1
|
Zhong F, Yao F, Jiang J, Yu X, Liu J, Huang B, Wang X. CD8 + T cell-based molecular subtypes with heterogeneous immune landscapes and clinical significance in acute myeloid leukemia. Inflamm Res 2024; 73:329-344. [PMID: 38195768 DOI: 10.1007/s00011-023-01839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy. Although high-dose chemotherapy is the primary treatment option, it cannot cure the disease, and new approaches need to be developed. The tumor microenvironment (TME) plays a crucial role in tumor biology and immunotherapy. CD8 + T cells are the main anti-tumor immune effector cells, and it is essential to understand their relationship with the TME and the clinicopathological characteristics of AML. METHODS In this study, we conducted a systematic analysis of CD8 + T cell infiltration through multi-omics data and identified molecular subtypes with significant differences in CD8 + T cell infiltration and prognosis. We aimed to provide a comprehensive evaluation of the pathological factors affecting the prognosis of AML patients and to offer theoretical support for the precise treatment of AML. RESULTS Our results indicate that CD8 + T cell infiltration is accompanied by immunosuppression, and that there are two molecular subtypes, with the C2 subtype having a significantly worse prognosis than the C1 subtype, as well as less CD8 + T cell infiltration. We developed a signature to distinguish molecular subtypes using multiple machine learning algorithms and validated the prognostic predictive power of molecular subtypes in nine AML cohorts including 2059 AML patients. Our findings suggest that there are different immunosuppressive characteristics between the two subtypes. The C1 subtype has up-regulated expression of immune checkpoints such as CTLA4, PD-1, LAG3, and TIGITD, while the C2 subtype infiltrates more immunosuppressive cells such as Tregs and M2 macrophages. The C1 subtype is more responsive to anti-PD-1 immunotherapy and induction chemotherapy, as well as having higher immune and cancer-promoting variant-related pathway activity. Patients with the C2 subtype had a higher FLT3 mutation rate, higher WBC counts, and a higher percentage of blasts, as indicated by increased activity of signaling pathways involved in energy metabolism and cell proliferation. Analysis of data from ex vivo AML cell drug assays has identified a group of drugs that differ in therapeutic sensitivity between molecular subtypes. CONCLUSIONS Our results suggest that the molecular subtypes we constructed have potential application value in the prognosis evaluation and treatment guidance of AML patients.
Collapse
Affiliation(s)
- Fangmin Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fangyi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiajing Yu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Wang J, Zhu N, Su X, Yang R. Gut microbiota: A double-edged sword in immune checkpoint blockade immunotherapy against tumors. Cancer Lett 2024; 582:216582. [PMID: 38065401 DOI: 10.1016/j.canlet.2023.216582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Tumor cells can evade immune surveillance by expressing immune checkpoint molecule ligands, resulting in effective immune cell inactivation. Immune checkpoint blockades (ICBs) have dramatically improved survival of patients with multiple types of cancers. However, responses to ICB immunotherapy are heterogeneous with lower patient response rates. The advances have established that the gut microbiota can be as a promising target to overcome resistance to ICB immunotherapy. Furthermore, some bacterial species have shown to promote improved responses to ICBs. However, gut microbiota is critical in maintaining gut and systemic immune homeostasis. It not only promotes differentiation and function of immunosuppressive immune cells but also inhibits inflammatory cells via gut microbiota derived products such as short chain fatty acids (SCFAs), tryptophan (Trp) and bile acid (BA) metabolites, which play an important role in tumor immunity. Since the gut microbiota can either inhibit or enhance immune against tumor, it should be a double-edged sword in ICBs against tumor. In this review, we discuss the effects of gut microbiota on immune cells and also tumor cells, especially enhances of gut microbiota on ICB immunotherapy. These discussions can hopefully promote the development of ICB immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300071, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
van Olst L, Kamermans A, van der Pol SMA, Rodríguez E, Hulshof LA, van Dijk RE, Vonk DN, Schouten M, Witte ME, de Vries HE, Middeldorp J. Age-associated systemic factors change central and peripheral immunity in adult male mice. Brain Behav Immun 2023; 111:395-411. [PMID: 37169133 DOI: 10.1016/j.bbi.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
Aging coincides with major changes in brain immunity that aid in a decline in neuronal function. Here, we postulate that systemic, pro-aging factors contribute to immunological changes that occur within the brain during aging. To investigate this hypothesis, we comprehensively characterized the central and peripheral immune landscape of 20-month-old male mice using cytometry by time-of-flight (CyTOF) and investigated the role of age-associated circulating factors. We found that CD8+ T cells expressing programmed cell death protein 1 (PD1) and tissue-resident memory CD8+ T cells accumulated in the aged brain while levels of memory T cells rose in the periphery. Injections of plasma derived from 20-month-old mice into 5-month-old receiving mice decreased the frequency of splenic and circulating naïve T cells, increased memory CD8+ T cells, and non-classical, patrolling monocytes in the spleen, and elevated levels of regulatory T cells and non-classical monocytes in the blood. Notably, CD8+ T cells accumulated within white matter areas of plasma-treated mice, which coincided with the expression of vascular cell adhesion molecule 1 (VCAM-1), a mediator of immune cell trafficking, on the brain vasculature. Taken together, we here describe age-related immune cell changes in the mouse brain and circulation and show that age-associated systemic factors induce the expansion of CD8+ T cells in the aged brain.
Collapse
Affiliation(s)
- L van Olst
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - A Kamermans
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S M A van der Pol
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - E Rodríguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - L A Hulshof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - R E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - D N Vonk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands
| | - M Schouten
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - M E Witte
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H E de Vries
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J Middeldorp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Centre Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Centre, Rijswijk, the Netherlands
| |
Collapse
|
4
|
Geiger-Schuller K, Eraslan B, Kuksenko O, Dey KK, Jagadeesh KA, Thakore PI, Karayel O, Yung AR, Rajagopalan A, Meireles AM, Yang KD, Amir-Zilberstein L, Delorey T, Phillips D, Raychowdhury R, Moussion C, Price AL, Hacohen N, Doench JG, Uhler C, Rozenblatt-Rosen O, Regev A. Systematically characterizing the roles of E3-ligase family members in inflammatory responses with massively parallel Perturb-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525198. [PMID: 36747789 PMCID: PMC9900845 DOI: 10.1101/2023.01.23.525198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
E3 ligases regulate key processes, but many of their roles remain unknown. Using Perturb-seq, we interrogated the function of 1,130 E3 ligases, partners and substrates in the inflammatory response in primary dendritic cells (DCs). Dozens impacted the balance of DC1, DC2, migratory DC and macrophage states and a gradient of DC maturation. Family members grouped into co-functional modules that were enriched for physical interactions and impacted specific programs through substrate transcription factors. E3s and their adaptors co-regulated the same processes, but partnered with different substrate recognition adaptors to impact distinct aspects of the DC life cycle. Genetic interactions were more prevalent within than between modules, and a deep learning model, comβVAE, predicts the outcome of new combinations by leveraging modularity. The E3 regulatory network was associated with heritable variation and aberrant gene expression in immune cells in human inflammatory diseases. Our study provides a general approach to dissect gene function.
Collapse
|
5
|
Tian Z, Khan AI, Rehman AU, Deng T, Ma C, Wang L. Virulence factors and mechanisms of paediatric pneumonia caused by Enterococcus faecalis. Gut Pathog 2023; 15:2. [PMID: 36624474 PMCID: PMC9830894 DOI: 10.1186/s13099-022-00522-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Paediatric pneumonia is a respiratory infection that affects infants and young children under the age of 3. This disease is the leading cause of infant and child mortality in developing countries because of the weak immune system of young children. The difficulty and length of time required to identify the pathogen and causative agent are the main reasons for this high mortality rate. In addition, the identification of certain causative agents is particularly important for the treatment of paediatric pneumonia. In this study, we explored the possible mechanisms by which pathogenic Enterococcus faecalis induced pneumonia in vivo. The potential virulence factors of bacteria isolated from the intestines of paediatric pneumonia patients were determined. Taken together, the results suggested that lysophosphatidic acid (LTA) from pathogenic E. faecalis decreases the expression of platelet-activating factor receptor (PAFR), which in turn disrupts the function of intestinal tight junctions (Occ and Ccldn1), leading to the entry of LE-LTA into the bloodstream because of the disruption of the intestinal barrier. Although LTA can enter circulation, it cannot directly infiltrate the lungs, which indicates that lung inflammation in mice is not caused by the direct entry of LE-LTA into the lungs. We further found that LTA activates immune cells, such as CD8 + T cells and type 2 innate lymphocytes, in vivo. Interleukin-6 and interleukin-17 can produce large amounts of inflammatory factors and thus promote the development of pneumonia. In conclusion, our findings demonstrate that the LTA of pathogenic E. faecalis in the intestine is a virulence factor that can cause paediatric pneumonia. This study found that intestinal bacterial virulence factors can induce immune responses in the lungs and blood. These findings could provide further insight into the mechanism of infectious diseases in the lung that are caused by bacteria in the intestine.
Collapse
Affiliation(s)
- Zhiying Tian
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Asif Iqbal Khan
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Ata Ur Rehman
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Ting Deng
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Chao Ma
- Laboratory of Biochemistry and Molecular Biology, Department of Biotechnology, College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Liang Wang
- National Joint Engineering Laboratory, Regenerative Medicine Centre, Stem Cell Clinical Research Centre, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
7
|
SARS-CoV-2 Specific Antibody Response and T Cell-Immunity in Immunocompromised Patients up to Six Months Post COVID: A Pilot Study. J Clin Med 2022; 11:jcm11123535. [PMID: 35743605 PMCID: PMC9225567 DOI: 10.3390/jcm11123535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
COVID-19 generates SARS-CoV-2-specific antibodies in immunocompetent individuals. However, in immunocompromised patients, the humoral immunity following infection may be impaired or absent. Recently, the assessment of cellular immunity to SARS-CoV-2, both following natural infection and vaccination, has contributed new knowledge regarding patients with low or no antibody responses. As part of a prospective cohort study which included hospitalized patients with COVID-19, we identified immunocompromised patients and compared them with age- and sex-matched immunocompetent patients regarding co-morbidities, biomarkers of COVID-19 and baseline viral load by real-time PCR in nasopharyngeal swabs. Spike and nucleocapsid antibody responses were analyzed at inclusion and after two weeks, six weeks and six months. Plasma immunoglobulin G (IgG) levels were quantified, lymphocyte phenotyping was performed, and SARS-CoV-2 specific CD4 and CD8 T cell responses after in vitro antigen stimulation were assessed at six months post infection. All patients showed IgG levels above or within reference limits. At six months, all patients had detectable SARS-CoV-2 anti-spike antibody levels. SARS-CoV-2 specific T cell responses were detected in 12 of 12 immunocompetent patients and in four of six immunocompromised patients. The magnitude of long-lived SARS-CoV-2 specific T cell responses were significantly correlated with the number of CD4 T cells and NK cells. Determining the durability of the humoral and cellular immune response against SARS-CoV-2 in immunocompromised individuals could be of importance by providing insights into the risk of re-infection and the need for vaccine boosters.
Collapse
|
8
|
Andrade MS, Young JS, Pollard JM, Yin D, Alegre ML, Chong AS. Linked sensitization by memory CD4+ T cells prevents costimulation blockade–induced transplantation tolerance. JCI Insight 2022; 7:159205. [PMID: 35674134 PMCID: PMC9220839 DOI: 10.1172/jci.insight.159205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dominant infectious tolerance explains how brief tolerance-inducing therapies result in lifelong tolerance to donor antigens and “linked” third-party antigens, while recipient sensitization and ensuing immunological memory prevent the successful induction of transplant tolerance. In this study, we juxtapose these 2 concepts to test whether mechanisms of dominant infectious tolerance can control a limited repertoire of memory T and B cells. We show that sensitization to a single donor antigen is sufficient to prevent stable transplant tolerance, rendering it unstable. Mechanistic studies revealed that recall antibody responses and memory CD8+ T cell expansion were initially controlled, but memory CD4+Foxp3– T cell (Tconv) responses were not. Remarkably, naive donor-specific Tconvs at tolerance induction also acquired a resistance to tolerance, proliferating and acquiring a phenotype similar to memory Tconvs. This phenomenon of “linked sensitization” underscores the challenges of reprogramming a primed immune response toward tolerance and identifies a potential therapeutic checkpoint for synergizing with costimulation blockade to achieve transplant tolerance in the clinic.
Collapse
|
9
|
Molina ML, García-Bernal D, Salinas MD, Rubio G, Aparicio P, Moraleda JM, Martínez S, Valdor R. Chaperone-Mediated Autophagy Ablation in Pericytes Reveals New Glioblastoma Prognostic Markers and Efficient Treatment Against Tumor Progression. Front Cell Dev Biol 2022; 10:797945. [PMID: 35419364 PMCID: PMC8997287 DOI: 10.3389/fcell.2022.797945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
Background: The lack of knowledge of the progression mechanisms of glioblastoma (GB), the most aggressive brain tumor, contributes to the absence of successful therapeutic strategies. Our team has recently demonstrated a crucial new role for chaperone-mediated autophagy (CMA) in pericytes (PC)-acquired immunosuppressive function, which prevents anti-tumor immune responses and facilitates GB progression. The possible impact that GB-induced CMA in PC has on other functions that might be useful for future GB prognosis/treatment, has not been explored yet. Thus, we proposed to analyze the contribution of CMA to other GB-induced changes in PC biology and determine if CMA ablation in PC is a key target mechanism for GB treatment. Methods: Studies of RNA-seq and secretome analysis were done in GB-conditioned PC with and without CMA (from knockout mice for LAMP-2A) and compared to control PC. Different therapeutic strategies in a GB mouse model were compared. Results: We found several gene expression pathways enriched in LAMP2A-KO PC and affected by GB-induced CMA in PC that correlate with our previous findings. Phagosome formation, cellular senescence, focal adhesion and the effector function to promote anti-tumor immune responses were the most affected pathways, revealing a transcriptomic profiling of specific target functions useful for future therapies. In addition, several molecules associated with tumor mechanisms and related to tumor immune responses such as gelsolin, periostin, osteopontin, lumican and vitamin D, were identified in the PC secretome dependent on GB-induced CMA. The CMA ablation in PC with GB cells showed an expected immunogenic phenotype able to phagocyte GB cells and a key strategy to develop future therapeutic strategies against GB tumor progression. A novel intravenous therapy using exofucosylated CMA-deficient PC was efficient to make PC reach the tumor niche and facilitate tumor elimination. Conclusion: Our results corroborate previous findings on the impaired immunogenic function of PC with GB-induced CMA, driving to other altered PC functions and the identifications of new target markers related to the tumor immune responses and useful for GB prognosis/therapy. Our work demonstrates CMA ablation in PC as a key target mechanism to develop a successful therapy against GB progression.
Collapse
Affiliation(s)
- María Luisa Molina
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Virgen de La Arrixaca (IMIB), Murcia, Spain
- Instituto de Neurociencias-University Miguel Hernández (UMH-CSIC), San Juan de Alicante, Spain
| | - David García-Bernal
- Cell Therapy Unit, IMIB, Murcia, Spain
- Cell Therapy and Hematopoietic Transplant Group-Medicine Department, University of Murcia (UMU), Murcia, Spain
- Biochemistry, Molecular Biology, and Immunology Department, UMU, Murcia, Spain
| | - María Dolores Salinas
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Virgen de La Arrixaca (IMIB), Murcia, Spain
- Biochemistry, Molecular Biology, and Immunology Department, UMU, Murcia, Spain
| | - Gonzalo Rubio
- Biochemistry, Molecular Biology, and Immunology Department, UMU, Murcia, Spain
| | - Pedro Aparicio
- Biochemistry, Molecular Biology, and Immunology Department, UMU, Murcia, Spain
| | - José M. Moraleda
- Cell Therapy Unit, IMIB, Murcia, Spain
- Cell Therapy and Hematopoietic Transplant Group-Medicine Department, University of Murcia (UMU), Murcia, Spain
| | - Salvador Martínez
- Instituto de Neurociencias (UMH-CSIC), CIBER de Salud Mental (CIBERSAM-ISCIII) and Alicante Institute for Health and Biomedical Research (ISABIAL), San Juan de Alicante, Spain
| | - Rut Valdor
- Unit of Autophagy, Immune Response and Tolerance in Pathologic Processes, Biomedical Research Institute of Murcia-Virgen de La Arrixaca (IMIB), Murcia, Spain
- Cell Therapy and Hematopoietic Transplant Group-Medicine Department, University of Murcia (UMU), Murcia, Spain
- Biochemistry, Molecular Biology, and Immunology Department, UMU, Murcia, Spain
- *Correspondence: Rut Valdor,
| |
Collapse
|
10
|
Zhao M, Liu Z, Shao F, Zhou W, Chen Z, Xia P, Wang S, Yang P. Communication Pattern Changes Along With Declined IGF1 of Immune Cells in COVID-19 Patients During Disease Progression. Front Immunol 2022; 12:729990. [PMID: 35095832 PMCID: PMC8795624 DOI: 10.3389/fimmu.2021.729990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes the coronavirus disease 2019 (COVID-19) pandemic, represents a global crisis. Most patients developed mild/moderate symptoms, and the status of immune system varied in acute and regulatory stages. The crosstalk between immune cells and the dynamic changes of immune cell contact is rarely described. Here, we analyzed the features of immune response of paired peripheral blood mononuclear cell (PBMC) samples from the same patients during acute and regulatory stages. Consistent with previous reports, both myeloid and T cells turned less inflammatory and less activated at recovery phase. Additionally, the communication patterns of myeloid-T cell and T-B cell are obviously changed. The crosstalk analysis reveals that typical inflammatory cytokines and several chemokines are tightly correlated with the recovery of COVID-19. Intriguingly, the signal transduction of metabolic factor insulin-like growth factor 1 (IGF1) is altered at recovery phase. Furthermore, we confirmed that the serum levels of IGF1 and several inflammatory cytokines are apparently dampened after the negative conversion of SARS-CoV-2 RNA. Thus, these results reveal several potential detection and therapeutic targets that might be used for COVID-19 recovery.
Collapse
Affiliation(s)
- Min Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Shao
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenjing Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhu Chen
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Pengyan Xia
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China.,National Health Commission (NHC) Key Laboratory of Medical Immunology, Peking University, Beijing, China.,Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuo Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Penghui Yang
- National Clinical Research Center for Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
11
|
Lewis EL, Xu R, Beltra JC, Ngiow SF, Cohen J, Telange R, Crane A, Sawinski D, Wherry EJ, Porrett PM. NFAT-dependent and -independent exhaustion circuits program maternal CD8 T cell hypofunction in pregnancy. J Exp Med 2022; 219:e20201599. [PMID: 34882194 PMCID: PMC8666877 DOI: 10.1084/jem.20201599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/09/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Pregnancy is a common immunization event, but the molecular mechanisms and immunological consequences provoked by pregnancy remain largely unknown. We used mouse models and human transplant registry data to reveal that pregnancy induced exhausted CD8 T cells (Preg-TEX), which associated with prolonged allograft survival. Maternal CD8 T cells shared features of exhaustion with CD8 T cells from cancer and chronic infection, including transcriptional down-regulation of ribosomal proteins and up-regulation of TOX and inhibitory receptors. Similar to other models of T cell exhaustion, NFAT-dependent elements of the exhaustion program were induced by fetal antigen in pregnancy, whereas NFAT-independent elements did not require fetal antigen. Despite using conserved molecular circuitry, Preg-TEX cells differed from TEX cells in chronic viral infection with respect to magnitude and dependency of T cell hypofunction on NFAT-independent signals. Altogether, these data reveal the molecular mechanisms and clinical consequences of maternal CD8 T cell hypofunction and identify pregnancy as a previously unappreciated context in which T cell exhaustion may occur.
Collapse
Affiliation(s)
- Emma L. Lewis
- Department of Obstetrics and Gynecology, The University of Pennsylvania, Philadelphia, PA
| | - Rong Xu
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
| | - Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Jordana Cohen
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - Rahul Telange
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL
| | - Alexander Crane
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
| | - Deirdre Sawinski
- Department of Medicine, The University of Pennsylvania, Philadelphia, PA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Paige M. Porrett
- Department of Surgery, The University of Pennsylvania, Philadelphia, PA
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL
- Comprehensive Transplant Institute, The University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
12
|
Sun L, Gang X, Li Z, Zhao X, Zhou T, Zhang S, Wang G. Advances in Understanding the Roles of CD244 (SLAMF4) in Immune Regulation and Associated Diseases. Front Immunol 2021; 12:648182. [PMID: 33841431 PMCID: PMC8024546 DOI: 10.3389/fimmu.2021.648182] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
Proteins in the signaling lymphocytic activating molecule (SLAM) family play crucial roles in regulating the immune system. CD244 (SLAMF4) is a protein in this family, and is also a member of the CD2 subset of the immunoglobulin (Ig) superfamily. CD244 is a cell surface protein expressed by NK cells, T cells, monocytes, eosinophils, myeloid-derived suppressor cells, and dendritic cells. CD244 binds to the ligand CD48 on adjacent cells and transmits stimulatory or inhibitory signals that regulate immune function. In-depth studies reported that CD244 functions in many immune-related diseases, such as autoimmune diseases, infectious diseases, and cancers, and its action is essential for the onset and progression of these diseases. The discovery of these essential roles of CD244 suggests it has potential as a prognostic indicator or therapeutic target. This review describes the molecular structure and function of CD244 and its roles in various immune cells and immune-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol 2020; 109:339-347. [PMID: 32678936 PMCID: PMC7891415 DOI: 10.1002/jlb.3ru0220-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal immune tolerance is essential for the immune system, as it prevents abnormal immune responses to large quantities of antigens from the intestinal lumen, such as antigens from commensal microorganisms, and avoids self‐injury. Intestinal intraepithelial lymphocytes (IELs), a special group of mucosal T lymphocytes, play a significant role in intestinal immune tolerance. To accomplish this, IELs exhibit a high threshold of activation and low reactivity to most antigens from the intestinal lumen. In particular, CD8αα+TCRαβ+ IELs, TCRγδ+ IELs, and CD4+CD8αα+ IELs show great potential for maintaining intestinal immune tolerance and regulating intestinal immunity. However, if the intestinal microenvironment becomes abnormal or intestinal tolerance is broken, IELs may be activated abnormally and become pathogenic.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
14
|
Davenport B, Eberlein J, Nguyen TT, Victorino F, Jhun K, Abuirqeba H, van der Heide V, Heeger P, Homann D. Aging boosts antiviral CD8+T cell memory through improved engagement of diversified recall response determinants. PLoS Pathog 2019; 15:e1008144. [PMID: 31697793 PMCID: PMC6863560 DOI: 10.1371/journal.ppat.1008144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/19/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022] Open
Abstract
The determinants of protective CD8+ memory T cell (CD8+TM) immunity remain incompletely defined and may in fact constitute an evolving agency as aging CD8+TM progressively acquire enhanced rather than impaired recall capacities. Here, we show that old as compared to young antiviral CD8+TM more effectively harness disparate molecular processes (cytokine signaling, trafficking, effector functions, and co-stimulation/inhibition) that in concert confer greater secondary reactivity. The relative reliance on these pathways is contingent on the nature of the secondary challenge (greater for chronic than acute viral infections) and over time, aging CD8+TM re-establish a dependence on the same accessory signals required for effective priming of naïve CD8+T cells in the first place. Thus, our findings reveal a temporal regulation of complementary recall response determinants that is consistent with the recently proposed "rebound model" according to which aging CD8+TM properties are gradually aligned with those of naïve CD8+T cells; our identification of a broadly diversified collection of immunomodulatory targets may further provide a foundation for the potential therapeutic "tuning" of CD8+TM immunity.
Collapse
Affiliation(s)
- Bennett Davenport
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jens Eberlein
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Tom T. Nguyen
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Francisco Victorino
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
| | - Kevin Jhun
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Haedar Abuirqeba
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Verena van der Heide
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Peter Heeger
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Dirk Homann
- Department of Anesthesiology & Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, United States of America
- Integrated Department of Immunology, University of Colorado Denver and National Jewish Health, Denver, Colorado, United States of America
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Gamradt P, Laoubi L, Nosbaum A, Mutez V, Lenief V, Grande S, Redoulès D, Schmitt AM, Nicolas JF, Vocanson M. Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J Allergy Clin Immunol 2019; 143:2147-2157.e9. [DOI: 10.1016/j.jaci.2018.11.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/13/2018] [Accepted: 11/16/2018] [Indexed: 01/08/2023]
|
16
|
Co-signal Molecules in T-Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:3-23. [DOI: 10.1007/978-981-32-9717-3_1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|