challenges such as the limited availability of islets, extensive death of islet cells, and poor vascular engraftment of islets post-transplantation. Accordingly, there are considerable efforts currently underway for enhancing islet transplantation efficiency by harnessing the beneficial actions of stem cells. This review will provide an overview of currently available therapeutic options for T1D, and discuss the growing evidence that supports the use of stem cell approaches to enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Varun Pathak
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nupur Madhur Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Christina L O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
Abstract
Diabetes develops due to deficient functional β cell mass, insulin resistance, or both. Yet, various challenges in understanding the mechanisms underlying diabetes development in vivo remain to be overcome owing to the lack of appropriate intravital imaging technologies. To meet these challenges, we have exploited the anterior chamber of the eye (ACE) as a novel imaging site to understand diabetes basics and clinics in vivo. We have developed a technology platform transplanting pancreatic islets into the ACE where they later on can be imaged non-invasively for long time. It turns out that the ACE serves as an optimal imaging site and provides implanted islets with an oxygen-rich milieu and an immune-privileged niche where they undergo optimal engraftment, rich vascularization and dense innervation, preserve organotypic features and live with satisfactory viability and functionality. The ACE technology has led to a series of significant observations. It enables in vivo microscopy of islet cytoarchitecture, function and viability in the physiological context and intravital imaging of a variety of pathological events such as autoimmune insulitis, defects in β cell function and mass and insulin resistance during diabetes development in a real-time manner. Furthermore, application of the ACE technology in humanized mice and non-human primates verifies translational and clinical values of the technology. In this article, we describe the ACE technology in detail, review accumulated knowledge gained by means of the ACE technology and delineate prospective avenues for the ACE technology.
Collapse
|