1
|
Song HY, Yoo BG, Lee Y, Lim JY, Gu EJ, Jeon J, Byun EB. Isoniazid and nicotinic hydrazide hybrids mitigate trehalose-6,6'-dimycolate-induced inflammatory responses and pulmonary granulomas via Syk/PI3K pathways: A promising host-directed therapy for tuberculosis. Biomed Pharmacother 2025; 183:117798. [PMID: 39764922 DOI: 10.1016/j.biopha.2024.117798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 02/08/2025] Open
Abstract
Granulomas, dense clusters of immune cells and bacteria, are critical barriers in tuberculosis (TB) treatment. Recent advancements in TB management have highlighted granuloma control as a potential host-directed therapy (HDT) strategy. Although isoniazid (INH) is the first-line drug for TB therapy, its efficacy is limited to non-replicating Mycobacterium tuberculosis (Mtb) under granulomatous conditions, necessitating the development of more effective derivatives. In this study, hybrid compounds of isoniazid, designated as INH-D1 and INH-D2, were synthesized and evaluated for their effects on controlling inflammatory responses and pulmonary granuloma lesions induced by trehalose-6,6'-dimycolate (TDM), a glycolipid of Mtb. Both INH-D1 and INH-D2 demonstrated stronger inhibitory effects on inflammatory mediators (TNF-α, interleukin-6, co-stimulatory molecules, and MHC class I) in TDM-stimulated macrophages compared to original INH. These anti-inflammatory effects were mediated by the inhibition of Syk, p38, PI3K, and NF-κB transcription. INH-D1 and INH-D2 exhibited stronger binding energies to Syk and PI3Kα/β than INH, which are known as proximal kinases and key mediator in TDM-mediated inflammatory responses. Oral administration of INH-D2 successfully relieved TDM-induced pulmonary granuloma pathology by reducing innate immune cell infiltration, hypoxic conditions in the lungs, and systemic inflammation by decreasing serum cytokines and chemokines. In contrast, original INH and INH-D1 did not effectively alleviate pulmonary granuloma pathology. These findings demonstrate that the novel molecule INH-D2 is effective in treating pulmonary granulomas owing to its strong anti-inflammatory effects, highlighting it as a promising HDT candidate for the management of pulmonary tuberculosis, thereby providing a strategic alternative to standard anti-TB antibiotics.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Bo-Gyeong Yoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Food Science and Technology, Kongju National University, Yesan 32439, Republic of Korea
| | - Yuna Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jae Yoon Lim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun Ji Gu
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
2
|
Jaime-Sánchez E, Lara-Ramírez EE, López-Ramos JE, Ramos-González EJ, Cisneros-Méndez AL, Oropeza-Valdez JJ, Zenteno-Cuevas R, Martínez-Aguilar G, Bastian Y, Castañeda-Delgado JE, Serrano CJ, Enciso-Moreno JA. Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study. Mol Genet Genomics 2024; 299:60. [PMID: 38801463 DOI: 10.1007/s00438-024-02139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5-8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein-protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.
Collapse
Affiliation(s)
- Elena Jaime-Sánchez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Área de Ciencias de La Salud, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara, Zacatecas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Edgar E Lara-Ramírez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
| | - Juan Ernesto López-Ramos
- Academia de Ciencias Químico-Biológicas, Instituto Politécnico Nacional, Centro de Estudios Científicos y Tecnológicos No. 18, Zacatecas, México
| | | | | | - Juan José Oropeza-Valdez
- Human Systems Biology Laboratory. Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | | | | | - Yadira Bastian
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Julio Enrique Castañeda-Delgado
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México
- Investigador por Mexico/Catedras CONAHCYT, Consejo nacional de Humanidades, Ciencias y Tecnologias, Ciudad de Mexico, México
- Consejo Nacional de Ciencia y Tecnologia, CONACYT, Ciudad de Mexico, México
| | | | - José Antonio Enciso-Moreno
- Unidad de Investigación Biomédica de Zacatecas, IMSS, Zacatecas, México.
- Facultad de Química, Cerro de Las Campanas S/N, Universidad Autónoma de Querétaro, Colonia Las Campanas, Centro Universitario, C.P. 76010, Querétaro, México.
| |
Collapse
|
3
|
Li W, Li S, Wang J, Yu M, Yang H, He Z, Tang Y, Liu J, Guo N, Xie D, Liu Z, Zheng K, Xu M, Wu Y. The outer membrane protein Tp92 of Treponema pallidum delays human neutrophil apoptosis via the ERK, PI3K/Akt, and NF-κB pathways. Mol Microbiol 2023; 120:684-701. [PMID: 37718557 DOI: 10.1111/mmi.15164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Syphilis is a persistent sexually transmitted disease caused by infiltration of the elusive pathogen Treponema pallidum. Despite the prevalence of human polymorphonuclear neutrophils (hPMNs) within cutaneous lesions, which are characteristic of incipient syphilis, their role in T. pallidum infection remains unclear. Tp92 is the only T. pallidum helical outer membrane protein that exhibits structural features similar to those of outer membrane proteins in other gram-negative bacteria. However, the functional mechanism of this protein in immune cells remains unclear. Neutrophils are short-lived cells that undergo innate apoptosis in response to external stimuli that typically influence this process. In this study, we determined that Tp92 impedes the activation of procaspase-3 via the ERK MAPK, PI3K/Akt, and NF-κB signaling pathways, consequently suppressing caspase-3 activity within hPMNs, and thereby preventing hPMNs apoptosis. Furthermore, Tp92 could also modulate hPMNs apoptosis by enhancing the expression of the anti-apoptotic protein Mcl-1, stimulating IL-8 secretion, and preserving the mitochondrial membrane potential. These findings provide valuable insights into the molecular mechanisms underlying T. pallidum infection and suggest potential therapeutic targets for syphilis treatment.
Collapse
Affiliation(s)
- Weiwei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, China
| | - Sijia Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Jianye Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
- Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Maoying Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Hongyu Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Zhangping He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Yuanyuan Tang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Jie Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Ningyuan Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, Foshan, China
| | - Zhaoping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China
| | - Man Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Yimou Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| |
Collapse
|
4
|
Bobak CA, Botha M, Workman L, Hill JE, Nicol MP, Holloway JW, Stein DJ, Martinez L, Zar HJ. Gene Expression in Cord Blood and Tuberculosis in Early Childhood: A Nested Case-Control Study in a South African Birth Cohort. Clin Infect Dis 2023; 77:438-449. [PMID: 37144357 PMCID: PMC10425199 DOI: 10.1093/cid/ciad268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Transcriptomic profiling of adults with tuberculosis (TB) has become increasingly common, predominantly for diagnostic and risk prediction purposes. However, few studies have evaluated signatures in children, particularly in identifying those at risk for developing TB disease. We investigated the relationship between gene expression obtained from umbilical cord blood and both tuberculin skin test conversion and incident TB disease through the first 5 years of life. METHODS We conducted a nested case-control study in the Drakenstein Child Health Study, a longitudinal, population-based birth cohort in South Africa. We applied transcriptome-wide screens to umbilical cord blood samples from neonates born to a subset of selected mothers (N = 131). Signatures identifying tuberculin conversion and risk of subsequent TB disease were identified from genome-wide analysis of RNA expression. RESULTS Gene expression signatures revealed clear differences predictive of tuberculin conversion (n = 26) and TB disease (n = 10); 114 genes were associated with tuberculin conversion and 30 genes were associated with the progression to TB disease among children with early infection. Coexpression network analysis revealed 6 modules associated with risk of TB infection or disease, including a module associated with neutrophil activation in immune response (P < .0001) and defense response to bacterium (P < .0001). CONCLUSIONS These findings suggest multiple detectable differences in gene expression at birth that were associated with risk of TB infection or disease throughout early childhood. Such measures may provide novel insights into TB pathogenesis and susceptibility.
Collapse
Affiliation(s)
- Carly A Bobak
- Department of Biomedical Data Science, Dartmouth College, Hanover, New Hampshire
| | - Maresa Botha
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African Medical Research Council Unit on Child and Adolescent Health, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African Medical Research Council Unit on Child and Adolescent Health, Cape Town, South Africa
| | - Jane E Hill
- School of Biomedical Engineering and the School of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Mark P Nicol
- Marshall Centre, Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, Australia
- Division of Medical Microbiology, University of Cape Town, South Africa
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health and Care Research Southampton Biomedical Research Center, University Hospital Southampton, United Kingdom
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town
- Unit on Risk and Resilience in Mental Disorders, South African Medical Research Council
- Neuroscience Institute, University of Cape Town, South Africa
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Massachusetts
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African Medical Research Council Unit on Child and Adolescent Health, Cape Town, South Africa
| |
Collapse
|
5
|
Kroon EE, Correa-Macedo W, Evans R, Seeger A, Engelbrecht L, Kriel JA, Loos B, Okugbeni N, Orlova M, Cassart P, Kinnear CJ, Tromp GC, Möller M, Wilkinson RJ, Coussens AK, Schurr E, Hoal EG. Neutrophil extracellular trap formation and gene programs distinguish TST/IGRA sensitization outcomes among Mycobacterium tuberculosis exposed persons living with HIV. PLoS Genet 2023; 19:e1010888. [PMID: 37616312 PMCID: PMC10470897 DOI: 10.1371/journal.pgen.1010888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Persons living with HIV (PLWH) have an increased risk for tuberculosis (TB). After prolonged and repeated exposure, some PLWH never develop TB and show no evidence of immune sensitization to Mycobacterium tuberculosis (Mtb) as defined by persistently negative tuberculin skin tests (TST) and interferon gamma release assays (IGRA). This group has been identified and defined as HIV+ persistently TB, tuberculin and IGRA negative (HITTIN). To investigate potential innate mechanisms unique to individuals with the HITTIN phenotype we compared their neutrophil Mtb infection response to that of PLWH, with no TB history, but who test persistently IGRA positive, and tuberculin positive (HIT). Neutrophil samples from 17 HITTIN (PMNHITTIN) and 11 HIT (PMNHIT) were isolated and infected with Mtb H37Rv for 1h and 6h. RNA was extracted and used for RNAseq analysis. Since there was no significant differential transcriptional response at 1h between infected PMNHITTIN and PMNHIT, we focused on the 6h timepoint. When compared to uninfected PMN, PMNHITTIN displayed 3106 significantly upregulated and 3548 significantly downregulated differentially expressed genes (DEGs) (absolute cutoff of a log2FC of 0.2, FDR < 0.05) whereas PMNHIT demonstrated 3816 significantly upregulated and 3794 significantly downregulated DEGs following 6h Mtb infection. Contrasting the log2FC 6h infection response to Mtb from PMNHITTIN against PMNHIT, 2285 genes showed significant differential response between the two groups. Overall PMNHITTIN had a lower fold change response to Mtb infection compared to PMNHIT. According to pathway enrichment, Apoptosis and NETosis were differentially regulated between HITTIN and HIT PMN responses after 6h Mtb infection. To corroborate the blunted NETosis transcriptional response measured among HITTIN, fluorescence microscopy revealed relatively lower neutrophil extracellular trap formation and cell loss in PMNHITTIN compared to PMNHIT, showing that PMNHITTIN have a distinct response to Mtb.
Collapse
Affiliation(s)
- Elouise E. Kroon
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wilian Correa-Macedo
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Rachel Evans
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
| | - Allison Seeger
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South Africa
| | - Jurgen A. Kriel
- Central Analytical Facilities, Microscopy Unit, Stellenbosch University, Cape Town, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Naomi Okugbeni
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Marianna Orlova
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Pauline Cassart
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
| | - Craig J. Kinnear
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Gerard C. Tromp
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, University of Stellenbosch, Cape Town, South Africa
- SAMRC-SHIP South African Tuberculosis Bioinformatics Initiative (SATBBI), Center for Bioinformatics and Computational Biology, Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, University of Stellenbosch, Cape Town, South Africa
| | - Robert J. Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department Medical Biology (WEHI), Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Australia
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, South Africa
| | - Erwin Schurr
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montréal, Canada
- McGill International TB Centre, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Eileen G. Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
6
|
Phosphoinositide 3 Kinase γ Plays a Critical Role in Acute Kidney Injury. Cells 2022; 11:cells11050772. [PMID: 35269396 PMCID: PMC8909888 DOI: 10.3390/cells11050772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/05/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory cells contribute to the pathogenesis of renal ischemia-reperfusion injury (IRI). However, the signaling mechanisms underlying the infiltration of inflammatory cells into the kidney are not well understood. In this study, we examined the effects of phosphoinositide 3 kinase γ (PI3Kγ) on inflammatory cells infiltration into the kidney in response to ischemia-reperfusion injury. Compared with wild-type mice, PI3Kγ knockout mice displayed less IRI in the kidney with fewer tubular apoptotic cell. Furthermore, PI3Kγ deficiency decreased the number of infiltrated neutrophils, macrophages, and T cells in the kidney, which was accompanied by a decrease in the expression of pro-inflammatory cytokines in the kidney. Moreover, wild-type mice treated with AS-605240, a selective PI3Kγ inhibitor, displayed less tubular damage, accumulated fewer inflammatory cells, and expressed less proinflammatory molecules in the kidney following IRI. These results demonstrate that PI3Kγ has a critical role in the pathogenesis of kidney damage in IRI, indicating that PI3Kγ inhibition may serve as a potential therapeutic strategy for the prevention of ischemia-reperfusion-induced kidney injury.
Collapse
|
7
|
He Z, Xiao J, Wang J, Lu S, Zheng K, Yu M, Liu J, Wang C, Ding N, Liang M, Wu Y. The Chlamydia psittaci Inclusion Membrane Protein 0556 Inhibits Human Neutrophils Apoptosis Through PI3K/AKT and NF-κB Signaling Pathways. Front Immunol 2021; 12:694573. [PMID: 34484191 PMCID: PMC8414580 DOI: 10.3389/fimmu.2021.694573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023] Open
Abstract
Inclusion membrane proteins (Incs) play an important role in the structure and stability of chlamydial inclusion and the interaction between Chlamydia spp. and their hosts. Following Chlamydia infection through the respiratory tract, human polymorphonuclear neutrophils (hPMN) not only act as the primary immune cells reaching the lungs, but also serve as reservoir for Chlamydia. We have previously identified a Chlamydia psittaci hypothetical protein, CPSIT_0556, as a medium expressed inclusion membrane protein. However, the role of inclusion membrane protein, CPSIT_0556 in regulating hPMN functions remains unknown. In the present study, we found that CPSIT_0556 could not only inhibit hPMN apoptosis through the PI3K/Akt and NF-κB signaling pathways by releasing IL-8, but also delays procaspase-3 processing and inhibits caspase-3 activity in hPMN. Up-regulating the expression of anti-apoptotic protein Mcl-1 and down-regulating the expression of pro-apoptotic protein Bax could also inhibit the translocalization of Bax in the cytoplasm into the mitochondria, as well as induce the transfer of p65 NF-κB from the cytoplasm to the nucleus. Overall, our findings demonstrate that CPSIT_0556 could inhibit hPMN apoptosis through PI3K/Akt and NF-κB pathways and provide new insights towards understanding a better understanding of the molecular pathogenesis and immune escape mechanisms of C. psittaci.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jie Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Mingxing Liang
- Department of Clinical Laboratory, The Affiliated Huaihua Hospital of University of South China, Huaihua, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
8
|
Jones TPW, Dabbaj S, Mandal I, Cleverley J, Cash C, Lipman MCI, Lowe DM. The Blood Neutrophil Count After 1 Month of Treatment Predicts the Radiologic Severity of Lung Disease at Treatment End. Chest 2021; 160:2030-2041. [PMID: 34331904 DOI: 10.1016/j.chest.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Lung disease after tuberculous confers significant morbidity. However, the determinants of persistent lung damage in TB are not well established. We investigated associations between TB-associated radiologic changes and sociodemographic factors, surrogates of bacillary burden, and blood inflammatory markers at initiation of therapy and after 1 month. RESEARCH QUESTION What are the predictors of radiologic severity at the end of TB treatment for TB? STUDY DESIGN AND METHODS We collected data from patients treated for drug-sensitive pulmonary TB at our center over a 5.5-year period. We recorded age, sex, ethnicity, smoking status, symptom duration, sputum smear grade, time to culture positivity, and blood results (C-reactive protein and neutrophil count) at baseline and after 1 month of treatment. Chest radiographs obtained at baseline, 2 months, and end of treatment were assessed independently by two radiologists and scored using a validated system. Relationships between predictor variables and radiologic outcomes were assessed using linear or binary logistic regression. RESULTS We assessed 154 individuals with a mean age of 37 years, 63% of whom were men. In a multivariate analysis, baseline radiologic severity correlated with sputum smear grade (P = 0.003) and neutrophil count (P < 0.001). At end of treatment, only the 1-month neutrophil count was associated significantly with overall radiologic severity in the multivariate analysis (r = 0.34; P = 0.003) and remained significant after controlling for baseline radiologic scores. The 1-month neutrophil count also was the only independent correlate of volume loss and pleural thickening at the end of treatment and was significantly higher in patients with persistent cavitation or effusion vs those without. INTERPRETATION Persistent neutrophilic inflammation after 1 month of TB therapy is associated with poor radiologic outcome, suggesting a target for interventions to minimize lung disease after tuberculous.
Collapse
Affiliation(s)
- Timothy P W Jones
- Department of Infection, Royal Free London NHS Foundation Trust, London, England
| | - Susannah Dabbaj
- UCL Medical School, Royal Free London NHS Foundation Trust, London, England
| | - Indrajeet Mandal
- UCL Medical School, Royal Free London NHS Foundation Trust, London, England
| | - Joanne Cleverley
- Department of Radiology, Royal Free London NHS Foundation Trust, London, England
| | - Charlotte Cash
- Department of Radiology, Royal Free London NHS Foundation Trust, London, England
| | - Marc C I Lipman
- Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, London, England; UCL Respiratory, University College London, Royal Free Campus, London, England
| | - David M Lowe
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, England; Institute of Immunity and Transplantation, University College London, Royal Free Campus, London, England.
| |
Collapse
|
9
|
Sala V, Della Sala A, Ghigo A, Hirsch E. Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress 2021; 5:40-51. [PMID: 33821232 PMCID: PMC8012884 DOI: 10.15698/cst2021.04.246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| |
Collapse
|
10
|
Alam A, Imam N, Siddiqui MF, Ali MK, Ahmed MM, Ishrat R. Human gene expression profiling identifies key therapeutic targets in tuberculosis infection: A systematic network meta-analysis. INFECTION GENETICS AND EVOLUTION 2021; 87:104649. [PMID: 33271338 DOI: 10.1016/j.meegid.2020.104649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022]
|
11
|
Muefong CN, Sutherland JS. Neutrophils in Tuberculosis-Associated Inflammation and Lung Pathology. Front Immunol 2020; 11:962. [PMID: 32536917 PMCID: PMC7266980 DOI: 10.3389/fimmu.2020.00962] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Protective immunity to Mycobacterium tuberculosis (Mtb)—the causative agent of tuberculosis (TB)—is not fully understood but involves immune responses within the pulmonary airways which can lead to exacerbated inflammation and immune pathology. In humans, this inflammation results in lung damage; the extent of which depends on specific host pro-inflammatory processes. Neutrophils, though increasingly linked to the development of inflammatory disorders, have been less well studied in relation to TB-induced lung pathology. Neutrophils mode of action and their specialized functions can be directly linked to TB-specific lung tissue damage observed on patient chest X-rays at diagnosis and contribute to long-term pulmonary sequelae. This review discusses aspects of neutrophil activity associated with active TB, including the resulting inflammation and pulmonary impairment. It highlights the significance of neutrophil function on TB disease outcome and underlines the necessity of monitoring neutrophil function for better assessment of the immune response and severity of lung pathology associated with TB. Finally, we propose that some MMPs, ROS, MPO, S100A8/A9 and Glutathione are neutrophil-related inflammatory mediators with promising potential as targets for developing host-directed therapies for TB.
Collapse
Affiliation(s)
- Caleb N Muefong
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Jayne S Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
12
|
Bach-Griera M, Campo-Pérez V, Barbosa S, Traserra S, Guallar-Garrido S, Moya-Andérico L, Herrero-Abadía P, Luquin M, Rabanal RM, Torrents E, Julián E. Mycolicibacterium brumae Is a Safe and Non-Toxic Immunomodulatory Agent for Cancer Treatment. Vaccines (Basel) 2020; 8:E198. [PMID: 32344808 PMCID: PMC7349652 DOI: 10.3390/vaccines8020198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Intravesical Mycobacterium bovis Bacillus Calmette-Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical parameters were analyzed. Finally, histopathological alterations in mouse tissues were evaluated. Our results demonstrate the safety and non-toxic profile of M. brumae. Differences were observed in the biochemical, hematological and histopathological analysis between M. brumae and BCG-infected mice, as well as survival curves rates and colony forming units (CFU) counts in both animal models. M. brumae constitutes a safe therapeutic biological agent, overcoming the safety and toxicity disadvantages presented by BCG in both mice and G. mellonella animal models.
Collapse
Affiliation(s)
- Marc Bach-Griera
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.B.-G.); (V.C.-P.); (S.G.-G.); (P.H.-A.); (M.L.)
| | - Víctor Campo-Pérez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.B.-G.); (V.C.-P.); (S.G.-G.); (P.H.-A.); (M.L.)
- Bacterial Infections and Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (L.M.-A.); (E.T.)
| | - Sandra Barbosa
- Department of Cell Biology, Physiology and Immunology, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.B.); (S.T.)
- Integrated Services of Laboratory Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sara Traserra
- Department of Cell Biology, Physiology and Immunology, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.B.); (S.T.)
- Integrated Services of Laboratory Animals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.B.-G.); (V.C.-P.); (S.G.-G.); (P.H.-A.); (M.L.)
| | - Laura Moya-Andérico
- Bacterial Infections and Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (L.M.-A.); (E.T.)
| | - Paula Herrero-Abadía
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.B.-G.); (V.C.-P.); (S.G.-G.); (P.H.-A.); (M.L.)
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.B.-G.); (V.C.-P.); (S.G.-G.); (P.H.-A.); (M.L.)
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (L.M.-A.); (E.T.)
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 643 Diagonal Ave., 08028 Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.B.-G.); (V.C.-P.); (S.G.-G.); (P.H.-A.); (M.L.)
| |
Collapse
|
13
|
Leisching GR. PI3-Kinase δγ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Front Immunol 2019; 10:2583. [PMID: 31736982 PMCID: PMC6838131 DOI: 10.3389/fimmu.2019.02583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/18/2019] [Indexed: 01/29/2023] Open
Abstract
Although IL17A plays a protective role at the mucosal surface, when IL17A signaling becomes dysregulated, a pathological response is locally induced. At the early stages of Mycobacterium tuberculosis (M.tb) infection, IL17A contributes to granuloma formation and pathogen containment. In contrast, during disease progression, a dysregulated IL17A hyperinflammatory response drives tissue destruction through enhanced neutrophil recruitment. Cumulative research has implicated the PI3-Kinase pathways as one of the most relevant in the pathophysiology of inflammation. Evidence shows that IL-17A secretion and the expansion of the Th17 population is dependant in PI3-Kinase signaling, with the p110δ and p110γ isoforms playing a prominent role. The p110γ isoform promotes disease progression through dampening of the Th17 response, preventing pathogen clearance and containment. The p110γ gene, PIK3CG is downregulated in TB patients during late-stage disease when compared to healthy controls, demonstrating an important modulatory role for this isoform during TB. Conversely, the p110δ isoform induces IL-17A release from pulmonary γδ T-cells, committed Th17 cells and promotes neutrophil recruitment to the lung. Inhibiting this isoform not only suppresses IL-17A secretion from Th17 cells, but it also inhibits cytokine production from multiple T-helper cell types. Since increased IL-17A levels are observed to be localized in the lung compartments (BAL and lymphocytes) in comparison to circulating levels, an inhalable PI3Kδ inhibitor, which is currently utilized for inflammatory airway diseases characterized by IL-17A over-secretion, may be a therapeutic option for active TB disease.
Collapse
Affiliation(s)
- Gina R Leisching
- SA MRC Centre for TB Research, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
de Melo MGM, Mesquita EDD, Oliveira MM, da Silva-Monteiro C, Silveira AKA, Malaquias TS, Dutra TCP, Galliez RM, Kritski AL, Silva EC. Imbalance of NET and Alpha-1-Antitrypsin in Tuberculosis Patients Is Related With Hyper Inflammation and Severe Lung Tissue Damage. Front Immunol 2019; 9:3147. [PMID: 30687336 PMCID: PMC6335334 DOI: 10.3389/fimmu.2018.03147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Pulmonary tuberculosis (PTB) can lead to lung tissue damage (LTD) and compromise the pulmonary capacity of TB patients that evolve to severe PTB. The molecular mechanisms involved in LTD during anti-tuberculous treatment (ATT) remain poorly understood. Methods and findings: We evaluated the role of neutrophil extracellular trap (NET) and the occurrence of LTD through chest radiographic images, the microbial load in sputum, and inflammatory serum profile (IL-12p40/p70, IL-8, IL-17A, IL-23, VEGF-A, MMP-1, and -8, galectin-3, citrunillated histone H3—cit-H3, alpha-1-antitrypsin—α1AT, C-reactive protein—CRP and albumin) in a cohort of 82 PTB patients before and after 60 days of ATT. Using univariate analysis, LTD was associated with neutrophilia and increase of several inflammatory proteins involved in the neutrophil-mediated response, being cit-H3 the more related to the event. In the multivariate analysis, neutrophilia and cit-H3 appear as directly related to LTD. The analysis of the ROC curve at day 60 presented AUC of 0.97 (95.0% CI 0.95–1). Interestingly, at day 0 of ATT, these biomarkers demonstrated fine relation with LTD showing an AUC 0.92 (95.0% CI 0.86–0.99). Despite of that, the same molecules have no impact in culture conversion during ATT. Conclusions: Our data revealed that NETs may play a key role in the pathway responsible for non-specific inflammation and tissue destruction in PTB. High level of cit-H3 and low level of α1AT was observed in the serum of severe TB patients, suggesting a breakdown in the intrinsic control of NET-driven tissue damage. These data show a new insight to knowledge TB immunopathogenesis, the role of neutrophil and NET pathway. Likewise, we identified possible biomarkers to screening of PTB patients eligible to adjuvants therapies, as anti-inflammatories and alpha-1-antitrypsin.
Collapse
Affiliation(s)
| | | | - Martha M Oliveira
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Development Center for Technology on Health, CDTS-Fiocruz, Rio de Janeiro, Brazil
| | - Caio da Silva-Monteiro
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna K A Silveira
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago S Malaquias
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana C P Dutra
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael M Galliez
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Afrânio L Kritski
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Tuberculosis Academic Program-Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elisangela C Silva
- Molecular Mycobacteriology Laboratory, Medical School-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratory of Biology Recognize, Center of Bioscience and Biotechnology, State University of North Fluminense Darcy Ribeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|