1
|
Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, Hornicek FJ, Hare JM. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024; 13:959-978. [PMID: 39226104 PMCID: PMC11465182 DOI: 10.1093/stcltm/szae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.
Collapse
Affiliation(s)
- Justin Trapana
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jonathan Weinerman
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Danny Lee
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Anil Sedani
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - David Constantinescu
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francis J Hornicek
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
2
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
3
|
Hosseini S, Mahmoudi M, Rezaieyazdi Z, Shapouri-Moghaddam A, Hosseinzadeh A, Arab FL, Tabasi NS, Esmaeili SA. Lupus mice derived mesenchymal stromal cells: Beneficial or detrimental on SLE disease outcome. Int Immunopharmacol 2024; 126:111306. [PMID: 38039717 DOI: 10.1016/j.intimp.2023.111306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Systemic Lupus Erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear genes, deposition of immune complexes, and autoimmune T cells, through which, tissue damage would ultimately occur. Furthermore, loss of immune tolerance and imbalance of Th1/Th2 cells in addition to Th17/Treg are contributed to the pathogenesis of SLE. Mesenchymal stromal cells (MSCs) infusion is a potential therapy for SLE disease. Despite a majority of SLE patients achieving clinical remission after allogeneic MSC infusion from healthy individuals, SLE patients have less benefited from autologous MSC infusion, justifying the probable compromised function of SLE patients-derived MSCs. In this study, we aim to further investigate the potential immunoregulatory mechanisms in which mesenchymal stromal cells derived from pristane-induced lupus mice, following injection into healthy and lupus mice, exert their possible effects on the lupus process. METHOD 40 female Balb/c mice aged 3 weeks were purchased and randomly divided into six groups. First, lupus disease was induced into the lupus groups by intraperitoneal injection of pristane and then the mice were surveyed for 6 months. The body weight, anti-dsDNA autoantibody levels, serum creatinine, and Blood Urea Nitrogen (BUN) levels were measured in two-month intervals. After 6 months, the group of lupus mice was sacrificed, and lupus MSCs were isolated. Two months later, cultured lupus MSCs were intravenously injected into two groups of healthy and lupus mice. After two months, the mice were euthanized and the kidneys of each group were examined histologically by hematoxylin & eosin (H&E) staining and the immunofluorescence method was also performed to evaluate IgG and C3 deposition. The frequency of splenic Th1, Th2, Th17, and Treg cells was measured by flow cytometry. Moreover, the cytokine levels of IFN-γ, IL-4, IL-17, and TGF-β in sera were measured by ELISA method. RESULTS Our results showed that the induction of lupus disease by pristane in Balb/c mice caused the formation of lipogranuloma, increased levels of anti-dsDNA autoantibodies, and impaired renal function in all pristane-induced lupus groups. In addition, the injection of lupus mesenchymal stromal cells (L-MSC) into healthy and lupus mice led to a further rise in anti-dsDNA serum levels, IgG and C3 deposition, and further dysfunction of mice renal tissue. Also, the flow cytometry results implicated that compared to the control groups, splenic Th1, Th2, and Th17 inflammatory cell subtypes and their secreted cytokines (IFN-γ, IL-4, and IL-17) in the sera of healthy and lupus mice were increased after the intake of L-MSC. Additionally, the splenic Treg cells were also significantly increased in the lupus mice receiving L-MSC. However, a decrease in serum levels of TGF-β cytokine was observed in healthy and lupus mice following L-MSC injection. In contrast, the lupus mice receiving healthy mesenchymal stem cells (H-MSC) manifested opposite results. CONCLUSION In a nutshell, our results suggest that although allogeneic MSCs are encouraging candidates for SLE treatment, syngeneic MSCs may not be eligible for treating SLE patients due to their defects in regulating the immune system in addition to their capability in promoting inflammation which would consequently worsen the SLE disease status.
Collapse
Affiliation(s)
- Sara Hosseini
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Shapouri-Moghaddam
- Department of Immunology, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Hosseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Sadat Tabasi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Selvarajah K, Tan JJ, Shaharuddin B. Corneal Epithelial Development and the Role of Induced Pluripotent Stem Cells for Regeneration. Curr Stem Cell Res Ther 2024; 19:292-306. [PMID: 36915985 DOI: 10.2174/1574888x18666230313094121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 03/16/2023]
Abstract
Severe corneal disorders due to infective aetiologies, trauma, chemical injuries, and chronic cicatricial inflammations, are among vision-threatening pathologies leading to permanent corneal scarring. The whole cornea or lamellar corneal transplantation is often used as a last resort to restore vision. However, limited autologous tissue sources and potential adverse post-allotransplantation sequalae urge the need for more robust and strategic alternatives. Contemporary management using cultivated corneal epithelial transplantation has paved the way for utilizing stem cells as a regenerative potential. Humaninduced pluripotent stem cells (hiPSCs) can generate ectodermal progenitors and potentially be used for ocular surface regeneration. This review summarizes the process of corneal morphogenesis and the signaling pathways underlying the development of corneal epithelium, which is key to translating the maturation and differentiation process of hiPSCs in vitro. The current state of knowledge and methodology for driving efficient corneal epithelial cell differentiation from pluripotent stem cells are highlighted.
Collapse
Affiliation(s)
- Komathi Selvarajah
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Jun Jie Tan
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| | - Bakiah Shaharuddin
- Department of Microbiology, Faculty of Medicine, Asian Institute of Medical Sciences and Technology (AIMST) University, Kedah, Malaysia
| |
Collapse
|
5
|
Svoradová A, Vašíček J, Zmrhal V, Venusová E, Pavlík A, Bauer M, Olexiková L, Langraf V, Sláma P, Chrenek P. Mesenchymal stem cells of Oravka chicken breed: promising path to biodiversity conservation. Poult Sci 2023; 102:102807. [PMID: 37302325 PMCID: PMC10276279 DOI: 10.1016/j.psj.2023.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage cells able to differentiate into other cell types. MSCs derived from bone marrow or compact bones are the most accessible stem cells used in tissue engineering. Therefore, the aim of this study was to isolate, characterize and cryopreserve MSCs of endangered Oravka chicken breed. MSCs were obtained from compact bones of the femur and tibiotarsus. MSCs were spindle-shaped and were able to differentiate into osteo-, adipo-, and chondrocytes under the specific differentiation conditions. Furthermore, MSCs were positive for surface markers such as CD29, CD44, CD73, CD90, CD105, CD146 and negative for CD34CD45 by flow cytometry. Moreover, MSCs demonstrated high positivity of "stemness" markers aldehyde dehydrogenase, alkaline phosphatase as well as for intracellular markers vimentin, desmin, α-SMA. Subsequently, MSCs were cryopreserved using 10% dimethyl sulfoxide in liquid nitrogen. Based on the results from the viability, phenotype, and ultrastructure assessment we can concluded that the MSCs were not negatively affected by the cryopreservation. Finally, MSCs of endangered Oravka chicken breed were successfully stored in animal gene bank, thus making them a valuable genetic resource.
Collapse
Affiliation(s)
- Andrea Svoradová
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jaromír Vašíček
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Vladimír Zmrhal
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Eva Venusová
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Aleš Pavlík
- Laboratory of Animal Physiology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Miroslav Bauer
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Lucia Olexiková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia
| | - Vladimír Langraf
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Petr Sláma
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Peter Chrenek
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Nitra, Slovakia.
| |
Collapse
|
6
|
Dysregulated balance in Th17/Treg axis of Pristane-induced lupus mouse model, are mesenchymal stem cells therapeutic? Int Immunopharmacol 2023; 117:109699. [PMID: 36867923 DOI: 10.1016/j.intimp.2023.109699] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Despite advances in general and targeted immunosuppressive therapies, limiting all mainstay treatment options in refractory systemic lupus erythematosus (SLE) cases has necessitated the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have recently emerged with unique properties, including a solid propensity to reduce inflammation, exert immunomodulatory effects, and repair injured tissues. METHODS An animal model of acquired SLE mice was induced via intraperitoneal immunization with Pristane and affirmed by measuring specific biomarkers. Bone marrow (BM) MSCs were isolated from healthy BALB/c mice and cultured in vitro, then were identified and confirmed by flow cytometry and cytodifferentiation. Systemic MSCs transplantation was performed and then several parameters were analyzed and compared, including specific cytokines (IL-17, IL-4, IFN-ɣ, TGF-β) at the serum level, the percentage of Th cell subsets (Treg/Th17, Th1/Th2) in splenocytes, and also the relief of lupus nephritis, respectively by enzyme-linked immunosorbent assay (ELISA), flow cytometry analysis and by hematoxylin & eosin staining and also immunofluorescence assessment. Experiments were carried out with different initiation treatment time points (early and late stages of disease). Analysis of variance (ANOVA) followed by post hoc Tukey's test was used for multiple comparisons. RESULTS The rate of proteinuria, anti-double-stranded deoxyribonucleic acid (anti-dsDNA) antibodies, and serum creatinine levels decreased with BM-MSCs transplantation. These results were associated with attenuated lupus renal pathology in terms of reducing IgG and C3 deposition and lymphocyte infiltration. Our findings suggested that TGF-β (associated with lupus microenvironment) can contribute to MSC-based immunotherapy by modulating the population of TCD4+ cell subsets. Obtained results indicated that MSCs-based cytotherapy could negatively affect the progression of induced SLE by recovering the function of Treg cells, suppressing Th1, Th2, and Th17 lymphocyte function, and downregulating their pro-inflammatory cytokines. CONCLUSION MSC-based immunotherapy showed a delayed effect on the progression of acquired SLE in a lupus microenvironment-dependent manner. Allogenic MSCs transplantation revealed the ability to re-establish the balance of Th17/Treg, Th1/Th2 and restore the plasma cytokines network in a pattern dependent on disease conditions. The conflicting results of early versus advanced therapy suggest that MSCs may produce different effects depending on when they are administered and their activation status.
Collapse
|
7
|
Hoseinzadeh A, Rezaieyazdi Z, Afshari JT, Mahmoudi A, Heydari S, Moradi R, Esmaeili SA, Mahmoudi M. Modulation of Mesenchymal Stem Cells-Mediated Adaptive Immune Effectors' Repertoire in the Recovery of Systemic Lupus Erythematosus. Stem Cell Rev Rep 2023; 19:322-344. [PMID: 36272020 DOI: 10.1007/s12015-022-10452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 02/07/2023]
Abstract
The breakdown of self-tolerance of the immune response can lead to autoimmune conditions in which chronic inflammation induces tissue damage. Systemic lupus erythematosus (SLE) is a debilitating multisystemic autoimmune disorder with a high prevalence in women of childbearing age; however, SLE incidence, prevalence, and severity are strongly influenced by ethnicity. Although the mystery of autoimmune diseases remains unsolved, disturbance in the proportion and function of B cell subsets has a major role in SLE's pathogenesis. Additionally, colocalizing hyperactive T helper cell subgroups within inflammatory niches are indispensable. Despite significant advances in standard treatments, nonspecific immunosuppression, the risk of serious infections, and resistance to conventional therapies in some cases have raised the urgent need for new treatment strategies. Without the need to suppress the immune system, mesenchymal stem cells (MSCs), as ''smart" immune modulators, are able to control cellular and humoral auto-aggression responses by participating in precursor cell development. In lupus, due to autologous MSCs disorder, the ability of allogenic engrafted MSCs in tissue regeneration and resetting immune homeostasis with the provision of a new immunocyte repertoire has been considered simultaneously. In Brief The bone marrow mesenchymal stem cells (BM-MSCs) lineage plays a critical role in maintaining the hematopoietic stem-cell microstructure and modulating immunocytes. The impairment of BM-MSCs and their niche partially contribute to the pathogenesis of SLE-like diseases. Allogenic MSC transplantation can reconstruct BM microstructure, possibly contributing to the recovery of immunocyte phenotype restoration of immune homeostasis. In terms of future prospects of MSCs, artificially gained by ex vivo isolation and culture adaptation, the wide variety of potential mediators and mechanisms might be linked to the promotion of the immunomodulatory function of MSCs.
Collapse
Affiliation(s)
- Akram Hoseinzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Rezaieyazdi
- Department of Rheumatology, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran.,Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Heydari
- Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Moradi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Immunology, Mashhad University of Medical Sciences, Azadi Square, Kalantari Blvd, Pardi's campusMashhad, Iran.
| |
Collapse
|
8
|
Tanoue Y, Tsuchiya T, Miyazaki T, Iwatake M, Watanabe H, Yukawa H, Sato K, Hatachi G, Shimoyama K, Matsumoto K, Doi R, Tomoshige K, Nagayasu T. Timing of Mesenchymal Stromal Cell Therapy Defines its Immunosuppressive Effects in a Rat Lung Transplantation Model. Cell Transplant 2023; 32:9636897231207177. [PMID: 37950374 PMCID: PMC10686017 DOI: 10.1177/09636897231207177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Cell therapy using mesenchymal stromal cells (MSCs) is being studied for its immunosuppressive effects. In organ transplantation, the amount of MSCs that accumulate in transplanted organs and other organs may differ depending on administration timing, which may impact their immunosuppressive effects. In vitro, adipose-derived mesenchymal stem cells (ADMSCs) suppress lymphocyte activation under cell-to-cell contact conditions. However, in vivo, it is controversial whether ADMSCs are more effective in accumulating in transplanted organs or in secondary lymphoid organs. Herein, we aimed to investigate whether the timing of ADMSC administration affects its immunosuppression ability in a rat lung transplantation model. In the transplantation study, rats were intramuscularly administered half the usual dose of tacrolimus (0.5 mg/kg) every 24 h after lung transplantation. ADMSCs (1 × 106) were administered via the jugular vein before (PreTx) or after (PostTx) transplantation. Cell tracking using quantum dots was performed. ADMSCs accumulated predominantly in the lung and liver; fewer ADMSCs were distributed in the grafted lung in the PreTx group than in the PostTx group. The rejection rate was remarkably low in the ADMSC-administered groups, particularly in the PostTx group. Serum tumor necrosis factor-α (TNF-α), interferon-γ, and interleukin (IL)-6 levels showed a greater tendency to decrease in the PreTx group than in the PostTx group. The proportion of regulatory T cells in the grafted lung 10 days after transplantation was higher in the PostTx group than in the PreTx group. PostTx administration suppresses rejection better than PreTx administration, possibly due to regulatory T cell induction by ADMSCs accumulated in the transplanted lungs, suggesting a mechanism different from that in heart or kidney transplantation that PreTx administration is more effective than PostTx administration. These results could help establish cell therapy using MSCs in lung transplantation.
Collapse
Affiliation(s)
- Yukinori Tanoue
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tomoshi Tsuchiya
- Department of Thoracic Surgery, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Takuro Miyazaki
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mayumi Iwatake
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hironosuke Watanabe
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Yukawa
- Division of Quantum Science, Technology, and Quantum Life Science, Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Kazuhide Sato
- Division of Quantum Science, Technology, and Quantum Life Science, Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Go Hatachi
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichiro Shimoyama
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryoichiro Doi
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Koichi Tomoshige
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgery Oncology, Department of Surgery, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Hjortdal J, Griffin MD, Cadoux M, Armitage WJ, Bylesjo M, Gabhann PM, Murphy CC, Pleyer U, Tole D, Vabres B, Walkinshaw MD, Gourraud P, Karakachoff M, Brouard S, Degauque N. Peripheral blood immune cell profiling of acute corneal transplant rejection. Am J Transplant 2022; 22:2337-2347. [PMID: 35704290 PMCID: PMC9796948 DOI: 10.1111/ajt.17119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/17/2022] [Accepted: 06/09/2022] [Indexed: 01/25/2023]
Abstract
Acute rejection (AR) of corneal transplants (CT) has a profound effect on subsequent graft survival but detailed immunological studies in human CT recipients are lacking. In this multi-site, cross-sectional study, clinical details and blood samples were collected from adults with clinically diagnosed AR of full-thickness (FT)-CT (n = 35) and posterior lamellar (PL)-CT (n = 21) along with Stable CT recipients (n = 177) and adults with non-transplanted corneal disease (n = 40). For those with AR, additional samples were collected 3 months later. Immune cell analysis was performed by whole-genome microarrays (whole blood) and high-dimensional multi-color flow cytometry (peripheral blood mononuclear cells). For both, no activation signature was identified within the B cell and T cell repertoire at the time of AR diagnosis. Nonetheless, in FT- but not PL-CT recipients, AR was associated with differences in B cell maturity and regulatory CD4+ T cell frequency compared to stable allografts. These data suggest that circulating B cell and T cell subpopulations may provide insights into the regulation of anti-donor immune response in human CT recipients with differing AR risk. Our results suggest that, in contrast to solid organ transplants, genetic or cellular assays of peripheral blood are unlikely to be clinically exploitable for prediction or diagnosis of AR.
Collapse
Affiliation(s)
- Jesper Hjortdal
- Department of OphthalmologyAarhus University HospitalAarhusDenmark,Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Centre for Research in Medical DevicesSchool of Medicine, National University of Ireland GalwayGalwayIreland
| | - Marion Cadoux
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance
| | - W. John Armitage
- Translational Health SciencesUniversity of BristolBristolUK,Tissue and Eye ServicesNHS Blood and TransplantBristolUK
| | - Max Bylesjo
- Fios Genomics Ltd, Nine Edinburgh BioquarterEdinburghUK
| | | | - Conor C. Murphy
- Royal Victoria Eye and Ear HospitalDublinIreland,Royal College of Surgeons in Ireland University of Medicine and Health SciencesDublinIreland
| | - Uwe Pleyer
- Department of OphthalmologyCharité University HospitalBerlinGermany
| | - Derek Tole
- University Hospitals Bristol NHS Foundations TrustBristol Eye HospitalBristolUK
| | - Bertrand Vabres
- Nantes Université, CHU Nantes, Service OphtalmologieNantesFrance
| | - Malcolm D. Walkinshaw
- Wellcome Centre for Cell Biology, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Pierre‐Antoine Gourraud
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance,CHU de Nantes, INSERM, CIC 1413, Pôle Hospitalo‐Universitaire 11: Santé Publique, Clinique des donnéesNantesFrance
| | - Matilde Karakachoff
- CHU de Nantes, INSERM, CIC 1413, Pôle Hospitalo‐Universitaire 11: Santé Publique, Clinique des donnéesNantesFrance
| | - Sophie Brouard
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance
| | - Nicolas Degauque
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064NantesFrance,CHU Nantes, Institut De Transplantation Urologie Néphrologie (ITUN)NantesFrance
| |
Collapse
|
10
|
Dave C, Mei SHJ, McRae A, Hum C, Sullivan KJ, Champagne J, Ramsay T, McIntyre L. Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review. eLife 2022; 11:75053. [PMID: 35838024 PMCID: PMC9286731 DOI: 10.7554/elife.75053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/05/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are multipotent cells that demonstrate therapeutic potential for the treatment of acute and chronic inflammatory-mediated conditions. Although controversial, some studies suggest that MSCs may lose their functionality with cryopreservation which could render them non-efficacious. Hence, we conducted a systematic review of comparative pre-clinical models of inflammation to determine if there are differences in in vivo measures of pre-clinical efficacy (primary outcomes) and in vitro potency (secondary outcomes) between freshly cultured and cryopreserved MSCs. Methods: A systematic search on OvidMEDLINE, EMBASE, BIOSIS, and Web of Science (until January 13, 2022) was conducted. The primary outcome included measures of in vivo pre-clinical efficacy; secondary outcomes included measures of in vitro MSC potency. Risk of bias was assessed by the SYRCLE ‘Risk of Bias’ assessment tool for pre-clinical studies. Results: Eighteen studies were included. A total of 257 in vivo pre-clinical efficacy experiments represented 101 distinct outcome measures. Of these outcomes, 2.3% (6/257) were significantly different at the 0.05 level or less; 2 favoured freshly cultured and 4 favoured cryopreserved MSCs. A total of 68 in vitro experiments represented 32 different potency measures; 13% (9/68) of the experiments were significantly different at the 0.05 level or less, with seven experiments favouring freshly cultured MSC and two favouring cryopreserved MSCs. Conclusions: The majority of preclinical primary in vivo efficacy and secondary in vitro potency outcomes were not significantly different (p<0.05) between freshly cultured and cryopreserved MSCs. Our systematic summary of the current evidence base may provide MSC basic and clinical research scientists additional rationale for considering a cryopreserved MSC product in their pre-clinical studies and clinical trials as well as help identify research gaps and guide future related research. Funding: Ontario Institute for Regenerative Medicine
Collapse
Affiliation(s)
- Chintan Dave
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Canada
| | - Shirley H J Mei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Andrea McRae
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christine Hum
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,University of Ottawa, Ottawa, Canada
| | - Katrina J Sullivan
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Josee Champagne
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Tim Ramsay
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lauralyn McIntyre
- Knowledge Synthesis Group, Ottawa Hospital Research Institute, Ottawa, Canada.,Division of Critical Care, Department of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
11
|
Mittal SK, Cho W, Elbasiony E, Guan Y, Foulsham W, Chauhan SK. Mesenchymal stem cells augment regulatory T cell function via CD80-mediated interactions and promote allograft survival. Am J Transplant 2022; 22:1564-1577. [PMID: 35170213 PMCID: PMC11261724 DOI: 10.1111/ajt.17001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) and regulatory T cells (Tregs) both have been shown to modulate the alloimmune response and promote transplant survival. Mounting evidence suggests that MSCs augment Treg function, but the mechanisms underlying this phenomenon have not been fully deciphered. Here, we identified that MSCs express substantial levels of CD80 and evaluated its immunoregulatory function using in vivo and in vitro experiments. Our in vitro culture assays demonstrated that MSCs induce expression of FoxP3 in Tregs in a contact-dependent manner, and the blockade of CD80 abrogates this FoxP3 induction and Treg-mediated suppression of T cell proliferation. Moreover, supplementation of soluble CD80 significantly upregulated FoxP3 expression. Using a well-characterized murine model of corneal transplantation, we show that silencing CD80 in MSCs diminishes the capacity of MSCs to promote selective graft infiltration of Tregs, promote FoxP3 expression and upregulate suppressive function of Tregs. Consequently, MSCs, following CD80 knockdown, failed to promote corneal allograft survival.
Collapse
Affiliation(s)
- Sharad K Mittal
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - WonKyung Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Yilin Guan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - William Foulsham
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Campa-Carranza JN, Paez-Mayorga J, Chua CYX, Nichols JE, Grattoni A. Emerging local immunomodulatory strategies to circumvent systemic immunosuppression in cell transplantation. Expert Opin Drug Deliv 2022; 19:595-610. [PMID: 35588058 DOI: 10.1080/17425247.2022.2076834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cell transplantation is a promising curative therapeutic strategy whereby impaired organ functions can be restored without the need for whole organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Zhu J, Inomata T, Di Zazzo A, Kitazawa K, Okumura Y, Coassin M, Surico PL, Fujio K, Yanagawa A, Miura M, Akasaki Y, Fujimoto K, Nagino K, Midorikawa-Inomata A, Hirosawa K, Kuwahara M, Huang T, Shokirova H, Eguchi A, Murakami A. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J Clin Med 2021; 10:jcm10204667. [PMID: 34682792 PMCID: PMC8537034 DOI: 10.3390/jcm10204667] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
Corneal transplantation is one of the most successful forms of solid organ transplantation; however, immune rejection is still a major cause of corneal graft failure. Both innate and adaptive immunity play a significant role in allograft tolerance. Therefore, immune cells, cytokines, and signal-transduction pathways are critical therapeutic targets. In this analysis, we aimed to review the current literature on various immunotherapeutic approaches for corneal-allograft rejection using the PubMed, EMBASE, Web of Science, Cochrane, and China National Knowledge Infrastructure. Retrievable data for meta-analysis were screened and assessed. The review, which evaluated multiple immunotherapeutic approaches to prevent corneal allograft rejection, showed extensive involvement of innate and adaptive immunity components. Understanding the contribution of this immune diversity to the ocular surface is critical for ensuring corneal allograft survival.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Ophthalmology, Subei People’s Hospital of Jiangsu Province, Yangzhou 225001, China
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
- Correspondence: ; Tel.: +81-3-5802-1228
| | - Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto 6020841, Japan;
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Yuichi Okumura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Strategic Operating Room Management and Improvement, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Pier Luigi Surico
- Ophthalmology Complex Operative Unit, Campus Bio-Medico University Hospital, 00128 Rome, Italy; (A.D.Z.); (M.C.); (P.L.S.)
| | - Kenta Fujio
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Ai Yanagawa
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Maria Miura
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Yasutsugu Akasaki
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Keiichi Fujimoto
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| | - Ken Nagino
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akie Midorikawa-Inomata
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Kunihiko Hirosawa
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Mizu Kuwahara
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Tianxiang Huang
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
| | - Hurramhon Shokirova
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
| | - Atsuko Eguchi
- Department of Hospital Administration, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (K.N.); (A.M.-I.); (A.E.)
| | - Akira Murakami
- Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (J.Z.); (Y.O.); (K.F.); (M.M.); (Y.A.); (K.H.); (M.K.); (T.H.); (H.S.); (A.M.)
- Department of Digital Medicine, Juntendo University Graduate School of Medicine, Tokyo 1130033, Japan; (A.Y.); (K.F.)
- Department of Ophthalmology, Faculty of Medicine, Juntendo University, Tokyo 1130033, Japan
| |
Collapse
|
14
|
Sant'Ana AN, Araújo AB, Gonçalves FDC, Paz AH. Effects of living and metabolically inactive mesenchymal stromal cells and their derivatives on monocytes and macrophages. World J Stem Cells 2021; 13:1160-1176. [PMID: 34630856 PMCID: PMC8474715 DOI: 10.4252/wjsc.v13.i9.1160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 09/03/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing stem cells that have great potential as cell therapy for autoimmune and inflammatory disorders, as well as for other clinical conditions, due to their immunoregulatory and regenerative properties. MSCs modulate the inflammatory milieu by releasing soluble factors and acting through cell-to-cell mechanisms. MSCs switch the classical inflammatory status of monocytes and macrophages towards a non-classical and anti-inflammatory phenotype. This is characterized by an increased secretion of anti-inflammatory cytokines, a decreased release of pro-inflammatory cytokines, and changes in the expression of cell membrane molecules and in metabolic pathways. The MSC modulation of monocyte and macrophage phenotypes seems to be critical for therapy effectiveness in several disease models, since when these cells are depleted, no immunoregulatory effects are observed. Here, we review the effects of living MSCs (metabolically active cells) and metabolically inactive MSCs (dead cells that lost metabolic activity by induced inactivation) and their derivatives (extracellular vesicles, soluble factors, extracts, and microparticles) on the profile of macrophages and monocytes and the implications for immunoregulatory and reparative processes. This review includes mechanisms of action exhibited in these different therapeutic approaches, which induce the anti-inflammatory properties of monocytes and macrophages. Finally, we overview several possibilities of therapeutic applications of these cells and their derivatives, with results regarding monocytes and macrophages in animal model studies and some clinical trials.
Collapse
Affiliation(s)
- Alexia Nedel Sant'Ana
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| | - Anelise Bergmann Araújo
- Centro de Processamento Celular, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil.
| | | | - Ana Helena Paz
- Laboratório de Células Tecidos e Genes, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, RS, Brazil
| |
Collapse
|
15
|
Shaw BI, Ord JR, Nobuhara C, Luo X. Cellular Therapies in Solid Organ Allotransplantation: Promise and Pitfalls. Front Immunol 2021; 12:714723. [PMID: 34526991 PMCID: PMC8435835 DOI: 10.3389/fimmu.2021.714723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/30/2022] Open
Abstract
Donor specific transfusions have been the basis of tolerance inducing protocols since Peter Medawar showed that it was experimentally feasible in the 1950s. Though trials of cellular therapies have become increasingly common in solid organ transplantation, they have not become standard practice. Additionally, whereas some protocols have focused on cellular therapies as a method for donor antigen delivery—thought to promote tolerance in and of itself in the correct immunologic context—other approaches have alternatively focused on the intrinsic immunosuppressive properties of the certain cell types with less emphasis on their origin, including mesenchymal stem cells, regulatory T cells, and regulatory dendritic cells. Regardless of intent, all cellular therapies must contend with the potential that introducing donor antigen in a new context will lead to sensitization. In this review, we focus on the variety of cellular therapies that have been applied in human trials and non-human primate models, describe their efficacy, highlight data regarding their potential for sensitization, and discuss opportunities for cellular therapies within our current understanding of the immune landscape.
Collapse
Affiliation(s)
- Brian I Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Jeffrey R Ord
- School of Medicine, Duke University, Durham, NC, United States
| | - Chloe Nobuhara
- School of Medicine, Duke University, Durham, NC, United States
| | - Xunrong Luo
- Department of Medicine, Division of Nephrology, Duke University, Durham, NC, United States
| |
Collapse
|
16
|
Habal MV. Current Desensitization Strategies in Heart Transplantation. Front Immunol 2021; 12:702186. [PMID: 34504489 PMCID: PMC8423343 DOI: 10.3389/fimmu.2021.702186] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Heart transplant candidates sensitized to HLA antigens wait longer for transplant, are at increased risk of dying while waiting, and may not be listed at all. The increasing prevalence of HLA sensitization and limitations of current desensitization strategies underscore the urgent need for a more effective approach. In addition to pregnancy, prior transplant, and transfusions, patients with end-stage heart failure are burdened with unique factors placing them at risk for HLA sensitization. These include homograft material used for congenital heart disease repair and left ventricular assist devices (LVADs). Moreover, these risks are often stacked, forming a seemingly insurmountable barrier in some cases. While desensitization protocols are typically implemented uniformly, irrespective of the mode of sensitization, the heterogeneity in success and post-transplant outcomes argues for a more tailored approach. Achieving this will require progress in our understanding of the immunobiology underlying the innate and adaptive immune response to these varied allosensitizing exposures. Further attention to B cell activation, memory, and plasma cell differentiation is required to establish methods that durably abrogate the anti-HLA antibody response before and after transplant. The contribution of non-HLA antibodies to the net state of sensitization and the potential implications for graft longevity also remain to be comprehensively defined. The aim of this review is to first bring forth select issues unique to the sensitized heart transplant candidate. The current literature on desensitization in heart transplantation will then be summarized providing context within the immune response. Building on this, newer approaches with therapeutic potential will be discussed emphasizing the importance of not only addressing the short-term pathogenic consequences of circulating HLA antibodies, but also the need to modulate alloimmune memory.
Collapse
Affiliation(s)
- Marlena V. Habal
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, Columbia University, New York, NY, United States
| |
Collapse
|
17
|
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int 2021; 2021:2616807. [PMID: 34422061 PMCID: PMC8378970 DOI: 10.1155/2021/2616807] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cell therapy involves the transplantation of human cells to replace or repair the damaged tissues and modulate the mechanisms underlying disease initiation and progression in the body. Nowadays, many different types of cell-based therapy are developed and used to treat a variety of diseases. In the past decade, cell-free therapy has emerged as a novel approach in regenerative medicine after the discovery that the transplanted cells exerted their therapeutic effect mainly through the secretion of paracrine factors. More and more evidence showed that stem cell-derived secretome, i.e., growth factors, cytokines, and extracellular vesicles, can repair the injured tissues as effectively as the cells. This finding has spurred a new idea to employ secretome in regenerative medicine. Despite that, will cell-free therapy slowly replace cell therapy in the future? Or are these two modes of treatment still needed to address different diseases and conditions? This review provides an indepth discussion about the values of stem cells and secretome in regenerative medicine. In addition, the safety, efficacy, advantages, and disadvantages of using these two modes of treatment in regenerative medicine are also critically reviewed.
Collapse
Affiliation(s)
- Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Qi Hao Looi
- My Cytohealth Sdn Bhd, Bandar Seri Petaling, 57000 Kuala Lumpur, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hidayah Hassan
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
- Institute of Medical Science Technology, Universiti Kuala Lumpur, 43000 Kajang, Selangor, Malaysia
| | - Genieve Ee Chia Yeo
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Benson Koh
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Casiraghi F, Perico N, Podestà MA, Todeschini M, Zambelli M, Colledan M, Camagni S, Fagiuoli S, Pinna AD, Cescon M, Bertuzzo V, Maroni L, Introna M, Capelli C, Golay JT, Buzzi M, Mister M, Ordonez PYR, Breno M, Mele C, Villa A, Remuzzi G. Third-party bone marrow-derived mesenchymal stromal cell infusion before liver transplantation: A randomized controlled trial. Am J Transplant 2021; 21:2795-2809. [PMID: 33370477 DOI: 10.1111/ajt.16468] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 01/25/2023]
Abstract
Mesenchymal stromal cells (MSC) have emerged as a promising therapy to minimize the immunosuppressive regimen or induce tolerance in solid organ transplantation. In this randomized open-label phase Ib/IIa clinical trial, 20 liver transplant patients were randomly allocated (1:1) to receive a single pretransplant intravenous infusion of third-party bone marrow-derived MSC or standard of care alone. The primary endpoint was the safety profile of MSC administration during the 1-year follow-up. In all, 19 patients completed the study, and none of those who received MSC experienced infusion-related complications. The incidence of serious and non-serious adverse events was similar in the two groups. Circulating Treg/memory Treg and tolerant NK subset of CD56bright NK cells increased slightly over baseline, albeit not to a statistically significant extent, in MSC-treated patients but not in the control group. Graft function and survival, as well as histologic parameters and intragraft expression of tolerance-associated transcripts in 1-year protocol biopsies were similar in the two groups. In conclusion, pretransplant MSC infusion in liver transplant recipients was safe and induced mild positive changes in immunoregulatory T and NK cells in the peripheral blood. This study opens the way for a trial on possible tolerogenic efficacy of MSC in liver transplantation. ClinicalTrials.gov identifier: NCT02260375.
Collapse
Affiliation(s)
- Federica Casiraghi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Norberto Perico
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Manuel A Podestà
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Marta Todeschini
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Marco Zambelli
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Michele Colledan
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefania Camagni
- Department of Organ Failure and Transplantation, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology, Hepatology and Transplantation, Department of Medicine, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Antonio D Pinna
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Matteo Cescon
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Valentina Bertuzzo
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Lorenzo Maroni
- General Surgery and Transplant Unit, Department of Medical and Surgical Sciences, Azienda Ospedaliero-Universitaria-Policlinico S.Orsola-Malpighi, Bologna, Italy
| | - Martino Introna
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Capelli
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Josee T Golay
- G. Lanzani Laboratory of Cell Therapy, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Buzzi
- Emilia Romagna Cord Blood Bank, Immunohematology and Transfusion Medicine, Azienda Ospedaliero-Universitaria-Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Marilena Mister
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Pamela Y R Ordonez
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Matteo Breno
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Caterina Mele
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Alessandro Villa
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Aldo & Cele Daccò Clinical Research Center for Rare Diseases, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | |
Collapse
|
19
|
Refaie AF, Elbassiouny BL, Kloc M, Sabek OM, Khater SM, Ismail AM, Mohamed RH, Ghoneim MA. From Mesenchymal Stromal/Stem Cells to Insulin-Producing Cells: Immunological Considerations. Front Immunol 2021; 12:690623. [PMID: 34248981 PMCID: PMC8262452 DOI: 10.3389/fimmu.2021.690623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy for type 1 diabetes mellitus (T1DM) has been the subject matter of many studies over the past few decades. The wide availability, negligible teratogenic risks and differentiation potential of MSCs promise a therapeutic alternative to traditional exogenous insulin injections or pancreatic transplantation. However, conflicting arguments have been reported regarding the immunological profile of MSCs. While some studies support their immune-privileged, immunomodulatory status and successful use in the treatment of several immune-mediated diseases, others maintain that allogeneic MSCs trigger immune responses, especially following differentiation or in vivo transplantation. In this review, the intricate mechanisms by which MSCs exert their immunomodulatory functions and the influencing variables are critically addressed. Furthermore, proposed avenues to enhance these effects, including cytokine pretreatment, coadministration of mTOR inhibitors, the use of Tregs and gene manipulation, are presented. As an alternative, the selection of high-benefit, low-risk donors based on HLA matching, PD-L1 expression and the absence of donor-specific antibodies (DSAs) are also discussed. Finally, the necessity for the transplantation of human MSC (hMSC)-derived insulin-producing cells (IPCs) into humanized mice is highlighted since this strategy may provide further insights into future clinical applications.
Collapse
Affiliation(s)
- Ayman F Refaie
- Nephrology Department, Urology and Nephrology Center, Mansoura, Egypt
| | | | - Malgorzata Kloc
- Department of Immunobiology, The Houston Methodist Research Institute, Houston, TX, United States.,Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Genetics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, United States
| | - Omaima M Sabek
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, United States.,Department of Cell and Microbiology Biology, Weill Cornell Medical Biology, New York, NY, United States
| | - Sherry M Khater
- Pathology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Amani M Ismail
- Immunology Department, Urology and Nephrology Center, Mansoura, Egypt
| | - Rania H Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
20
|
Treacy O, Lynch K, Murphy N, Chen X, Donohoe E, Canning A, Lohan P, Shaw G, Fahy G, Ryan AE, Ritter T. Subconjunctival administration of low-dose murine allogeneic mesenchymal stromal cells promotes corneal allograft survival in mice. Stem Cell Res Ther 2021; 12:227. [PMID: 33823917 PMCID: PMC8025388 DOI: 10.1186/s13287-021-02293-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background Systemic administration of mesenchymal stromal cells (MSCs) has been efficacious in many inflammatory disease settings; however, little data are available on the potential immunomodulatory effects following local MSC administration in the context of corneal transplantation. The purpose of this study was to assess the potential of subconjunctival injection of MSCs to promote corneal allograft survival. Methods MSCs were isolated from female C57BL/6 (H-2k) or Balb/c (H-2d) mice and extensively characterized. An allogeneic mouse corneal transplant model was used with Balb/c mice as recipients of C57BL/6 grafts. A dose-finding study starting with 5 × 105 MSCs injected subconjunctivally at day − 7 was tested first followed by a more clinically translatable low-dose single or dual injection strategy on day − 1 and day + 1 before/after transplantation. Graft transparency served as the primary indicator of transplant rejection while neovascularization was also recorded. Lymphocytes (from draining lymph nodes) and splenocytes were isolated from treatment groups on day 2 post-transplantation and characterized by flow cytometry and qRT-PCR. Results Both high- and low-dose injection of allogeneic MSCs on day − 7 led to 100% graft survival over the observation period. Moreover, low-dose dual subconjunctival injection of 5 × 104 allogeneic MSCs on day − 1 or day + 1 led to 100% allograft survival in transplant recipients (n = 7). We also demonstrate that single administration of allogeneic MSCs on either day − 1 or day + 1 promotes rejection-free graft survival in 100% (n = 8) and 86% (n = 7) of transplanted mice, respectively. Early time point ex vivo analysis suggests modulation of innate immune responses towards anti-inflammatory, pro-repair responses by local MSC administration. Conclusion This work demonstrates that low-dose subconjunctival injection of allogeneic MSCs successfully promotes corneal allograft survival and may contribute to refining future MSC immunotherapies for prevention of corneal allograft rejection.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Kevin Lynch
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Aoife Canning
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland.,CURAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, Biomedical Sciences, Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland. .,CURAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
21
|
Mesenchymal stromal cells for corneal transplantation: Literature review and suggestions for successful clinical trials. Ocul Surf 2021; 20:185-194. [PMID: 33607323 PMCID: PMC9878990 DOI: 10.1016/j.jtos.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Corneal transplantation is a routine procedure for patients with corneal blindness. Despite the streamlining of surgical techniques and deeper understanding of the cellular and molecular pathways mediating rejection, corticosteroids are still the main immunosuppressive regimen in corneal transplantation, and the 15-year survival of corneal transplants remains as low as 50%, which is poorer than that for most solid organ transplants. Recently, mesenchymal stromal cells (MSCs) with unique regenerative and immune-modulating properties have emerged as a promising cell therapy to promote transplant tolerance, minimize the use of immunosuppressants, and prevent chronic rejection. Here, we review the literature on preclinical studies of MSCs for corneal transplantation and summarize the key findings from clinical trials with MSCs in solid organ transplantation. Finally, we highlight current issues and challenges regarding MSC therapies and suggest strategies for safe and effective MSC-based therapies in clinical transplantation.
Collapse
|
22
|
Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Prog Retin Eye Res 2021; 85:100967. [PMID: 33775824 DOI: 10.1016/j.preteyeres.2021.100967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells, commonly referred to as MSCs, have emerged as a promising cell-based therapy for a range of autoimmune diseases thanks to several therapeutic advantages. Key among these are: 1) the ability to modulate innate and adaptive immune responses and to promote tissue regeneration, 2) the ease of their isolation from readily accessible tissues and expansion at scale in culture, 3) their low immunogenicity enabling use as an allogeneic "off-the-shelf" product, and 4) MSC therapy's safety and feasibility in humans, as demonstrated in more than one thousand clinical trials. Evidence from preclinical studies and early clinical trials indicate the therapeutic potential of MSCs and their derivatives for efficacy in ocular autoimmune diseases such as autoimmune uveoretinitis and Sjögren's syndrome-related dry eye disease. In this review, we provide an overview of the current understanding of the therapeutic mechanisms of MSCs, and summarize the results from preclinical and clinical studies that have used MSCs or their derivatives for the treatment of ocular autoimmune diseases. We also discuss the challenges to the successful clinical application of MSC therapy, and suggest strategies for overcoming them.
Collapse
|
23
|
Johnstone BH, Messner F, Brandacher G, Woods EJ. A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance. Front Immunol 2021; 12:622604. [PMID: 33732244 PMCID: PMC7959805 DOI: 10.3389/fimmu.2021.622604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Induction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed "hematopoietic progenitor cell (HPC), Marrow," recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to "delayed tolerance." Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT.
Collapse
Affiliation(s)
- Brian H. Johnstone
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erik J. Woods
- Ossium Health, Indianapolis, IN, United States
- Department of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Yu Y, Valderrama AV, Han Z, Uzan G, Naserian S, Oberlin E. Human fetal liver MSCs are more effective than adult bone marrow MSCs for their immunosuppressive, immunomodulatory, and Foxp3 + T reg induction capacity. Stem Cell Res Ther 2021; 12:138. [PMID: 33597011 PMCID: PMC7888159 DOI: 10.1186/s13287-021-02176-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exhibit active abilities to suppress or modulate deleterious immune responses by various molecular mechanisms. These cells are the subject of major translational efforts as cellular therapies for immune-related diseases and transplantations. Plenty of preclinical studies and clinical trials employing MSCs have shown promising safety and efficacy outcomes and also shed light on the modifications in the frequency and function of regulatory T cells (T regs). Nevertheless, the mechanisms underlying these observations are not well known. Direct cell contact, soluble factor production, and turning antigen-presenting cells into tolerogenic phenotypes, have been proposed to be among possible mechanisms by which MSCs produce an immunomodulatory environment for T reg expansion and activity. We and others demonstrated that adult bone marrow (BM)-MSCs suppress adaptive immune responses directly by inhibiting the proliferation of CD4+ helper and CD8+ cytotoxic T cells but also indirectly through the induction of T regs. In parallel, we demonstrated that fetal liver (FL)-MSCs demonstrates much longer-lasting immunomodulatory properties compared to BM-MSCs, by inhibiting directly the proliferation and activation of CD4+ and CD8+ T cells. Therefore, we investigated if FL-MSCs exert their strong immunosuppressive effect also indirectly through induction of T regs. METHODS MSCs were obtained from FL and adult BM and characterized according to their surface antigen expression, their multilineage differentiation, and their proliferation potential. Using different in vitro combinations, we performed co-cultures of FL- or BM-MSCs and murine CD3+CD25-T cells to investigate immunosuppressive effects of MSCs on T cells and to quantify their capacity to induce functional T regs. RESULTS We demonstrated that although both types of MSC display similar cell surface phenotypic profile and differentiation capacity, FL-MSCs have significantly higher proliferative capacity and ability to suppress both CD4+ and CD8+ murine T cell proliferation and to modulate them towards less active phenotypes than adult BM-MSCs. Moreover, their substantial suppressive effect was associated with an outstanding increase of functional CD4+CD25+Foxp3+ T regs compared to BM-MSCs. CONCLUSIONS These results highlight the immunosuppressive activity of FL-MSCs on T cells and show for the first time that one of the main immunoregulatory mechanisms of FL-MSCs passes through active and functional T reg induction.
Collapse
Affiliation(s)
- Yi Yu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | | | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Beijing Institute of Stem Cells, Health & Biotech Co., Ltd, Beijing, People’s Republic of China
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
- CellMedEx, Saint Maur des Fossés, France
| | - Estelle Oberlin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
- Paris-Saclay University, Villejuif, France
| |
Collapse
|
25
|
Hoogduijn MJ, Issa F, Casiraghi F, Reinders MEJ. Cellular therapies in organ transplantation. Transpl Int 2021; 34:233-244. [PMID: 33207013 PMCID: PMC7898347 DOI: 10.1111/tri.13789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Cellular therapy is a promising tool for improving the outcome of organ transplantation. Various cell types with different immunoregulatory and regenerative properties may find application for specific transplant rejection or injury-related indications. The current era is crucial for the development of cellular therapies. Preclinical models have demonstrated the feasibility of efficacious cell therapy in transplantation, early clinical trials have shown safety of several of these therapies, and the first steps towards efficacy studies in humans have been made. In this review, we address the current state of the art of cellular therapies in clinical transplantation and discuss monitoring tools and endpoints for these studies.
Collapse
Affiliation(s)
- Martin J. Hoogduijn
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| | - Fadi Issa
- Transplantation Research and Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | | | - Marlies E. J. Reinders
- Nephrology and TransplantationDepartment of Internal MedicineErasmus University Medical CenterErasmus Medical CenterRotterdamThe Netherlands
| |
Collapse
|
26
|
Cen YJ, You DB, Wang W, Feng Y. Preliminary studies of constructing a tissue-engineered lamellar corneal graft by culturing mesenchymal stem cells onto decellularized corneal matrix. Int J Ophthalmol 2021; 14:10-18. [PMID: 33469478 DOI: 10.18240/ijo.2021.01.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/28/2020] [Indexed: 12/28/2022] Open
Abstract
AIM To construct a competent corneal lamellar substitute in order to alleviate the shortage of human corneal donor. METHODS Rabbit mesenchymal stem cells (MSCs) were isolated from bone marrow and identified by flow cytometric, osteogenic and adipogenic induction. Xenogenic decellularized corneal matrix (XDCM) was generated from dog corneas. MSCs were seeded and cultured on XDCM to construct the tissue-engineered cornea. Post-transplantation biocompatibility of engineered corneal graft were tested by animal experiment. Rabbits were divided into two groups then underwent lamellar keratoplasty (LK) with different corneal grafts: 1) XDCM group (n=5): XDCM; 2) XDCM-MSCs groups (n=4): tissue-engineered cornea made up with XDCM and MSCs. The ocular surface recovery procedure was observed while corneal transparency, neovascularization and epithelium defection were measured and compared. In vivo on focal exam was performed 3mo postoperatively. RESULTS Rabbit MSCs were isolated and identified. Flow cytometry demonstrated isolated cells were CD90 positive and CD34, CD45 negative. Osteogenic and adipogenic induction verified their multipotent abilities. MSC-XDCM grafts were constructed and observed. In vivo transplantation showed the neovascularization in XDCM-MSC group was much less than that in XDCM group postoperatively. Post-transplant 3-month confocal test showed less nerve regeneration and bigger cell-absent area in XDCM-MSC group. CONCLUSION This study present a novel corneal tissue-engineered graft that could reduce post-operatively neovascularization and remain transparency, meanwhile shows that co-transplantation of MSCs may help increase corneal transplantation successful rate and enlarge the source range of corneal substitute to overcome cornea donor shortage.
Collapse
Affiliation(s)
- Yu-Jie Cen
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - De-Bo You
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
27
|
Beeken LJ, Ting DS, Sidney LE. Potential of mesenchymal stem cells as topical immunomodulatory cell therapies for ocular surface inflammatory disorders. Stem Cells Transl Med 2021; 10:39-49. [PMID: 32896982 PMCID: PMC7780815 DOI: 10.1002/sctm.20-0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/10/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Ocular surface inflammatory disorders (OSIDs) are a group of highly prevalent, heterogeneous diseases that display a variety of aetiologies and symptoms and are risk factors for serious complications, including ocular and cornea impairment. Corneal inflammation is a common factor of all OSIDs, regardless of their cause or symptoms. Current medications include over-the-counter lubricating eye drops, corticosteroids, and ciclosporin, which either do not treat the corneal inflammation or have been associated with multiple side effects leading to alternative treatments being sought. Regenerative medicine cell therapies, particularly mesenchymal stem cells (MSCs), have shown great promise for immunosuppression and disease amelioration across multiple tissues, including the cornea. However, for successful development and clinical translation of MSC therapy for OSIDs, significant problems must be addressed. This review aims to highlight considerations, including whether the source of MSC isolation impacts the efficacy and safety of the therapy, in addition to assessing the feasibility of MSC topical application to the cornea and ocular surface through analysis of potential scaffolds and cell carriers for application to the eye. The literature contains limited data assessing MSCs incorporated into scaffolds for corneal administration, thus here we highlight the necessity of further investigations to truly exploit the potential of an MSC-based cell therapy for the treatment of OSIDs.
Collapse
Affiliation(s)
- Lydia J. Beeken
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| | - Darren S.J. Ting
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| | - Laura E. Sidney
- Academic Ophthalmology, Division of Clinical NeurosciencesUniversity of Nottingham, Queens Medical Centre CampusNottinghamUK
| |
Collapse
|
28
|
Tian H, Wu J, Ma M. Implications of macrophage polarization in corneal transplantation rejection. Transpl Immunol 2020; 64:101353. [PMID: 33238187 DOI: 10.1016/j.trim.2020.101353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Corneal transplantation rejection remains an urgent problem threatening the success rate of high-risk patients. Macrophages are involved in the rejection of corneal transplants. Macrophages have M1 and M2 phenotypes, classified according their response to external stimuli. Macrophage polarization, through which these distinct forms are activated, is not only involved in the occurrence and development of inflammation, tumors, and autoimmune and other diseases, but also participates in graft rejection. This study provides an overview of the types of macrophages and mechanisms of their polarization, and review current knowledge regarding their involvement in corneal transplantation and potential therapeutic applications. Consideration of the relationship between the direction of macrophage polarization and the determination of graft survival and how it can be modified, is important for the development of novel corneal anti-rejection therapies.
Collapse
Affiliation(s)
- Huiwen Tian
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing Wu
- Department of Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ming Ma
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Hu Y, Kong D, Qin Y, Yu D, Jin W, Li X, Zhao Y, Wang H, Li G, Hao J, Zhang B, Pang Z, Wang H. CD73 expression is critical to therapeutic effects of human endometrial regenerative cells in inhibition of cardiac allograft rejection in mice. Stem Cells Transl Med 2020; 10:465-478. [PMID: 33124777 PMCID: PMC7900594 DOI: 10.1002/sctm.20-0154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/23/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
The newly found mesenchymal‐like endometrial regenerative cells (ERCs) have been proved to induce immune tolerance in cardiac allograft transplantation. However, the therapeutic mechanism is not clear. The present study was undertaken to investigate whether ecto‐5′‐nucleotidase (CD73) expression on ERCs is critical to cardiac allograft protection. C57BL/6 mouse recipients receiving BALB/c mouse cardiac allografts were treated with unmodified ERCs or anti‐CD73 monoclonal antibodies (mAb) pretreated ERCs, respectively. It has been found that CD73 expression was critical to ERC‐induced attenuation of graft pathology. The blockage of CD73 expression on ERCs was related to the percentage decline of tolerogenic dendritic cells (Tol‐DCs), macrophages type 2 (M2), and regulatory T cells (Tregs). As compared with anti‐CD73 mAb pretreated ERCs group, CD73 expressing ERCs significantly increased the level of anti‐inflammatory cytokine IL‐10 but decreased levels of pro‐inflammatory cytokines including IFN‐γ and TNF‐α. In addition, CD73 expressing ERCs showed tissue protective function via the regulation of adenosine receptor expression which was related to the infiltration of CD4+ and CD8+ cells in the allografts. Furthermore, significant increase of A2B receptors in the cardiac allograft was also associated with CD73 expressing ERC‐induced prolongation of cardiac allograft survival.
Collapse
Affiliation(s)
- Yonghao Hu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Dejun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Dingding Yu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Wang Jin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Yiming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Hongda Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Guangming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Jingpeng Hao
- Tianjin General Surgery Institute, Tianjin, People's Republic of China.,Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Baoren Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| | - Zhaoyan Pang
- Department of Nursing, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Tianjin General Surgery Institute, Tianjin, People's Republic of China
| |
Collapse
|
30
|
Dangi A, Yu S, Lee FT, Burnette M, Knechtle S, Kwun J, Luo X. Donor apoptotic cell-based therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients. Am J Transplant 2020; 20:2728-2739. [PMID: 32275799 PMCID: PMC7896418 DOI: 10.1111/ajt.15878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 01/25/2023]
Abstract
Allosensitization constitutes a major barrier in transplantation. Preexisting donor-reactive memory T and B cells and preformed donor-specific antibodies (DSAs) have all been implicated in accelerated allograft rejection in sensitized recipients. Here, we employ a sensitized murine model of islet transplantation to test strategies that promote long-term immunosuppression-free allograft survival. We demonstrate that donor-specific memory T and B cells can be effectively inhibited by peritransplant infusions of donor apoptotic cells in combination with anti-CD40L and rapamycin, and this treatment leads to significant prolongation of islet allograft survival in allosensitized recipients. We further demonstrate that late graft rejection in recipients treated with this regimen is associated with a breakthrough of B cells and their aggressive graft infiltration. Consequently, additional posttransplant B cell depletion effectively prevents late rejection and promotes permanent acceptance of islet allografts. In contrast, persistent low levels of DSAs do not seem to impair graft outcome in these recipients. We propose that B cells contribute to late rejection as antigen-presenting cells for intragraft memory T cell expansion but not to alloantibody production and that a therapeutic strategy combining donor apoptotic cells, anti-CD40L, and rapamycin effectively inhibits proinflammatory B cells and promotes long-term islet allograft survival in such recipients.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Frances T. Lee
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Melanie Burnette
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Stuart Knechtle
- Department of Surgery, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| | - Jean Kwun
- Department of Surgery, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina,Duke Transplant Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
31
|
Abstract
Human corneal transplantation (keratoplasty) is typically considered to have superior short- and long-term outcomes and lower requirement for immunosuppression compared to solid organ transplants because of the inherent immune privilege and tolerogenic mechanisms associated with the anterior segment of the eye. However, in a substantial proportion of corneal transplants, the rates of acute rejection and/or graft failure are comparable to or greater than those of the commonly transplanted solid organs. Critically, while registry data and observational studies have helped to identify factors that are associated with increased risk of corneal transplant failure, the extent to which these risk factors operate through enhancing immune-mediated rejection is less clear. In this overview, we summarize a range of important recent clinical and basic insights related to high-risk corneal transplantation, the factors associated with graft failure, and the immunological basis of corneal allograft rejection. We highlight critical research areas from which continued progress is likely to drive improvements in the long-term survival of high-risk corneal transplants. These include further development and clinical testing of predictive risk scores and assays; greater use of multicenter clinical trials to optimize immunosuppressive therapy in high-risk recipients and robust clinical translation of novel, mechanistically-targeted immunomodulatory and regenerative therapies that are emerging from basic science laboratories. We also emphasize the relative lack of knowledge regarding transplant outcomes for infection-related corneal diseases that are common in the developing world and the potential for greater cross-pollination and synergy between corneal and solid organ transplant research communities.
Collapse
|
32
|
Lynch K, Treacy O, Chen X, Murphy N, Lohan P, Islam MN, Donohoe E, Griffin MD, Watson L, McLoughlin S, O'Malley G, Ryan AE, Ritter T. TGF-β1-Licensed Murine MSCs Show Superior Therapeutic Efficacy in Modulating Corneal Allograft Immune Rejection In Vivo. Mol Ther 2020; 28:2023-2043. [PMID: 32531237 PMCID: PMC7474271 DOI: 10.1016/j.ymthe.2020.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising therapeutic option for multiple immune diseases/disorders; however, efficacy of MSC treatments can vary significantly. We present a novel licensing strategy to improve the immunosuppressive capacity of MSCs. Licensing murine MSCs with transforming growth factor-β1 (TGF-β MSCs) significantly improved their ability to modulate both the phenotype and secretome of inflammatory bone marrow-derived macrophages and significantly increased the numbers of regulatory T lymphocytes following co-culture assays. These TGF-β MSC-expanded regulatory T lymphocytes also expressed significantly higher levels of PD-L1 and CD73, indicating enhanced suppressive potential. Detailed analysis of T lymphocyte co-cultures revealed modulation of secreted factors, most notably elevated prostaglandin E2 (PGE2). Furthermore, TGF-β MSCs could significantly prolong rejection-free survival (69.2% acceptance rate compared to 21.4% for unlicensed MSC-treated recipients) in a murine corneal allograft model. Mechanistic studies revealed that (1) therapeutic efficacy of TGF-β MSCs is Smad2/3-dependent, (2) the enhanced immunosuppressive capacity of TGF-β MSCs is contact-dependent, and (3) enhanced secretion of PGE2 (via prostaglandin EP4 [E-type prostanoid 4] receptor) by TGF-β MSCs is the predominant mediator of Treg expansion and T cell activation and is associated with corneal allograft survival. Collectively, we provide compelling evidence for the use of TGF-β1 licensing as an unconventional strategy for enhancing MSC immunosuppressive capacity.
Collapse
Affiliation(s)
- Kevin Lynch
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Oliver Treacy
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Md Nahidul Islam
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ellen Donohoe
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Luke Watson
- Orbsen Therapeutics, National University of Ireland, Galway, Galway, Ireland
| | - Steven McLoughlin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Grace O'Malley
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, Ireland; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
33
|
Nieto-Nicolau N, Martín-Antonio B, Müller-Sánchez C, Casaroli-Marano RP. In vitro potential of human mesenchymal stem cells for corneal epithelial regeneration. Regen Med 2020; 15:1409-1426. [PMID: 32352350 DOI: 10.2217/rme-2019-0067] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To determine the potential of mesenchymal stem cells (MSC) for corneal epithelial regeneration in vitro. Materials & methods: Bone marrow MSC (BM-MSC) and adipose tissue MSC were analyzed for corneal epithelial and mesenchymal markers, using limbal stem cells and corneal cells as controls. MSC with better potential were cultured with specific mediums for epithelial induction. Transepithelial electric resistance and wound healing assay with human corneal epithelial cells were performed. Results: BM-MSC showed better potential, increased corneal markers, and higher transepithelial electric resistance values when induced with limbal epithelial culture medium. Induced BM-MSC promoted better wound healing of human corneal epithelial cells by paracrine secretion. Conclusion: BM-MSC has potential for corneal epithelial induction in a protocol compatible with human application.
Collapse
Affiliation(s)
| | | | | | - Ricardo P Casaroli-Marano
- Barcelona Tissue Bank, Banc de Sang I Teixits (BST), Barcelona, Spain.,Department of Surgery, School of Medicine & Hospital Clinic de Barcelona, University of Barcelona, Barcelona, Spain.,Institute of Biomedical Research Sant Pau (IIB-Sant Pau), Barcelona, Spain
| |
Collapse
|
34
|
Negi N, Griffin MD. Effects of mesenchymal stromal cells on regulatory T cells: Current understanding and clinical relevance. Stem Cells 2020; 38:596-605. [PMID: 31995249 PMCID: PMC7217190 DOI: 10.1002/stem.3151] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
The immunomodulatory potential of mesenchymal stromal cells (MSCs) and regulatory T cells (T‐reg) is well recognized by translational scientists in the field of regenerative medicine and cellular therapies. A wide range of preclinical studies as well as a limited number of human clinical trials of MSC therapies have not only shown promising safety and efficacy profiles but have also revealed changes in T‐reg frequency and function. However, the mechanisms underlying this potentially important observation are not well understood and, consequently, the optimal strategies for harnessing MSC/T‐reg cross‐talk remain elusive. Cell‐to‐cell contact, production of soluble factors, reprogramming of antigen presenting cells to tolerogenic phenotypes, and induction of extracellular vesicles (“exosomes”) have emerged as possible mechanisms by which MSCs produce an immune‐modulatory milieu for T‐reg expansion. Additionally, these two cell types have the potential to complement each other's immunoregulatory functions, and a combinatorial approach may exert synergistic effects for the treatment of immunological diseases. In this review, we critically assess recent translational research related to the outcomes and mechanistic basis of MSC effects on T‐reg and provide a perspective on the potential for this knowledge base to be further exploited for the treatment of autoimmune disorders and transplants.
Collapse
Affiliation(s)
- Neema Negi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
35
|
Andreeva E, Andrianova I, Bobyleva P, Gornostaeva A, Ezdakova M, Golikova E, Buravkova L. Adipose tissue-derived stromal cells retain immunosuppressive and angiogenic activity after coculture with cord blood hematopoietic precursors. Eur J Cell Biol 2020; 99:151069. [PMID: 31982141 DOI: 10.1016/j.ejcb.2020.151069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/25/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose-tissue derived stromal cells (ASCs) are currently considered as a full value alternative source of bone marrow MSCs for prevention of graft-versus-host disease (GVHD) after hematopoietic stem cell transplantation due to their immunosuppressive potential. Besides, ASCs are known to support ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). Ex vivo expansion enables to amplify significantly the number of HSPCs of different commitment. Mononuclear cells (MNCs) from cord blood (cb) contain HSPCs and are easily assessed. The rarity of those HSPCs is a serious limitation of its application in cell therapy. Here we expanded cbMNCs in stroma-dependent setting to generate heterocellular associates consisting of ASCs and undifferentiated and low committed hematopoietic cbHSPCs. A part of cbHSPCs in associates demonstrated a primitive phenotype confirmed by formation of "cobblestone areas". ASCs associated with cbHSPCs demonstrated up-regulation of immunosuppressive indoleamine 2,3-dioxygenase (IDO), leukemia inhibitory factor (LIF), cyclooxygenase-2 (PTGS2) genes. ASC-cbHSPCs as well as ASCs provoked the suppression of HLA-DR activation and apoptosis of mitogen-stimulated T cells. VEGF transcription and secretion were elevated providing stimulation of blood vessel formation in ovo. Thus, ASCs retain immunosuppressive and proangiogenic capacities evidencing "third party" potential along with the effective support of ex vivo expansion of cbHSPCs. Above functions expand the relevance of ASCs for needs of regenerative medicine.
Collapse
Affiliation(s)
- Elena Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia.
| | - Irina Andrianova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Polina Bobyleva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; Faculty of Basic Medicine, Moscow State University, Lomonosovsky Prospekt, 31-5, 117192, Moscow, Russia
| | - Aleksandra Gornostaeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Maria Ezdakova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ekaterina Golikova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia
| | - Ludmila Buravkova
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; Faculty of Basic Medicine, Moscow State University, Lomonosovsky Prospekt, 31-5, 117192, Moscow, Russia
| |
Collapse
|
36
|
High-throughput RNA-sequencing identifies mesenchymal stem cell-induced immunological signature in a rat model of corneal allograft rejection. PLoS One 2019; 14:e0222515. [PMID: 31545822 PMCID: PMC6756551 DOI: 10.1371/journal.pone.0222515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The immune rejection mediated by CD4+ T cell and antigen presenting macrophages is the leading cause of corneal transplantation failure. Bone marrow-derived mesenchymal stem cells (BM-MSCs) possess robust immunomodulatory potentials, and have been shown by us and others to promote corneal allograft survival. However, the immunological mechanism underlying the protective effects of BM-MSCs remains unclear. Therefore, in the current study, this mechanism was investigated in a BM-MSC-treated rat model of corneal allograft rejection, in the hope to facilitate the search for novel interventional targets to corneal allograft rejection. Methods Lewis rats were subjected to corneal transplantation and then received subconjunctival injections of BM-MSCs (2×106 cells / 100 μl PBS) immediately and at day 3 post-transplantation. The control group received the injections of PBS with the same volume. The clinical parameters of the corneal allografts, including opacity, edema, and neovascularization, were regularly evaluated after transplantation. On day 10 post-transplantation, the corneal allografts were collected and subjected to flow cytometry and high-throughput RNA sequencing (RNA-seq). GO enrichment and KEGG pathways were analyzed. The quantitative realtime PCR (qPCR) and immunohistochemistry (IHC) were employed to validate the expression of the selected target genes at transcript and protein levels, respectively. Results BM-MSC subconjunctival administration prolonged the corneal allograft survival, with reduced opacity, alleviated edema, and diminished neovascularization. Flow cytometry showed reduced CD4+ T cells and CD68+ macrophages as well as boosted regulatory T cells (Tregs) in the BM-MSC-treated corneal allografts as compared with the PBS-treated counterparts. Moreover, the RNA-seq and qPCR results demonstrated that the transcript abundance of Cytotoxic T-Lymphocyte Associated Protein 4 (Ctla4), Protein Tyrosine Phosphatase, Receptor Type C (Ptprc), and C-X-C Motif Chemokine Ligand 9 (Cxcl9) genes were increased in the allografts of BM-MSC group compared with PBS group; whereas the expression of Heat Shock Protein Family A (Hsp70) Member 8 (Hspa8) gene was downregulated. The expression of these genes was confirmed by IHC at protein level. Conclusion Subconjunctival injections of BM-MSCs promoted corneal allograft survival, reduced CD4+ and CD68+ cell infiltration, and enriched Treg population in the allografts. The BM-MSC-induced upregulation of Ctla4, Ptprc, Cxcl9 genes and downregulation of Hspa8 gene might contribute to the protective effects of BM-MSCs and subserve the potential interventional targets to corneal allograft rejection.
Collapse
|
37
|
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells 2019; 8:E886. [PMID: 31412678 PMCID: PMC6721852 DOI: 10.3390/cells8080886] [Citation(s) in RCA: 634] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
In recent decades, the biomedical applications of mesenchymal stem cells (MSCs) have attracted increasing attention. MSCs are easily extracted from the bone marrow, fat, and synovium, and differentiate into various cell lineages according to the requirements of specific biomedical applications. As MSCs do not express significant histocompatibility complexes and immune stimulating molecules, they are not detected by immune surveillance and do not lead to graft rejection after transplantation. These properties make them competent biomedical candidates, especially in tissue engineering. We present a brief overview of MSC extraction methods and subsequent potential for differentiation, and a comprehensive overview of their preclinical and clinical applications in regenerative medicine, and discuss future challenges.
Collapse
Affiliation(s)
- Yu Han
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Xuezhou Li
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Yuping Han
- Department of Urology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Fei Chang
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| |
Collapse
|
38
|
Hoogduijn MJ, Lombardo E. Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells Transl Med 2019; 8:1126-1134. [PMID: 31282113 PMCID: PMC6811696 DOI: 10.1002/sctm.19-0073] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
2018 was the year of the first marketing authorization of an allogeneic stem cell therapy by the European Medicines Agency. The authorization concerns the use of allogeneic adipose tissue-derived mesenchymal stromal cells (MSCs) for treatment of complex perianal fistulas in Crohn's disease. This is a breakthrough in the field of MSC therapy. The last few years have, furthermore, seen some breakthroughs in the investigations into the mechanisms of action of MSC therapy. Although the therapeutic effects of MSCs have largely been attributed to their secretion of immunomodulatory and regenerative factors, it has now become clear that some of the effects are mediated through host phagocytic cells that clear administered MSCs and in the process adapt an immunoregulatory and regeneration supporting function. The increased interest in therapeutic use of MSCs and the ongoing elucidation of the mechanisms of action of MSCs are promising indicators that 2019 may be the dawn of the therapeutic era of MSCs and that there will be revived interest in research to more efficient, practical, and sustainable MSC-based therapies. Stem Cells Translational Medicine 2019;8:1126-1134.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
39
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
40
|
Murphy N, Treacy O, Lynch K, Morcos M, Lohan P, Howard L, Fahy G, Griffin MD, Ryan AE, Ritter T. TNF-α/IL-1β-licensed mesenchymal stromal cells promote corneal allograft survival via myeloid cell-mediated induction of Foxp3 + regulatory T cells in the lung. FASEB J 2019; 33:9404-9421. [PMID: 31108041 DOI: 10.1096/fj.201900047r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise as a therapy for immune-mediated disorders, including transplant rejection. Our group previously demonstrated the efficacy of pretransplant, systemic administration of allogeneic but not syngeneic MSCs in a rat cornea transplant model. The aim of this study was to enhance the immunomodulatory capacity of syngeneic MSCs. In vitro, MSCs licensed with TNF-α/IL-1β (MSCsTNF-α/IL-1β) suppress syngeneic lymphocyte proliferation via NO production. In vivo, when administered post-transplantation, nonlicensed syngeneic MSCs improved graft survival from 0 to 50% and MSCsTNF-α/IL-1β, in an NO-dependent manner, improved survival to 70%. Improved survival was associated with increased CD4+CD25+forkhead box P3+ regulatory T (Treg) cells and decreased proinflammatory cytokine expression in the draining lymph node. MSCsTNF-α/IL-1β demonstrated a more potent immunomodulatory capacity compared with nonlicensed MSCs, promoting an immune-regulatory CD11b+B220+ monocyte/macrophage population and significantly expanding Treg cells in the lungs and spleen. Ex vivo, we observed that lung-derived myeloid cells act as intermediaries of MSC immunomodulatory function. MSC-conditioned myeloid cells suppressed stimulated lymphocyte proliferation and promoted expansion of Treg cells from naive lymphocytes. This work illustrates how syngeneic MSC therapy can be enhanced by licensing and optimization of timing strategies and further highlights the important role of myeloid cells in mediating MSC immunomodulatory capacity.-Murphy, N., Treacy, O., Lynch, K., Morcos, M., Lohan, P., Howard, L., Fahy, G., Griffin, M. D., Ryan, A. E., Ritter, T. TNF-α/IL-1β-licensed mesenchymal stromal cells promote corneal allograft survival via myeloid cell-mediated induction of Foxp3+ regulatory T cells in the lung.
Collapse
Affiliation(s)
- Nick Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Oliver Treacy
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Kevin Lynch
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Maurice Morcos
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Paul Lohan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Linda Howard
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Gerry Fahy
- Department of Ophthalmology, University Hospital Galway, National University of Ireland-Galway, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Aideen E Ryan
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Discipline of Pharmacology and Therapeutics, School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), School of Medicine, College of Medicine, Nursing, and Health Sciences, National University of Ireland-Galway, Galway, Ireland
| |
Collapse
|
41
|
Burgess JK, Heijink IH. The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. STEM CELL-BASED THERAPY FOR LUNG DISEASE 2019. [PMCID: PMC7121814 DOI: 10.1007/978-3-030-29403-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Janette K. Burgess
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| | - Irene H. Heijink
- The University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
| |
Collapse
|