1
|
Meng F, Xing H, Li J, Liu Y, Tang L, Chen Z, Jia X, Yin Z, Yi J, Lu M, Gao X, Zheng A. Fc-empowered exosomes with superior epithelial layer transmission and lung distribution ability for pulmonary vaccination. Bioact Mater 2024; 42:573-586. [PMID: 39308551 PMCID: PMC11416621 DOI: 10.1016/j.bioactmat.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Mucosal vaccines offer potential benefits over parenteral vaccines for they can trigger both systemic immune protection and immune responses at the predominant sites of pathogen infection. However, the defense function of mucosal barrier remains a challenge for vaccines to overcome. Here, we show that surface modification of exosomes with the fragment crystallizable (Fc) part from IgG can deliver the receptor-binding domain (RBD) of SARS-CoV-2 to cross mucosal epithelial layer and permeate into peripheral lung through neonatal Fc receptor (FcRn) mediated transcytosis. The exosomes F-L-R-Exo are generated by genetically engineered dendritic cells, in which a fusion protein Fc-Lamp2b-RBD is expressed and anchored on the membrane. After intratracheally administration, F-L-R-Exo is able to induce a high level of RBD-specific IgG and IgA antibodies in the animals' lungs. Furthermore, potent Th1 immune-biased T cell responses were also observed in both systemic and mucosal immune responses. F-L-R-Exo can protect the mice from SARS-CoV-2 pseudovirus infection after a challenge. These findings hold great promise for the development of a novel respiratory mucosal vaccine approach.
Collapse
Affiliation(s)
- Fan Meng
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Haonan Xing
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jingru Li
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yingqi Liu
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Li Tang
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zehong Chen
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Xiran Jia
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Zenglin Yin
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jing Yi
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Mei Lu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering Beijing Institute of Technology, Beijing, 100081, China
| | - Xiuli Gao
- School of Pharmaceutical Sciences & State Key Laboratory of Functions and Applications of Medicinal Plants & Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aiping Zheng
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| |
Collapse
|
2
|
Alekseeva ON, Hoa LT, Vorobyev PO, Kochetkov DV, Gumennaya YD, Naberezhnaya ER, Chuvashov DO, Ivanov AV, Chumakov PM, Lipatova AV. Receptors and Host Factors for Enterovirus Infection: Implications for Cancer Therapy. Cancers (Basel) 2024; 16:3139. [PMID: 39335111 PMCID: PMC11430599 DOI: 10.3390/cancers16183139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Enteroviruses, with their diverse clinical manifestations ranging from mild or asymptomatic infections to severe diseases such as poliomyelitis and viral myocarditis, present a public health threat. However, they can also be used as oncolytic agents. This review shows the intricate relationship between enteroviruses and host cell factors. Enteroviruses utilize specific receptors and coreceptors for cell entry that are critical for infection and subsequent viral replication. These receptors, many of which are glycoproteins, facilitate virus binding, capsid destabilization, and internalization into cells, and their expression defines virus tropism towards various types of cells. Since enteroviruses can exploit different receptors, they have high oncolytic potential for personalized cancer therapy, as exemplified by the antitumor activity of certain enterovirus strains including the bioselected non-pathogenic Echovirus type 7/Rigvir, approved for melanoma treatment. Dissecting the roles of individual receptors in the entry of enteroviruses can provide valuable insights into their potential in cancer therapy. This review discusses the application of gene-targeting techniques such as CRISPR/Cas9 technology to investigate the impact of the loss of a particular receptor on the attachment of the virus and its subsequent internalization. It also summarizes the data on their expression in various types of cancer. By understanding how enteroviruses interact with specific cellular receptors, researchers can develop more effective regimens of treatment, offering hope for more targeted and efficient therapeutic strategies.
Collapse
Affiliation(s)
- Olga N Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Le T Hoa
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Yana D Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | | | - Denis O Chuvashov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Mandal G, Pradhan S. B cell responses and antibody-based therapeutic perspectives in human cancers. Cancer Rep (Hoboken) 2024; 7:e2056. [PMID: 38522010 PMCID: PMC10961090 DOI: 10.1002/cnr2.2056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Immuno-oncology has been focused on T cell-centric approaches until the field recently started appreciating the importance of tumor-reactive antibody production by tumor-infiltrating plasma B cells, and the necessity of developing novel therapeutic antibodies for the treatment of different cancers. RECENT FINDINGS B lymphocytes often infiltrate solid tumors and the extent of B cell infiltration normally correlates with stronger T cell responses while generating humoral responses against malignant progression by producing tumor antigens-reactive antibodies that bind and coat the tumor cells and promote cytotoxic effector mechanisms, reiterating the fact that the adaptive immune system works by coordinated humoral and cellular immune responses. Isotypes, magnitude, and the effector functions of antibodies produced by the B cells within the tumor environment differ among cancer types. Interestingly, apart from binding with specific tumor antigens, antibodies produced by tumor-infiltrating B cells could bind to some non-specific receptors, peculiarly expressed by cancer cells. Antibody-based immunotherapies have revolutionized the modalities of cancer treatment across the world but are still limited against hematological malignancies and a few types of solid tumor cancers with a restricted number of targets, which necessitates the expansion of the field to have newer effective targeted antibody therapeutics. CONCLUSION Here, we discuss about recent understanding of the protective spontaneous antitumor humoral responses in human cancers, with an emphasis on the advancement and future perspectives of antibody-based immunotherapies in cancer.
Collapse
Affiliation(s)
- Gunjan Mandal
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| | - Suchismita Pradhan
- Division of Cancer BiologyDBT‐Institute of Life SciencesBhubaneswarIndia
| |
Collapse
|
4
|
Pyzik M, Kozicky LK, Gandhi AK, Blumberg RS. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol 2023; 23:415-432. [PMID: 36726033 PMCID: PMC9891766 DOI: 10.1038/s41577-022-00821-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 02/03/2023]
Abstract
IgGs are essential soluble components of the adaptive immune response that evolved to protect the body from infection. Compared with other immunoglobulins, the role of IgGs is distinguished and enhanced by their high circulating levels, long half-life and ability to transfer from mother to offspring, properties that are conferred by interactions with neonatal Fc receptor (FcRn). FcRn binds to the Fc portion of IgGs in a pH-dependent manner and protects them from intracellular degradation. It also allows their transport across polarized cells that separate tissue compartments, such as the endothelium and epithelium. Further, it is becoming apparent that FcRn functions to potentiate cellular immune responses when IgGs, bound to their antigens, form IgG immune complexes. Besides the protective role of IgG, IgG autoantibodies are associated with numerous pathological conditions. As such, FcRn blockade is a novel and effective strategy to reduce circulating levels of pathogenic IgG autoantibodies and curtail IgG-mediated diseases, with several FcRn-blocking strategies on the path to therapeutic use. Here, we describe the current state of knowledge of FcRn-IgG immunobiology, with an emphasis on the functional and pathological aspects, and an overview of FcRn-targeted therapy development.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lisa K Kozicky
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amit K Gandhi
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Digestive Diseases Center, Boston, MA, USA.
| |
Collapse
|
5
|
Sedney CJ, Harvill ET. The Neonatal Immune System and Respiratory Pathogens. Microorganisms 2023; 11:1597. [PMID: 37375099 PMCID: PMC10301501 DOI: 10.3390/microorganisms11061597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Neonates are more susceptible to some pathogens, particularly those that cause infection in the respiratory tract. This is often attributed to an incompletely developed immune system, but recent work demonstrates effective neonatal immune responses to some infection. The emerging view is that neonates have a distinctly different immune response that is well-adapted to deal with unique immunological challenges of the transition from a relatively sterile uterus to a microbe-rich world, tending to suppress potentially dangerous inflammatory responses. Problematically, few animal models allow a mechanistic examination of the roles and effects of various immune functions in this critical transition period. This limits our understanding of neonatal immunity, and therefore our ability to rationally design and develop vaccines and therapeutics to best protect newborns. This review summarizes what is known of the neonatal immune system, focusing on protection against respiratory pathogens and describes challenges of various animal models. Highlighting recent advances in the mouse model, we identify knowledge gaps to be addressed.
Collapse
Affiliation(s)
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
6
|
Jiang H, Fu H, Min T, Hu P, Shi J. Magnetic-Manipulated NK Cell Proliferation and Activation Enhance Immunotherapy of Orthotopic Liver Cancer. J Am Chem Soc 2023. [PMID: 37262421 DOI: 10.1021/jacs.3c02049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The immunotherapy of deep solid tumors in the human body, such as liver cancer, still faces great challenges, especially the inactivation and insufficient infiltration of immune cells in solid tumor microenvironment. Natural killer (NK) cells are gaining ever-increasing attention owing to their unique features and are expected to play an important role in the liver cancer immunotherapy. However, NK cells are severely insufficient and inactivated in solid liver tumor due to the highly immunosuppressive intratumor microenvironment, resulting in poor clinical therapeutic efficacy. Herein, we propose a mild magnetocaloric regulation approach using a magnetogenetic nanoplatform MNPs@PEI-FA/pDNA (MPFD), which is synthesized by loading a heat-inducible plasmid DNA (HSP70-IL-2-EGFP) on polyethyleneimine (PEI)- and folic acid (FA)-modified ZnCoFe2O4@ZnMnFe2O4 magnetic nanoparticles (MNPs) to promote the proliferation and activation of tumor-infiltrating NK cells under magnetic manipulation without the limitation of penetration depth for orthotopic liver cancer immunotherapy. The magnetothermally responsive MPFD serves as a magnetism-heat nanotransducer to induce the gene transcription of IL-2 cytokine in orthotopic liver tumor for NK cell proliferation and activation. Both in vitro and in vivo results demonstrate that the remote mild magnetocaloric regulation (∼40 °C) by MPFD initiates the HSP70 promoter to trigger the overexpression of IL-2 cytokine for subsequent secretion, leading to in situ expansion and activation of tumor-infiltrating NK cells through the IL-2/IL-2 receptor (IL-2R) pathways and the resulting prominent tumor inhibition. This work not only evidences the great potential of magnetogenetic nanoplatform but also reveals the underlying proliferation and activation mechanism of NK cells in liver cancer treatment by magnetogenetic nanoplatform.
Collapse
Affiliation(s)
- Han Jiang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Fu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
| | - Tao Min
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Hu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
7
|
Wang MM, Koskela SA, Mehmood A, Langguth M, Maranou E, Figueiredo CR. Epigenetic control of CD1D expression as a mechanism of resistance to immune checkpoint therapy in poorly immunogenic melanomas. Front Immunol 2023; 14:1152228. [PMID: 37077920 PMCID: PMC10106630 DOI: 10.3389/fimmu.2023.1152228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Immune Checkpoint Therapies (ICT) have revolutionized the treatment of metastatic melanoma. However, only a subset of patients reaches complete responses. Deficient β2-microglobulin (β2M) expression impacts antigen presentation to T cells, leading to ICT resistance. Here, we investigate alternative β2M-correlated biomarkers that associate with ICT resistance. We shortlisted immune biomarkers interacting with human β2M using the STRING database. Next, we profiled the transcriptomic expression of these biomarkers in association with clinical and survival outcomes in the melanoma GDC-TCGA-SKCM dataset and a collection of publicly available metastatic melanoma cohorts treated with ICT (anti-PD1). Epigenetic control of identified biomarkers was interrogated using the Illumina Human Methylation 450 dataset from the melanoma GDC-TCGA-SKCM study. We show that β2M associates with CD1d, CD1b, and FCGRT at the protein level. Co-expression and correlation profile of B2M with CD1D, CD1B, and FCGRT dissociates in melanoma patients following B2M expression loss. Lower CD1D expression is typically found in patients with poor survival outcomes from the GDC-TCGA-SKCM dataset, in patients not responding to anti-PD1 immunotherapies, and in a resistant anti-PD1 pre-clinical model. Immune cell abundance study reveals that B2M and CD1D are both enriched in tumor cells and dendritic cells from patients responding to anti-PD1 immunotherapies. These patients also show increased levels of natural killer T (NKT) cell signatures in the tumor microenvironment (TME). Methylation reactions in the TME of melanoma impact the expression of B2M and SPI1, which controls CD1D expression. These findings suggest that epigenetic changes in the TME of melanoma may impact β2M and CD1d-mediated functions, such as antigen presentation for T cells and NKT cells. Our hypothesis is grounded in comprehensive bioinformatic analyses of a large transcriptomic dataset from four clinical cohorts and mouse models. It will benefit from further development using well-established functional immune assays to support understanding the molecular processes leading to epigenetic control of β2M and CD1d. This research line may lead to the rational development of new combinatorial treatments for metastatic melanoma patients that poorly respond to ICT.
Collapse
Affiliation(s)
- Mona Meng Wang
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore
| | - Saara A. Koskela
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Arfa Mehmood
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Miriam Langguth
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Eleftheria Maranou
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
| | - Carlos R. Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- *Correspondence: Carlos R. Figueiredo,
| |
Collapse
|
8
|
Zhu W, Wu J, Huang J, Xiao D, Li F, Wu C, Li X, Zeng H, Zheng J, Lai W, Wen X. Multi-omics analysis reveals a macrophage-related marker gene signature for prognostic prediction, immune landscape, genomic heterogeneity, and drug choices in prostate cancer. Front Immunol 2023; 14:1122670. [PMID: 37122696 PMCID: PMC10140525 DOI: 10.3389/fimmu.2023.1122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Macrophages are components of the innate immune system and can play an anti-tumor or pro-tumor role in the tumor microenvironment owing to their high heterogeneity and plasticity. Meanwhile, prostate cancer (PCa) is an immune-sensitive tumor, making it essential to investigate the value of macrophage-associated networks in its prognosis and treatment. Methods Macrophage-related marker genes (MRMGs) were identified through the comprehensive analysis of single-cell sequencing data from GSE141445 and the impact of macrophages on PCa was evaluated using consensus clustering of MRMGs in the TCGA database. Subsequently, a macrophage-related marker gene prognostic signature (MRMGPS) was constructed by LASSO-Cox regression analysis and grouped based on the median risk score. The predictive ability of MRMGPS was verified by experiments, survival analysis, and nomogram in the TCGA cohort and GEO-Merged cohort. Additionally, immune landscape, genomic heterogeneity, tumor stemness, drug sensitivity, and molecular docking were conducted to explore the relationship between MRMGPS and the tumor immune microenvironment, therapeutic response, and drug selection. Results We identified 307 MRMGs and verified that macrophages had a strong influence on the development and progression of PCa. Furthermore, we showed that the MRMGPS constructed with 9 genes and the predictive nomogram had excellent predictive ability in both the TCGA and GEO-Merged cohorts. More importantly, we also found the close relationship between MRMGPS and the tumor immune microenvironment, therapeutic response, and drug selection by multi-omics analysis. Discussion Our study reveals the application value of MRMGPS in predicting the prognosis of PCa patients. It also provides a novel perspective and theoretical basis for immune research and drug choices for PCa.
Collapse
Affiliation(s)
- Weian Zhu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianjie Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiongduan Huang
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongming Xiao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fengao Li
- Department of Urology, Anqing First People’s Hospital of Anhui Medical University, Anqing, China
| | - Chenglun Wu
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Department of Health Care, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hengda Zeng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zheng
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenjie Lai
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xingqiao Wen, ; Wenjie Lai,
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xingqiao Wen, ; Wenjie Lai,
| |
Collapse
|
9
|
Lamamy J, Larue A, Mariot J, Dhommée C, Demattei MV, Delneste Y, Gouilleux-Gruart V. The neonatal Fc receptor expression during macrophage differentiation is related to autophagy. Front Immunol 2022; 13:1054425. [PMID: 36389739 PMCID: PMC9663809 DOI: 10.3389/fimmu.2022.1054425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
The neonatal Fc receptor (FcRn) plays a central role in recycling and biodistributing immunoglobulin G. FcRn is also involved in many physiological immune functions as well as pathological immune responses in cancer or autoimmune diseases. Low levels of FcRn in tumor cells and the microenvironment is associated with poor prognosis in non-small cell lung cancers. Among cells that are present in the tumor microenvironment, macrophages express high levels of FcRn. Macrophages are involved in these pathophysiological contexts by their dual differentiation states of pro- or anti-inflammatory macrophages. However, variations in FcRn protein expression have not been described in macrophage subtypes. In this work, we studied FcRn expression in an in vitro model of pro- and anti-inflammatory macrophage differentiation. We demonstrated an inverse relation between FcRn protein and mRNA expression in macrophage populations. Autophagy, which is involved in protein degradation and acquisition of phagocytic function in macrophages, participated in regulating FcRn levels. Intravenous immunoglobulin protected FcRn against autophagosome degradation in anti-inflammatory macrophages. Our data demonstrate that autophagy participates in regulating FcRn expression in pro- and anti-inflammatory macrophages. This finding raises new questions concerning the regulation of FcRn in immune functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yves Delneste
- CRCI2NA, SFR ICAT, Inserm, CNRS, Angers and Nantes University, Angers, France
- Laboratory of Immunology and Allergology, CHU d’Angers, Angers, France
| | - Valérie Gouilleux-Gruart
- EA 7501 GICC, Tours University, Tours, France
- Laboratory of Immunology, CHU de Tours, Tours, France
- *Correspondence: Valérie Gouilleux-Gruart,
| |
Collapse
|
10
|
Yang R, Zhang W, Shang X, Chen H, Mu X, Zhang Y, Zheng Q, Wang X, Liu Y. Neutrophil-related genes predict prognosis and response to immune checkpoint inhibitors in bladder cancer. Front Pharmacol 2022; 13:1013672. [PMID: 36339597 PMCID: PMC9635818 DOI: 10.3389/fphar.2022.1013672] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/12/2022] [Indexed: 12/20/2023] Open
Abstract
Neutrophils play a key role in the occurrence and development of cancer. However, the relationship between neutrophils and cancer prognosis remains unclear due to their great plasticity and diversity. To explore the effects of neutrophils on the clinical outcome of bladder cancer, we acquired and analyzed gene expression data and clinical information of bladder cancer patients from IMvigor210 cohort and The Cancer Genome Atlas dataset (TCGA) database. We established a neutrophil-based prognostic model incorporating five neutrophil-related genes (EMR3, VNN1, FCGRT, HIST1H2BC, and MX1) and the predictive value of the model was validated in both an internal and an external validation cohort. Multivariate Cox regression analysis further proved that the model remained an independent prognostic factor for overall survival and a nomogram was constructed for clinical practice. Additionally, FCGRT was identified as the key neutrophil-related gene linked to an adverse prognosis of bladder cancer. Up-regulation of FCGRT indicated activated cancer metabolism, immunosuppressive tumor environment, and dysregulated functional status of immune cells. FCGRT overexpression was also correlated with decreased expression of PD-L1 and low levels of tumor mutation burden (TMB). FCGRT predicted a poor response to immunotherapy and had a close correlation with chemotherapy sensitivity. Taken together, a novel prognostic model was developed based on the expression level of neutrophil-related genes. FCGRT served as a promising candidate biomarker for anti-cancer drug response, which may contribute to individualized prognostic prediction and may contribute to clinical decision-making.
Collapse
Affiliation(s)
- Rui Yang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Wengang Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Xiaoling Shang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Hang Chen
- School of Basic Medical Sciences, Shandong First Medical University, Jinan, China
| | - Xin Mu
- Department of Medical Imaging Center, Third People’s Hospital of Jinan, Jinan, China
| | - Yuqing Zhang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Qi Zheng
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, China
| |
Collapse
|
11
|
Hameedat F, Pizarroso NA, Teixeira N, Pinto S, Sarmento B. Functionalized FcRn-targeted nanosystems for oral drug delivery: A new approach to colorectal cancer treatment. Eur J Pharm Sci 2022; 176:106259. [PMID: 35842140 DOI: 10.1016/j.ejps.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 01/17/2023]
Abstract
Colorectal cancer (CRC) is the second type of cancer with the highest lethality rate. The current chemotherapy to treat CRC causes systemic toxicity, unsatisfying response rate, and low tumor-specific selectivity, which is mainly administered by invasive routes. The chronic and aggressive nature of cancers may require long-term regimens. Thus, the oral route is preferred. However, the orally administered drugs still need to surpass the harsh environment of the gastrointestinal tract and the biological barriers. Nanotechnology is a promising strategy to overcome the oral route limitations. Targeted nanoparticle systems decorated with functional groups can enhance the delivery of anticancer agents to tumor sites. It is described in the literature that the neonatal Fc receptor (FcRn) is expressed in cancer tissue and overexpressed in CRC epithelial cells. However, the impact of FcRn-targeted nanosystems in the treatment of CRC has been poorly investigated. This review article discusses the current knowledge on the involvement of the FcRn in CRC, as well as to critically assess its relevance as a target for further localization of oral nanocarriers in CRC tumor cells. Finally, a brief overview of cancer therapeutics, strategies to design the nanoparticles of anticancer drugs and a review of decorated nanoparticles with FcRn moieties are explored.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, France; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Nuria A Pizarroso
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal
| | - Natália Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira, 228, Porto 4150-180, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-393, Portugal; CESPU - IUCS, Rua Central de Gandra 1317, Gandra 4585-116, Portugal.
| |
Collapse
|
12
|
Rudnik-Jansen I, Howard KA. FcRn expression in cancer: Mechanistic basis and therapeutic opportunities. J Control Release 2021; 337:248-257. [PMID: 34245786 DOI: 10.1016/j.jconrel.2021.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023]
Abstract
There is an urgent need to identify new cellular targets to expand the repertoire, potency and safety of cancer therapeutics. Neonatal Fc Receptor (FcRn)-driven cellular recycling plays a predominant role in the prolonged serum half-life of human serum albumin (HSA) and immunoglobulin G (IgG) exploited in long-acting cancer drug designs. FcRn-mediated HSA and IgG uptake in epithelial cells and dendritic cell antigen presentation offers new therapeutic opportunities beyond half-life extension. Altered FcRn expression in solid tumours accounting for HSA catabolism or recycling supports a role for FcRn in tumour metabolism and growth. This review addresses the mechanistic basis for different FcRn expression profiles observed in cancer and exploitation for targeted drug delivery. Furthermore, the review highlights FcRn-mediated immunosurveillance and immune therapy. FcRn offers a potential attractive cancer target but in-depth understanding of role and expression profiles during cancer pathogenesis is required for tailoring targeted drug designs.
Collapse
Affiliation(s)
- Imke Rudnik-Jansen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
13
|
CAR-NK Cells in the Treatment of Solid Tumors. Int J Mol Sci 2021; 22:ijms22115899. [PMID: 34072732 PMCID: PMC8197981 DOI: 10.3390/ijms22115899] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
CAR-T (chimeric antigen receptor T) cells have emerged as a milestone in the treatment of patients with refractory B-cell neoplasms. However, despite having unprecedented efficacy against hematological malignancies, the treatment is far from flawless. Its greatest drawbacks arise from a challenging and expensive production process, strict patient eligibility criteria and serious toxicity profile. One possible solution, supported by robust research, is the replacement of T lymphocytes with NK cells for CAR expression. NK cells seem to be an attractive vehicle for CAR expression as they can be derived from multiple sources and safely infused regardless of donor-patient matching, which greatly reduces the cost of the treatment. CAR-NK cells are known to be effective against hematological malignancies, and a growing number of preclinical findings indicate that they have activity against non-hematological neoplasms. Here, we present a thorough overview of the current state of knowledge regarding the use of CAR-NK cells in treating various solid tumors.
Collapse
|
14
|
Sellner J, Sitte HH, Rommer PS. Targeting interleukin-6 to treat neuromyelitis optica spectrum disorders: Implications from immunology, the FcRn pathway and clinical experience. Drug Discov Today 2021; 26:1591-1601. [PMID: 33781948 DOI: 10.1016/j.drudis.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/24/2021] [Accepted: 03/19/2021] [Indexed: 12/22/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a rare disease of the central nervous system (CNS) that is associated with poor outcomes for patients. Until recently, when complement inhibitors were approved, there was no approved therapy. Most recently, clinical trials of interleukin-6 (IL-6) blockade showed a therapeutic benefit for NMOSD. In this review, we introduce the immunological basis of IL-6 blockade in NMOSD and summarize current knowledge about the clinical use of the IL-6 receptor inhibitors tocilizumab and satralizumab. The aim of extending the half-life of monoclonal antibodies (mAbs) has been actualized by successful clinical translation for Satralizumab, achieved via the neonatal Fc receptor (FcRn) pathway. The basic principles of FcRn are highlighted in this review together with the potential therapeutic benefits of this emerging technology.
Collapse
Affiliation(s)
- Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria; Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria; Neuroimmunological Section, Department of Neurology, University of Rostock, Rostock, Germany.
| |
Collapse
|
15
|
Qi T, Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci 2021; 22:3048. [PMID: 33802650 PMCID: PMC8002405 DOI: 10.3390/ijms22063048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
As an essential modulator of IgG disposition, the neonatal Fc receptor (FcRn) governs the pharmacokinetics and functions many therapeutic modalities. In this review, we thoroughly reexamine the hitherto elucidated biological and thermodynamic properties of FcRn to provide context for our assessment of more recent advances, which covers antigen-binding fragment (Fab) determinants of FcRn affinity, transgenic preclinical models, and FcRn targeting as an immune-complex (IC)-clearing strategy. We further comment on therapeutic antibodies authorized for treating SARS-CoV-2 (bamlanivimab, casirivimab, and imdevimab) and evaluate their potential to saturate FcRn-mediated recycling. Finally, we discuss modeling and simulation studies that probe the quantitative relationship between in vivo IgG persistence and in vitro FcRn binding, emphasizing the importance of endosomal transit parameters.
Collapse
Affiliation(s)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA;
| |
Collapse
|
16
|
Zhang M, Wang X, Chen X, Guo F, Hong J. Prognostic Value of a Stemness Index-Associated Signature in Primary Lower-Grade Glioma. Front Genet 2020; 11:441. [PMID: 32431729 PMCID: PMC7216823 DOI: 10.3389/fgene.2020.00441] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
Objective As a prevalent and infiltrative cancer type of the central nervous system, the prognosis of lower-grade glioma (LGG) in adults is highly heterogeneous. Recent evidence has demonstrated the prognostic value of the mRNA expression-based stemness index (mRNAsi) in LGG. Our aim was to develop a stemness index-based signature (SI-signature) for risk stratification and survival prediction. Methods Differentially expressed genes (DEGs) between LGG in the Cancer Genome Atlas (TCGA) and normal brain tissue samples from the Genotype-Tissue Expression (GTEx) project were screened out, and the weighted gene correlation network analysis (WGCNA) was employed to identify the mRNAsi-related gene sets. Meanwhile, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed for the functional annotation of the key genes. ESTIMATE was used to calculate tumor purity for acquiring the correct mRNAsi. Differences in overall survival (OS) between the high and low mRNAsi (corrected mRNAsi) groups were compared using the Kaplan Meier analysis. By combining the Lasso regression with univariate and multivariate Cox regression, the SI-signature was constructed and validated using the Chinese Glioma Genome Atlas (CGGA). Results There was a significant difference in OS between the high and low mRNAsi groups, which was also observed in the two corrected mRNAsi groups. Based on threshold limits, 86 DEGs were most significantly associated with mRNAsi via WGCNA. Seven genes (ADAP2, ALOX5AP, APOBEC3C, FCGRT, GNG5, LRRC25, and SP100) were selected to establish a risk signature for primary LGG. The ROC curves showed a fair performance in survival prediction in both the TCGA and the CGGA validation cohorts. Univariate and multivariate Cox regression revealed that the risk group was an independent prognostic factor in primary LGG. The nomogram was developed based on clinical parameters integrated with the risk signature, and its accuracy for predicting 3- and 5-years survival was assessed by the concordance index, the area under the curve of the time-dependent receiver operating characteristics curve, and calibration curves. Conclusion The SI-signature with seven genes could serve as an independent predictor, and suggests the importance of stemness features in risk stratification and survival prediction in primary LGG.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fuzhou, China.,Fujian Medical University Union Hospital, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoping Chen
- Department of Statistics, College of Mathematics and Informatics & FJKLMAA, Fujian Normal University, Fuzhou, China
| | - Feibao Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Key Laboratory of Radiation Biology (Fujian Medical University), Fujian Province University, Fuzhou, China.,Fujian Key Laboratory of Individualized Active Immunotherapy, Fuzhou, China
| |
Collapse
|
17
|
Cadena Castaneda D, Brachet G, Goupille C, Ouldamer L, Gouilleux-Gruart V. The neonatal Fc receptor in cancer FcRn in cancer. Cancer Med 2020; 9:4736-4742. [PMID: 32368865 PMCID: PMC7333860 DOI: 10.1002/cam4.3067] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Since the neonatal IgG Fc receptor (FcRn) was discovered, it was found to be involved in immunoglobulin recycling and biodistribution, immune complexes routing, antigen presentation, humoral immune response, and cancer immunosurveillance. The latest data show that FcRn plays a part in cancer pathophysiology. In various types of cancers, such as lung and colorectal cancer, FcRn has been described as an early marker for prognosis. Dysregulation of FcRn expression by cancer cells allows them to increase their metabolism, and this process could be exploited for passive targeting of cytotoxic drugs. However, the roles of this receptor depend on whether the studied cell population is the tumor tissue or the infiltrating cells, bringing forward the need for further studies.
Collapse
Affiliation(s)
| | | | - Caroline Goupille
- CHRU de Tours, Tours, France.,Université de Tours, INSERM, Tours, France
| | - Lobna Ouldamer
- CHRU de Tours, Tours, France.,Université de Tours, INSERM, Tours, France
| | | |
Collapse
|
18
|
FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. J Control Release 2020; 322:53-63. [PMID: 32145268 DOI: 10.1016/j.jconrel.2020.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 11/21/2022]
Abstract
Albumin accumulation in tumours could reflect a role of albumin in transport of endogenous nutrient cargos required for cellular growth and not just a suggested source of amino acids; a role driven by albumin engagement with its cognate cellular recycling neonatal Fc receptor. We investigate the hypothesis that albumin cellular recruitment is increased by higher human FcRn (hFcRn) expression in human cancer tissue that provides the mechanistic basis for exploitation in albumin-based drug designs engineered to optimise this process. Eight out of ten different human cancer tissue types screened for hFcRn expression by immunohistochemistry (310 samples) exhibited significantly higher hFcRn expression compared to healthy tissues. Accelerated tumour growth over 28 days in mice inoculated with hFcRn-expressing HT-29 human colorectal cancer cell xenografts, compared to CRISPR/Cas9 hFcRn-knockout HT-29, suggests a hFcRn-mediated tumour growth effect. Direct correlation between hFcRn expression and albumin recycling supports hFcRn-mediated diversion of albumin from lysosomal degradation. Two-fold increase in accumulation of fluorescent labelled high-binding hFcRn albumin, compared to wild type albumin, in luciferase MDA-MB-231-Luc-D3H2LN breast cancer xenografts was shown. This work identifies overexpression of hFcRn in several human cancer types with mechanistic data suggesting hFcRn-driven albumin recruitment for increased cellular growth that has the potential to be exploited with high hFcRn-binding albumin variants for targeted therapies.
Collapse
|
19
|
Liu S, Dhar P, Wu JD. NK Cell Plasticity in Cancer. J Clin Med 2019; 8:jcm8091492. [PMID: 31546818 PMCID: PMC6780970 DOI: 10.3390/jcm8091492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are critical immune components in controlling tumor growth and dissemination. Given their innate capacity to eliminate tumor cells without prior sensitization, NK-based therapies for cancer are actively pursued pre-clinically and clinically. However, recent data suggest that tumors could induce functional alterations in NK cells, polarizing them to tumor-promoting phenotypes. The potential functional plasticity of NK cells in the context of tumors could lead to undesirable outcomes of NK-cell based therapies. In this review, we will summarize to-date evidence of tumor-associated NK cell plasticity and provide our insights for future investigations and therapy development.
Collapse
Affiliation(s)
- Sizhe Liu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Payal Dhar
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Jennifer D Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Robert Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
Pyzik M, Sand KMK, Hubbard JJ, Andersen JT, Sandlie I, Blumberg RS. The Neonatal Fc Receptor (FcRn): A Misnomer? Front Immunol 2019; 10:1540. [PMID: 31354709 PMCID: PMC6636548 DOI: 10.3389/fimmu.2019.01540] [Citation(s) in RCA: 282] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies are essential components of an adaptive immune response. Immunoglobulin G (IgG) is the most common type of antibody found in circulation and extracellular fluids. Although IgG alone can directly protect the body from infection through the activities of its antigen binding region, the majority of IgG immune functions are mediated via proteins and receptors expressed by specialized cell subsets that bind to the fragment crystallizable (Fc) region of IgG. Fc gamma (γ) receptors (FcγR) belong to a broad family of proteins that presently include classical membrane-bound surface receptors as well as atypical intracellular receptors and cytoplasmic glycoproteins. Among the atypical FcγRs, the neonatal Fc receptor (FcRn) has increasingly gained notoriety given its intimate influence on IgG biology and its ability to also bind to albumin. FcRn functions as a recycling or transcytosis receptor that is responsible for maintaining IgG and albumin in the circulation, and bidirectionally transporting these two ligands across polarized cellular barriers. More recently, it has been appreciated that FcRn acts as an immune receptor by interacting with and facilitating antigen presentation of peptides derived from IgG immune complexes (IC). Here we review FcRn biology and focus on newer advances including how emerging FcRn-targeted therapies may affect the immune responses to IgG and IgG IC.
Collapse
Affiliation(s)
- Michal Pyzik
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Kine M K Sand
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jonathan J Hubbard
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Digestive Diseases Center, Boston, MA, United States
| |
Collapse
|