1
|
He X, Wen X, He PM, Liang D, Yang L, Ran Y, Zhang Z. Diminished Diversities and Clonally Expanded Sequences of T-Cell Receptors in Patients with Chronic Spontaneous Urticaria. Immunotargets Ther 2024; 13:661-671. [PMID: 39659518 PMCID: PMC11628316 DOI: 10.2147/itt.s481361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Objective Studies establish a link between autoimmune factors and chronic spontaneous urticaria (CSU). T cells are crucial in immune-mediated diseases like CSU, and T-cell receptor (TCR) diversity could be pivotal in autoimmune responses. The clinical relevance of TCR variations in CSU is unknown, but understanding them may offer insights into CSU's pathogenesis and treatment. Methods This cross-sectional study included 132 chronic urticaria (CU) patients versus 100 age-matched healthy donors (HD), with subgroup analyses on CU type, angioedema, allergic comorbidities, and anti-IgE therapy efficacy. Peripheral TCRβ repertoires were analyzed by high-throughput sequencing. Results CSU patients showed reduced TCR diversity (lower D50) and increased large clone proportions than HD. Moreover, TCR diversity in CSU patients was significantly lower than in those with Chronic Inducible Urticaria (ClndU). There were also differences in variable (V) and joining (J) gene usage between CU and HD groups as well as CSU and ClndU groups. However, in subgroup analyses regarding angioedema, allergic comorbidities, and the efficacy of anti-IgE treatment, no significant differences were found in TCR diversity or large TCRβ clones. Notably, patients with treatment relapse or poor response to anti-IgE therapy had a higher proportion of positively charged CDR3. Additionally, age affected TCR diversity, but TIgE value, EOS counts, CU duration, and UAS7 score did not associate significantly with D50. Conclusion CSU patients exhibit reduced TCR diversity and increased large clone proportions, indicating abnormal T cell activation. The TCR diversity differences and distinct V and J gene usage between CSU and ClndU may indicate different mechanisms in T lymphocyte-associated immune responses for these two subtypes of CU. The higher positive charge in CDR3 of relapsed or poorly responsive patients to anti-IGE treatment may indicate more antigen charge involvement. These findings provide new insights into the pathogenesis of CSU and potential future treatments.
Collapse
Affiliation(s)
- Xian He
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Allergy, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Xueping Wen
- Chengdu ExAb Biotechnology, LTD, Chengdu, People’s Republic of China
| | - Peng Ming He
- Chengdu ExAb Biotechnology, LTD, Chengdu, People’s Republic of China
| | - Dan Liang
- Department of Allergy, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Lihong Yang
- Department of Allergy, Chengdu First People’s Hospital, Chengdu, People’s Republic of China
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Zhixin Zhang
- Chengdu ExAb Biotechnology, LTD, Chengdu, People’s Republic of China
| |
Collapse
|
2
|
Yang X, Wu C, Liu W, Fu K, Tian Y, Wei X, Zhang W, Sun P, Luo H, Huang J. A clinical-information-free method for early diagnosis of lung cancer from the patients with pulmonary nodules based on backpropagation neural network model. Comput Struct Biotechnol J 2024; 24:404-411. [PMID: 38813092 PMCID: PMC11134880 DOI: 10.1016/j.csbj.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Lung cancer is the main cause of cancer-related deaths worldwide. Due to lack of obvious clinical symptoms in the early stage of the lung cancer, it is hard to distinguish between malignancy and pulmonary nodules. Understanding the immune responses in the early stage of malignant lung cancer patients may provide new insights for diagnosis. Here, using high-through-put sequencing, we obtained the TCRβ repertoires in the peripheral blood of 100 patients with Stage I lung cancer and 99 patients with benign pulmonary nodules. Our analysis revealed that the usage frequencies of TRBV, TRBJ genes, and V-J pairs and TCR diversities indicated by D50s, Shannon indexes, Simpson indexes, and the frequencies of the largest TCR clone in the malignant samples were significantly different from those in the benign samples. Furthermore, reduced TCR diversities were correlated with the size of pulmonary nodules. Moreover, we built a backpropagation neural network model with no clinical information to identify lung cancer cases from patients with pulmonary nodules using 15 characteristic TCR clones. Based on the model, we have created a web server named "Lung Cancer Prediction" (LCP), which can be accessed at http://i.uestc.edu.cn/LCP/index.html.
Collapse
Affiliation(s)
- Xin Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Changchun Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenwen Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kaiyu Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu 610041, China
| | - Yuke Tian
- Department of medical oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xing Wei
- Department of Thoracic Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Zhang
- Department of medical oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Ping Sun
- Department of Health Management Center & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jian Huang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Healthcare Technology, Chengdu Neusoft University, Chengdu, Sichuan 611844, China
| |
Collapse
|
3
|
Feng X, Huo M, Li H, Yang Y, Jiang Y, He L, Cheng Li S. A comprehensive benchmarking for evaluating TCR embeddings in modeling TCR-epitope interactions. Brief Bioinform 2024; 26:bbaf030. [PMID: 39883514 PMCID: PMC11781202 DOI: 10.1093/bib/bbaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/17/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
The complexity of T cell receptor (TCR) sequences, particularly within the complementarity-determining region 3 (CDR3), requires efficient embedding methods for applying machine learning to immunology. While various TCR CDR3 embedding strategies have been proposed, the absence of their systematic evaluations created perplexity in the community. Here, we extracted CDR3 embedding models from 19 existing methods and benchmarked these models with four curated datasets by accessing their impact on the performance of TCR downstream tasks, including TCR-epitope binding affinity prediction, epitope-specific TCR identification, TCR clustering, and visualization analysis. We assessed these models utilizing eight downstream classifiers and five downstream clustering methods, with the performance measured by a diverse range of metrics for precision, robustness, and usability. Overall, handcrafted embeddings outperformed data-driven ones in modeling TCR-epitope interactions. To further refine our comparative findings, we developed an all-in-one TCR CDR3 embedding package comprising all evaluated embedding models. This package will assist users in easily selecting suitable embedding models for their data.
Collapse
Affiliation(s)
- Xikang Feng
- School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, China
| | - Miaozhe Huo
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China
| | - He Li
- School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, China
| | - Yongze Yang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China
| | - Yuepeng Jiang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China
| | - Liang He
- School of Software, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, 999077, China
| |
Collapse
|
4
|
Schwarz E, Benner B, Wesolowski R, Quiroga D, Good L, Sun SH, Savardekar H, Li J, Jung KJ, Duggan MC, Lapurga G, Shaffer J, Scarberry L, Konda B, Verschraegen C, Kendra K, Shah M, Rupert R, Monk P, Shah HA, Noonan AM, Bixel K, Hays J, Wei L, Pan X, Behbehani G, Hu Y, Elemento O, Chung D, Xin G, Blaser BW, Carson WE. Inhibition of Bruton's tyrosine kinase with PD-1 blockade modulates T cell activation in solid tumors. JCI Insight 2024; 9:e169927. [PMID: 39513363 PMCID: PMC11601564 DOI: 10.1172/jci.insight.169927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/18/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDInhibition of Bruton's tyrosine kinase with ibrutinib blocks the function of myeloid-derived suppressor cells (MDSC). The combination of ibrutinib and nivolumab was tested in patients with metastatic solid tumors.METHODSSixteen patients received ibrutinib 420 mg p.o. daily with nivolumab 240 mg i.v. on days 1 and 15 of a 28-day cycle. The effect of ibrutinib and nivolumab on MDSC, the immune profile, and cytokine levels were measured. Single-cell RNA-Seq and T cell receptor sequencing of immune cells was performed.RESULTSCommon adverse events were fatigue and anorexia. Four patients had partial responses and 4 had stable disease at 3 months (average 6.5 months, range 3.5-14.6). Median overall survival (OS) was 10.8 months. Seven days of Bruton's tyrosine kinase (BTK) inhibition significantly increased the proportion of monocytic-MDSC (M-MDSC) and significantly decreased chemokines associated with MDSC recruitment and accumulation (CCL2, CCL3, CCL4, CCL13). Single-cell RNA-Seq revealed ibrutinib-induced downregulation of genes associated with MDSC-suppressive function (TIMP1, CXCL8, VEGFA, HIF1A), reduced MDSC interactions with exhausted CD8+ T cells, and decreased TCR repertoire diversity. The addition of nivolumab significantly increased circulating NK and CD8+ T cells and increased CD8+ T cell proliferation. Exploratory analyses suggest that MDSC and T cell gene expression and TCR repertoire diversity were differentially affected by BTK inhibition according to patient response.CONCLUSIONIbrutinib and nivolumab were well tolerated and affected MDSC and T cell function in patients with solid metastatic tumors.TRIAL REGISTRATIONClinicalTrials.gov NCT03525925.FUNDINGNIH; National Cancer Institute Cancer; National Center for Advancing Translational Sciences; Pelotonia.
Collapse
Affiliation(s)
| | | | - Robert Wesolowski
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Dionisia Quiroga
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | | | - Steven H. Sun
- Comprehensive Cancer Center
- Division of Surgical Oncology, Department of Surgery
| | | | - Jianying Li
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Kyeong Joo Jung
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | | | | | | | | | - Bhavana Konda
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Claire Verschraegen
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Kari Kendra
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Manisha Shah
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Robert Rupert
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Paul Monk
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Hiral A. Shah
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Anne M. Noonan
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Kristin Bixel
- Comprehensive Cancer Center
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - John Hays
- Comprehensive Cancer Center
- Division of Medical Oncology, Department of Internal Medicine
| | - Lai Wei
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | | | - Gregory Behbehani
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yang Hu
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| | - Dongjun Chung
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Gang Xin
- Comprehensive Cancer Center
- Department of Biomedical Informatics, College of Medicine
| | - Bradley W. Blaser
- Comprehensive Cancer Center
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - William E. Carson
- Comprehensive Cancer Center
- Division of Surgical Oncology, Department of Surgery
| |
Collapse
|
5
|
Kim CM, Park KH, Yu YS, Kim JW, Park JY, Park K, Yu JH, Lee JE, Sim SH, Seo BK, Kim JK, Lee ES, Park YH, Kong SY. A 10-Gene Signature to Predict the Prognosis of Early-Stage Triple-Negative Breast Cancer. Cancer Res Treat 2024; 56:1113-1125. [PMID: 38754473 PMCID: PMC11491257 DOI: 10.4143/crt.2024.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is a particularly challenging subtype of breast cancer, with a poorer prognosis compared to other subtypes. Unfortunately, unlike luminal-type cancers, there is no validated biomarker to predict the prognosis of patients with early-stage TNBC. Accurate biomarkers are needed to establish effective therapeutic strategies. MATERIALS AND METHODS In this study, we analyzed gene expression profiles of tumor samples from 184 TNBC patients (training cohort, n=76; validation cohort, n=108) using RNA sequencing. RESULTS By combining weighted gene expression, we identified a 10-gene signature (DGKH, GADD45B, KLF7, LYST, NR6A1, PYCARD, ROBO1, SLC22A20P, SLC24A3, and SLC45A4) that stratified patients by risk score with high sensitivity (92.31%), specificity (92.06%), and accuracy (92.11%) for invasive disease-free survival. The 10-gene signature was validated in a separate institution cohort and supported by meta-analysis for biological relevance to well-known driving pathways in TNBC. Furthermore, the 10-gene signature was the only independent factor for invasive disease-free survival in multivariate analysis when compared to other potential biomarkers of TNBC molecular subtypes and T-cell receptor β diversity. 10-gene signature also further categorized patients classified as molecular subtypes according to risk scores. CONCLUSION Our novel findings may help address the prognostic challenges in TNBC and the 10-gene signature could serve as a novel biomarker for risk-based patient care.
Collapse
Affiliation(s)
- Chang Min Kim
- CbsBioscience. Inc., Daejeon, Korea
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, Korea
| | - Kyong Hwa Park
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | - Ju Won Kim
- Division of Medical Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | | | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Jong-Han Yu
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Hoon Sim
- Breast Cancer Center, National Cancer Center, Goyang, Korea
| | - Bo Kyoung Seo
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Jin Kyeoung Kim
- Department of Pharmacy, College of Pharmacy, CHA University, Seongnam, Korea
| | - Eun Sook Lee
- Breast Cancer Center, National Cancer Center, Goyang, Korea
| | - Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Young Kong
- Targeted Therapy Branch, Research Institute, National Cancer Center, Goyang, Korea
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| |
Collapse
|
6
|
Mao X, Shi M, Zhang B, Fu R, Cai M, Yu S, Lin K, Zhang C, Li D, Chen G, Luo W. Integration of single-cell and bulk RNA sequencing revealed immune heterogeneity and its association with disease activity in rheumatoid arthritis patients. Immunol Res 2024; 72:1120-1135. [PMID: 39009881 DOI: 10.1007/s12026-024-09513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, inflammatory, systemic autoimmune disease characterized by cartilage, bone damage, synovial inflammation, hyperplasia, autoantibody production, and systemic features. To obtain an overall profile of the immune environment in RA patients and its association with clinical features, we performed single-cell transcriptome and T-cell receptor sequencing of mononuclear cells from peripheral blood (PBMC) and synovial fluid (SF) from RA patients, integrated with two large cohorts with bulk RNA sequencing for further validation and investigation. Dendritic cells (DCs) exhibited relatively high functional heterogeneity and tissue specificity in relation to both antigen presentation and proinflammatory functions. Peripheral helper T cells (TPHs) are likely to originate from synovial tissue, undergo activation and exhaustion, and are subsequently released into the peripheral blood. Notably, among all immune cell types, TPHs were found to have the most intense associations with disease activity. In addition, CD8 effector T cells could be clustered into two groups with different cytokine expressions and play distinct roles in RA development. By integrating single-cell data with bulk sequencing from two large cohorts, we identified interactions among TPHs, CD8 cells, CD16 monocytes, and DCs that strongly contribute to the proinflammatory local environment in RA joints. Of note, the swollen 28-joint counts exhibited a more pronounced association with this immune environment compared to other disease activity indexes. The immune environment alternated significantly from PBMCs to SF, which indicated that a series of immune cells was involved in proinflammatory responses in the local joints of RA patients. By integrating single-cell data with two large cohorts, we have uncovered associations between specific immune cell populations and clinical features. This integration provides a rapid and precise methodology for assessing local immune activation, offering valuable insights into the pathophysiological mechanisms at play in RA.
Collapse
Affiliation(s)
- Xiaofan Mao
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Maohua Shi
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, China
| | - Beiying Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Rongdang Fu
- Department of Hepatology, The First People's Hospital of Foshan, Foshan, China
| | - Mengyun Cai
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Sifei Yu
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Kairong Lin
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Chuling Zhang
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China
| | - Dingru Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guoqiang Chen
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, China.
| | - Wei Luo
- Institute of Translational Medicine, The First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
7
|
Huang AL, He YZ, Yang Y, Pang M, Zheng GP, Wang HL. Exploring the potential of the TCR repertoire as a tumor biomarker (Review). Oncol Lett 2024; 28:413. [PMID: 38988449 PMCID: PMC11234811 DOI: 10.3892/ol.2024.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.
Collapse
Affiliation(s)
- An-Li Huang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
- The First Clinical Medical College, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yan-Zhao He
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Yong Yang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| | - Min Pang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Province Key Laboratory of Respiratory Disease, Department of Pulmonary and Critical Care Medicine, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guo-Ping Zheng
- Centre for Transplantation and Renal Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales 2145, Australia
| | - Hai-Long Wang
- Institute of Cancer Biology, Basic Medical Sciences Center, School of Basic Medicine, Shanxi Medical University, Jinzhong, Shanxi 030600, P.R. China
| |
Collapse
|
8
|
Chen L, Hu Y, Zheng B, Luo L, Su Z. Human TCR repertoire in cancer. Cancer Med 2024; 13:e70164. [PMID: 39240157 PMCID: PMC11378360 DOI: 10.1002/cam4.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND T cells, the "superstar" of the immune system, play a crucial role in antitumor immunity. T-cell receptors (TCR) are crucial molecules that enable T cells to identify antigens and start immunological responses. The body has evolved a unique method for rearrangement, resulting in a vast diversity of TCR repertoires. A healthy TCR repertoire is essential for the particular identification of antigens by T cells. METHODS In this article, we systematically summarized the TCR creation mechanisms and analysis methodologies, particularly focusing on the application of next-generation sequencing (NGS) technology. We explore the TCR repertoire in health and cancer, and discuss the implications of TCR repertoire analysis in understanding carcinogenesis, cancer progression, and treatment. RESULTS The TCR repertoire analysis has enormous potential for monitoring the emergence and progression of malignancies, as well as assessing therapy response and prognosis. The application of NGS has dramatically accelerated our comprehension of TCR diversity and its role in cancer immunity. CONCLUSIONS To substantiate the significance of TCR repertoires as biomarkers, more thorough and exhaustive research should be conducted. The TCR repertoire analysis, enabled by advanced sequencing technologies, is poised to become a crucial tool in the future of cancer diagnosis, monitoring, and therapy evaluation.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuan Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Anesthesia Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Bohao Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Limei Luo
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Zhenzhen Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Jiang TT, Kruglov O, Akilov OE. Unleashed monocytic engagement in Sézary syndrome during the combination of anti-CCR4 antibody with type I interferon. Blood Adv 2024; 8:2384-2397. [PMID: 38489234 PMCID: PMC11127216 DOI: 10.1182/bloodadvances.2023010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
ABSTRACT Sézary syndrome (SS) is an aggressive leukemic expansion of skin-derived malignant CD4+ T cells. Drug monotherapy often results in disease relapse because of the heterogenous nature of malignant CD4+ T cells, but how therapies can be optimally combined remains unclear because of limitations in understanding the disease pathogenesis. We identified immunologic transitions that interlink mycosis fungoides with SS using single-cell transcriptome analysis in parallel with high-throughput T-cell receptor sequencing. Nascent peripheral CD4+ T cells acquired a distinct profile of transcription factors and trafficking receptors that gave rise to antigenically mature Sézary cells. The emergence of malignant CD4+ T cells coincided with the accumulation of dysfunctional monocytes with impaired fragment crystallizable γ-dependent phagocytosis, decreased responsiveness to cytokine stimulation, and limited repertoire of intercellular interactions with Sézary cells. Type I interferon supplementation when combined with a monoclonal antibody targeting the chemokine receptor type 4 (CCR4), unleashed monocyte induced phagocytosis and eradication of Sézary cells in vitro. In turn, coadministration of interferon-α with the US Food and Drug Administration-approved anti-CCR4 antibody, mogamulizumab, in patients with SS induced marked depletion of peripheral malignant CD4+ T cells. Importantly, residual CD4+ T cells after Sézary cell ablation lacked any immunologic shifts. These findings collectively unveil an auxiliary role for augmenting monocytic activity during mogamulizumab therapy in the treatment of SS and underscore the importance of targeted combination therapy in this disease.
Collapse
Affiliation(s)
- Tony T. Jiang
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg Kruglov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| | - Oleg E. Akilov
- Department of Dermatology, Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
10
|
Aterido A, López-Lasanta M, Blanco F, Juan-Mas A, García-Vivar ML, Erra A, Pérez-García C, Sánchez-Fernández SÁ, Sanmartí R, Fernández-Nebro A, Alperi-López M, Tornero J, Ortiz AM, Fernández-Cid CM, Palau N, Pan W, Byrne-Steele M, Starenki D, Weber D, Rodriguez-Nunez I, Han J, Myers RM, Marsal S, Julià A. Seven-chain adaptive immune receptor repertoire analysis in rheumatoid arthritis reveals novel features associated with disease and clinically relevant phenotypes. Genome Biol 2024; 25:68. [PMID: 38468286 PMCID: PMC10926600 DOI: 10.1186/s13059-024-03210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA), the activation of T and B cell clones specific for self-antigens leads to the chronic inflammation of the synovium. Here, we perform an in-depth quantitative analysis of the seven chains that comprise the adaptive immune receptor repertoire (AIRR) in RA. RESULTS In comparison to controls, we show that RA patients have multiple and strong differences in the B cell receptor repertoire including reduced diversity as well as altered isotype, chain, and segment frequencies. We demonstrate that therapeutic tumor necrosis factor inhibition partially restores this alteration but find a profound difference in the underlying biochemical reactivities between responders and non-responders. Combining the AIRR with HLA typing, we identify the specific T cell receptor repertoire associated with disease risk variants. Integrating these features, we further develop a molecular classifier that shows the utility of the AIRR as a diagnostic tool. CONCLUSIONS Simultaneous sequencing of the seven chains of the human AIRR reveals novel features associated with the disease and clinically relevant phenotypes, including response to therapy. These findings show the unique potential of AIRR to address precision medicine in immune-related diseases.
Collapse
Affiliation(s)
- Adrià Aterido
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - María López-Lasanta
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - Francisco Blanco
- Rheumatology Department, Hospital Juan Canalejo, A Coruña, Spain
| | | | | | - Alba Erra
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
- Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain
| | | | | | - Raimon Sanmartí
- Rheumatology Department, Hospital Clínic de Barcelona and IDIBAPS, Barcelona, Spain
| | | | | | - Jesús Tornero
- Rheumatology Department, Hospital Universitario Guadalajara, Guadalajara, Spain
| | - Ana María Ortiz
- Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain
| | | | - Núria Palau
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | | | | | | | | | | | - Jian Han
- iRepertoire Inc, Huntsville, AL, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sara Marsal
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain
| | - Antonio Julià
- Rheumatology Research Group, Vall Hebron Research Institute, 08035, Barcelona, Spain.
| |
Collapse
|
11
|
Rani D, Kaur S, Shahjahan, Dey JK, Dey SK. Engineering immune response to regulate cardiovascular disease and cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:381-417. [PMID: 38762276 DOI: 10.1016/bs.apcsb.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Cardiovascular disease (CVD) and cancer are major contributors to global morbidity and mortality. This book chapter delves into the intricate relationship between the immune system and the pathogenesis of both cardiovascular and cancer diseases, exploring the roles of innate and adaptive immunities, immune regulation, and immunotherapy in these complex conditions. The innate immune system acts as the first line of defense against tissue damage and infection, with a significant impact on the initiation and progression of CVD and cancer. Endothelial dysfunction, a hallmark in CVD, shares commonalities with the tumor microenvironment in cancer, emphasizing the parallel involvement of the immune system in both conditions. The adaptive immune system, particularly T cells, contributes to prolonged inflammation in both CVD and cancer. Regulatory T cells and the intricate balance between different T cell subtypes influence disease progression, wound healing, and the outcomes of ischemic injury and cancer immunosurveillance. Dysregulation of immune homeostasis can lead to chronic inflammation, contributing to the development and progression of both CVD and cancer. Thus, immunotherapy emerged as a promising avenue for preventing and managing these diseases, with strategies targeting immune cell modulation, cytokine manipulation, immune checkpoint blockade, and tolerance induction. The impact of gut microbiota on CVD and cancer too is explored in this chapter, highlighting the role of gut leakiness, microbial metabolites, and the potential for microbiome-based interventions in cardiovascular and cancer immunotherapies. In conclusion, immunomodulatory strategies and immunotherapy hold promise in reshaping the landscape of cardiovascular and cancer health. Additionally, harnessing the gut microbiota for immune modulation presents a novel approach to prevent and manage these complex diseases, emphasizing the importance of personalized and precision medicine in healthcare. Ongoing research and clinical trials are expected to further elucidate the complex immunological underpinnings of CVD and cancer thereby refining these innovative approaches.
Collapse
Affiliation(s)
- Diksha Rani
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Smaranjot Kaur
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Shahjahan
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India
| | - Joy Kumar Dey
- Central Council for Research in Homoeopathy, Ministry of Ayush, Govt. of India, New Delhi, Delhi, India
| | - Sanjay Kumar Dey
- Laboratory for Structural Biology of Membrane Proteins, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
12
|
Li R, Wang J, Li X, Liang Y, Jiang Y, Zhang Y, Xu P, Deng L, Wang Z, Sun T, Wu J, Xie H, Wang Y. T-cell receptor sequencing reveals hepatocellular carcinoma immune characteristics according to Barcelona Clinic liver cancer stages within liver tissue and peripheral blood. Cancer Sci 2024; 115:94-108. [PMID: 37962061 PMCID: PMC10823291 DOI: 10.1111/cas.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Analysis of T-cell receptor (TCR) repertoires in different stages of hepatocellular carcinoma (HCC) might help to elucidate its pathogenesis and progression. This study aimed to investigate TCR profiles in liver biopsies and peripheral blood mononuclear cells (PBMCs) in different Barcelona Clinic liver cancer (BCLC) stages of HCC. Ten patients in early stage (BCLC_A), 10 patients in middle stage (BCLC_B), and 10 patients in late stage (BCLC_C) cancer were prospectively enrolled. The liver tumor tissues, adjacent tissues, and PBMCs of each patient were collected and examined by TCR β sequencing. Based on the ImMunoGeneTics (IMGT) database, we aligned the V, D, J, and C gene segments and identified the frequency of CDR3 sequences and amino acids sequence. Diversity of TCR in PBMCs was higher than in both tumor tissues and adjacent tissues, regardless of BCLC stage and postoperative recurrence. TCR clonality was increased in T cells from peripheral blood in advanced HCC, compared with the early and middle stages. No statistical differences were observed between different BCLC stages, either in tumors or adjacent tissues. TCR clonality revealed no significant difference between recurrent tumor and non-recurrent tumor, therefore PBMCs was better to be representative of TCR characteristics in different stages of HCC compared to tumor tissues. Clonal expansion of T cells was associated with low risk of recurrence in HCC patients.
Collapse
Affiliation(s)
- Rui Li
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Junxiao Wang
- Interventional Radiology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
- Aerospace Medical Center, Aerospace Center HospitalPeking University Aerospace Clinical CollegeBeijingChina
| | - Xiubin Li
- Department of Urology, The Third Medical CenterChinese PLA General HospitalBeijingChina
| | - Yining Liang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yiyun Jiang
- Department of Pathology and Hepatology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yuwei Zhang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Pengfei Xu
- Hangzhou ImmuQuad BiotechnologiesHangzhouChina
| | - Ling Deng
- Hangzhou ImmuQuad BiotechnologiesHangzhouChina
| | - Zhe Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Tao Sun
- Hangzhou ImmuQuad BiotechnologiesHangzhouChina
- Institute of Wenzhou, Zhejiang UniversityWenzhouChina
| | - Jian Wu
- Department of Laboratory MedicineThe Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical UniversitySuzhouChina
| | - Hui Xie
- Interventional Radiology, The Fifth Medical CenterChinese PLA General HospitalBeijingChina
| | - Yijin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
13
|
Cao Y, Wang J, Hou W, Ding Y, Zhu Y, Zheng J, Huang Q, Cao Z, Xie R, Wei Q, Qin H. Colorectal cancer-associated T cell receptor repertoire abnormalities are linked to gut microbiome shifts and somatic cell mutations. Gut Microbes 2023; 15:2263934. [PMID: 37795995 PMCID: PMC10557533 DOI: 10.1080/19490976.2023.2263934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
As with many diseases, tumor formation in colorectal cancer (CRC) is multifactorial and involves immune, environmental factors and various genetics that contribute to disease development. Accumulating evidence suggests that the gut microbiome is linked to the occurrence and development of CRC, and these microorganisms are important for immune maturation. However, a systematic perspective integrating microbial profiling, T cell receptor (TCR) and somatic mutations in humans with CRC is lacking. Here, we report distinct features of the expressed TCRβ repertoires in the peripheral blood of and CRC patients (n = 107) and healthy donors (n = 30). CRC patients have elevated numbers of large TCRβ clones and they have very low TCR diversity. The metagenomic sequencing data showed that the relative abundance of Fusobacterium nucleatum (F. nucleatum), Escherichia coli and Dasheen mosaic virus were elevated consistently in CRC patients (n = 97) compared to HC individuals (n = 30). The abundance of Faecalibacterium prausnitzii and Roseburia intestinalis was reduced in CRC (n = 97) compared to HC (n = 30). The correlation between somatic mutations of target genes (16 genes, n = 79) and TCR clonality and microbial biomarkers in CRC had been investigated. Importantly, we constructed a random forest classifier (contains 15 features) based on microbiome and TCR repertoires, which can be used as a clinical detection method to screen patients for CRC. We also analysis of F. nucleatum-specific TCR repertoire characteristics. Collectively, our large-cohort multi-omics data aimed to identify novel biomarkers to inform clinical decision-making in the detection and diagnosis of CRC, which is of possible etiological and diagnostic significance.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jifeng Wang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Weiliang Hou
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Yanqiang Ding
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yefei Zhu
- Research Institute of Intestinal Diseases, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Zheng
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qiongyi Huang
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhan Cao
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Ruting Xie
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
14
|
Wusiman D, Li W, Guo L, Huang Z, Zhang Y, Zhang X, Zhao X, Li L, An Z, Li Z, Ying J, An C. Comprehensive analysis of single-cell and bulk RNA-sequencing data identifies B cell marker genes signature that predicts prognosis and analysis of immune checkpoints expression in head and neck squamous cell carcinoma. Heliyon 2023; 9:e22656. [PMID: 38125461 PMCID: PMC10731009 DOI: 10.1016/j.heliyon.2023.e22656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Recent studies have shown that B cells and the associated tertiary lymphoid structures (TLS) correlate with the response of patients to immune checkpoint inhibitors (ICIs) and predict overall survival (OS) in cancer patients. We screened 145 B cell marker genes (BCMG) by a comprehensive analysis of single-cell RNA-sequencing (scRNA-seq) data of head and neck squamous cell carcinoma (HNSC) from the Gene Expression Omnibus (GEO) database. The BCMG signature (BCMGS) was established using The Cancer Genome Atlas (TCGA) dataset of HNSC and verified in four independent datasets. The multivariate Cox regression analysis identified the signature as an independent prognostic factor. A prognostic nomogram was constructed with independent prognostic factors using the TCGA dataset. GO and KEGG analysis revealed the underlying signaling pathways related to this signature. Study of immune profiles showed that patients in the low-risk group presented discriminative immune-cell infiltrations. Furthermore, the low-risk group was featured by higher TCR and BCR diversity, which suggested that low-risk patients may be more sensitive to ICIs. Immunohistochemistry was performed, and we found that high expression of FTH1 was significantly correlated with poor OS (P = 0.025). The expression of TIM-3, LAG-3 and PD-1 was positively correlated and associated with better OS in HNSC. However, there was no statistically significant difference between PD-L1, PD-L2, CTLA-4, TIGIT and prognosis. The BCMGS was a promising prognostic biomarker in HNSC, which may help to interpret the responses to immunotherapy and provide a new perspective for future research on the treatment in HNSC.
Collapse
Affiliation(s)
- Dilinaer Wusiman
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenbin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lei Guo
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zehao Huang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yi Zhang
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiwei Zhang
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zhao
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaohong An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhengjiang Li
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
15
|
Assing K, Jørgensen SE, Sandgaard KS, De Keukeleere K, B-Hansen M, Petersen MS, Hartling UB, Vaal TMKD, Nielsen C, Jakobsen MA, Watt E, Adams S, Hao Q, Fagerberg C, Mogensen TH. A Novel CDC42 Variant with Impaired Thymopoiesis, IL-7R Signaling, PAK1 Binding, and TCR Repertoire Diversity. J Clin Immunol 2023; 43:1927-1940. [PMID: 37581646 PMCID: PMC10661826 DOI: 10.1007/s10875-023-01561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
Genetic variants in cell division cycle 42 (CDC42) can manifest with dysmorphic features, autoinflammation, hemophagocytic lymphohistiocytosis, and thrombocytopenia, whereas defective thymopoiesis is a rare disease manifestation. We report a novel CDC42 missense variant (c.46A > G, p.Lys16Glu) resulting in infection and HPV-driven carcinogenesis in the mosaic mother and impaired thymopoiesis and profound T cell lymphopenia in the heterozygous daughter identified through newborn screening for SCID. We found that surface expression of IL-7Rα (CD127) was decreased, consistent with reduced IL-7-induced STAT5 phosphorylation and accelerated apoptotic T cell death. Consistent with the vital role of IL-7 in regulating thymopoiesis, both patients displayed reduced T cell receptor CDR3 repertoires. Moreover, the CDC42 variant prevented binding to the downstream effector, p21-activated kinase (PAK)1, suggesting this impaired interaction to underlie reduced IL-7Rα expression and signaling. Here, we provide the first report of severely compromised thymopoiesis and perturbed IL-7Rα signaling caused by a novel CDC42 variant and presenting with diverging clinical and immunological phenotypes in patients.
Collapse
Affiliation(s)
- Kristian Assing
- Department of Clinical Immunology, Odense University Hospital (OUH), Odense, Denmark.
| | | | | | | | - Marie B-Hansen
- Danish Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Mikkel S Petersen
- Department of Clinical Immunology, Aarhus University Hospital (AUH), Aarhus, Denmark
| | - Ulla B Hartling
- Department of Pediatrics, Odense University Hospital (OUH), Odense, Denmark
| | | | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital (OUH), Odense, Denmark
| | - Marianne A Jakobsen
- Department of Clinical Immunology, Odense University Hospital (OUH), Odense, Denmark
| | - Eleanor Watt
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stuart Adams
- Infection, Immunity and Inflammation Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital (OUH), Odense, Denmark
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital (OUH), Odense, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University (AU), Aarhus, Denmark.
- Department of Infectious Diseases, Aarhus University Hospital (AUH), Aarhus, Denmark.
| |
Collapse
|
16
|
Guo F, Yuan X, Cao J, Zhao X, Wang Y, Liu W, Liu B, Zeng Q. RNA-Seq and Immune Repertoire Analysis of Normal and Hepatocellular Carcinoma Relapse After Liver Transplantation. Int J Gen Med 2023; 16:4329-4341. [PMID: 37781272 PMCID: PMC10541230 DOI: 10.2147/ijgm.s421016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) relapse is the main reason for the poor prognosis of HCC after Liver transplantation (LT). This study aimed to explore the molecular mechanisms and immune repertoire profiles of HCC relapse. Material and Methods RNA-seq of blood samples from patients with normal (n=12) and HCC relapse (n=6) after LT was performed to identify differentially expressed genes (DEGs) and key signalling pathways. The DEGs and immune genes were further analyzed by bioinformatics. TRUST4 was used to analyze the differences in the immune repertoire between the two groups. Another 11 blood samples from patients with HCC who had received LT were collected for RT-qPCR verification of key genes. Results A total of 131 upregulated and 157 downregulated genes were identified using RNA-seq, and GO enrichment analysis revealed that the top 15 pathways were immune-related. The PPI network identified 10 key genes. Immune infiltration analysis revealed a significant difference in the five immune cell types between the two groups. A total of 83 intersecting genes were obtained by intersecting DEGs and immune genes. 6 key genes, including MX1, ISG15, OAS1, PRF1, SPP1, and THBS1 were obtained according to the intersection of DEGs, PPI network top 10 genes and immune intersecting genes. Immune repertoire analysis showed that the usage frequency of variable (V) and joining (J) genes in the normal group was higher than that in the relapse group. RT-qPCR validation showed that the expression levels of key genes were consistent with the RNA-seq results. Conclusion Our study identified key pathways and genes that could help determine whether transplant recipients are more prone to HCC relapse. Immune repertoire analysis revealed a difference in the usage frequency of VJ genes between the normal and relapse groups, providing a research direction for immunotherapy in patients with HCC relapse after liver transplantation.
Collapse
Affiliation(s)
- Fansheng Guo
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoye Yuan
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yang Wang
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Baowang Liu
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
17
|
Caruso B, Moran AE. Thymic expression of immune checkpoint molecules and their implication for response to immunotherapies. Trends Cancer 2023:S2405-8033(23)00063-8. [PMID: 37173189 DOI: 10.1016/j.trecan.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023]
Abstract
The thymus is responsible for generating a diverse T cell repertoire that is tolerant to self, but capable of responding to various immunologic insults, including cancer. Checkpoint blockade has changed the face of cancer treatment by targeting inhibitory molecules, which are known to regulate peripheral T cell responses. However, these inhibitory molecules and their ligands are expressed during T cell development in the thymus. In this review, we describe the underappreciated role of checkpoint molecule expression during the formation of the T cell repertoire and detail the importance of inhibitory molecules in regulating T cell lineage commitment. Understanding how these molecules function in the thymus may inform therapeutic strategies for better patient outcomes.
Collapse
Affiliation(s)
- Breanna Caruso
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Amy E Moran
- Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
18
|
Frank ML, Lu K, Erdogan C, Han Y, Hu J, Wang T, Heymach JV, Zhang J, Reuben A. T-Cell Receptor Repertoire Sequencing in the Era of Cancer Immunotherapy. Clin Cancer Res 2023; 29:994-1008. [PMID: 36413126 PMCID: PMC10011887 DOI: 10.1158/1078-0432.ccr-22-2469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
T cells are integral components of the adaptive immune system, and their responses are mediated by unique T-cell receptors (TCR) that recognize specific antigens from a variety of biological contexts. As a result, analyzing the T-cell repertoire offers a better understanding of immune responses and of diseases like cancer. Next-generation sequencing technologies have greatly enabled the high-throughput analysis of the TCR repertoire. On the basis of our extensive experience in the field from the past decade, we provide an overview of TCR sequencing, from the initial library preparation steps to sequencing and analysis methods and finally to functional validation techniques. With regards to data analysis, we detail important TCR repertoire metrics and present several computational tools for predicting antigen specificity. Finally, we highlight important applications of TCR sequencing and repertoire analysis to understanding tumor biology and developing cancer immunotherapies.
Collapse
Affiliation(s)
- Meredith L. Frank
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Kaylene Lu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Can Erdogan
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Rice University, Houston, Texas
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jian Hu
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, Texas
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John V. Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
19
|
Shin J, Ham B, Seo JH, Lee SB, Park IA, Gong G, Kim SB, Lee HJ. Immune repertoire and responses to neoadjuvant TCHP therapy in HER2-positive breast cancer. Ther Adv Med Oncol 2023; 15:17588359231157654. [PMID: 36865681 PMCID: PMC9972050 DOI: 10.1177/17588359231157654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Background Despite the introduction of trastuzumab, pathologic complete response (pCR) is not attained in approximately 30-40% of Human epithelial growth factor receptor-2-positive breast cancer. Tumor-infiltrating lymphocytes (TIL) have been suggested as a predictive marker of treatment response, albeit not always effective. We investigated the relationship between trastuzumab, docetaxel, carboplatin, and pertuzumab (TCHP) treatment and immune repertoire as a treatment response predictor. Design In all, 35 cases were divided into two experimental groups: 10 and 25 cases in the preliminary and main experiments, respectively. In the preliminary experiment, the biopsy tissues before TCHP treatment and the surgical tissues after TCHP treatment were compared. In the main experiment, the biopsy tissues before TCHP treatment were compared according to the TCHP treatment response. Methods The T-cell repertoire for TRA, TRB, TRG, and TRD, and B-cell repertoire for immunoglobulin heavy, immunoglobulin kappa, and immunoglobulin lambda were evaluated. Whole transcriptome sequencing was also performed. Results In the preliminary experiment, the density and richness of the T-cell receptor (TCR) and B-cell receptor (BCR) repertoires decreased after treatment, regardless of TCHP response. In the main experiment, the Shannon's entropy index, density, and length of CDR3 of the TCR and BCR repertoires did not differ significantly in patients who did and did not achieve pCR. The pCR and non-pCR subgroups according to the level of TILs revealed that the non-pCR/lowTIL group had a higher proportion of low-frequency clones than the pCR/lowTIL group in TRA (non-pCR/lowTIL versus pCR/lowTIL, 0.01-0.1%, 63% versus 45.3%; <0.01%, 32.9% versus 51.8%, p < 0.001) and TRB (non-pCR/lowTIL versus pCR/lowTIL, 0.01-0.1%, 26.5% versus 14.7%; <0.01%, 72.0% versus 84.1%, p < 0.001). Conclusions The role of the diversity, richness, and density of the TCR and BCR repertoires as predictive markers for TCHP response was not identified. Compositions of low-frequency clones could be candidates for predictive factors of TCHP response; however, validation studies and further research are necessary.
Collapse
Affiliation(s)
- Junyoung Shin
- Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Sae Byul Lee
- Department of Breast Surgery, Asan Medical
Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, Kangbuk Samsung
Hospital, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
20
|
Andrade DS, Terrematte P, Rennó-Costa C, Zilberberg A, Efroni S. GENTLE: a novel bioinformatics tool for generating features and building classifiers from T cell repertoire cancer data. BMC Bioinformatics 2023; 24:32. [PMID: 36717789 PMCID: PMC9885559 DOI: 10.1186/s12859-023-05155-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND In the global effort to discover biomarkers for cancer prognosis, prediction tools have become essential resources. TCR (T cell receptor) repertoires contain important features that differentiate healthy controls from cancer patients or differentiate outcomes for patients being treated with different drugs. Considering, tools that can easily and quickly generate and identify important features out of TCR repertoire data and build accurate classifiers to predict future outcomes are essential. RESULTS This paper introduces GENTLE (GENerator of T cell receptor repertoire features for machine LEarning): an open-source, user-friendly web-application tool that allows TCR repertoire researchers to discover important features; to create classifier models and evaluate them with metrics; and to quickly generate visualizations for data interpretations. We performed a case study with repertoires of TRegs (regulatory T cells) and TConvs (conventional T cells) from healthy controls versus patients with breast cancer. We showed that diversity features were able to distinguish between the groups. Moreover, the classifiers built with these features could correctly classify samples ('Healthy' or 'Breast Cancer')from the TRegs repertoire when trained with the TConvs repertoire, and from the TConvs repertoire when trained with the TRegs repertoire. CONCLUSION The paper walks through installing and using GENTLE and presents a case study and results to demonstrate the application's utility. GENTLE is geared towards any researcher working with TCR repertoire data and aims to discover predictive features from these data and build accurate classifiers. GENTLE is available on https://github.com/dhiego22/gentle and https://share.streamlit.io/dhiego22/gentle/main/gentle.py .
Collapse
Affiliation(s)
- Dhiego Souto Andrade
- Bioinformatics Multidisciplinary Environment (BioME), Metropole Digital Institute (IMD), Federal University of Rio Grande Do Norte (UFRN), Natal, 59078-970, Brazil.
| | - Patrick Terrematte
- Bioinformatics Multidisciplinary Environment (BioME), Metropole Digital Institute (IMD), Federal University of Rio Grande Do Norte (UFRN), Natal, 59078-970, Brazil
| | - César Rennó-Costa
- Bioinformatics Multidisciplinary Environment (BioME), Metropole Digital Institute (IMD), Federal University of Rio Grande Do Norte (UFRN), Natal, 59078-970, Brazil
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
21
|
Zhao Y, He B, Xu Z, Zhang Y, Zhao X, Huang ZA, Yang F, Wang L, Duan L, Song J, Yao J. Interpretable artificial intelligence model for accurate identification of medical conditions using immune repertoire. Brief Bioinform 2023; 24:6960620. [PMID: 36567255 DOI: 10.1093/bib/bbac555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
Underlying medical conditions, such as cancer, kidney disease and heart failure, are associated with a higher risk for severe COVID-19. Accurate classification of COVID-19 patients with underlying medical conditions is critical for personalized treatment decision and prognosis estimation. In this study, we propose an interpretable artificial intelligence model termed VDJMiner to mine the underlying medical conditions and predict the prognosis of COVID-19 patients according to their immune repertoires. In a cohort of more than 1400 COVID-19 patients, VDJMiner accurately identifies multiple underlying medical conditions, including cancers, chronic kidney disease, autoimmune disease, diabetes, congestive heart failure, coronary artery disease, asthma and chronic obstructive pulmonary disease, with an average area under the receiver operating characteristic curve (AUC) of 0.961. Meanwhile, in this same cohort, VDJMiner achieves an AUC of 0.922 in predicting severe COVID-19. Moreover, VDJMiner achieves an accuracy of 0.857 in predicting the response of COVID-19 patients to tocilizumab treatment on the leave-one-out test. Additionally, VDJMiner interpretively mines and scores V(D)J gene segments of the T-cell receptors that are associated with the disease. The identified associations between single-cell V(D)J gene segments and COVID-19 are highly consistent with previous studies. The source code of VDJMiner is publicly accessible at https://github.com/TencentAILabHealthcare/VDJMiner. The web server of VDJMiner is available at https://gene.ai.tencent.com/VDJMiner/.
Collapse
Affiliation(s)
- Yu Zhao
- AI Lab, Tencent, Shenzhen, China
| | - Bing He
- AI Lab, Tencent, Shenzhen, China
| | | | - Yidan Zhang
- AI Lab, Tencent, Shenzhen, China.,School of Computer Science, Sichuan University, Chengdu, China
| | | | - Zhi-An Huang
- AI Lab, Tencent, Shenzhen, China.,Center for Computer Science and Information Technology, City University of Hong Kong Dongguan Research Institute, Dongguan, China
| | - Fan Yang
- AI Lab, Tencent, Shenzhen, China
| | | | - Lei Duan
- School of Computer Science, Sichuan University, Chengdu, China
| | - Jiangning Song
- AI Lab, Tencent, Shenzhen, China.,Monash Biomedicine Discovery Institute and Monash Data Futures Institute, Monash University, Melbourne, VIC 3800, Australia
| | | |
Collapse
|
22
|
Shu T, Zhou Z, Bai J, Xiao X, Gao M, Zhang N, Wang H, Xia X, Gao Y, Zheng H. Circulating T-cell receptor diversity as predictive biomarker for PARP inhibitors maintenance therapy in high grade serous ovarian cancer. Gynecol Oncol 2023; 168:135-143. [PMID: 36442424 DOI: 10.1016/j.ygyno.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE T-cell receptor (TCR) repertoire diversity is getting increasing attention as a predictive biomarker in cancer patients. However, the characteristics of the TCR together with its predictive significance for high grade serous ovarian cancer (HGSOC) patients receiving poly (ADP-ribose) polymerase inhibitor (PARPi) maintenance therapy remain unknown. METHODS Twenty-seven patients with HGSOC were analyzed including 22 patients receiving PARPi maintenance therapy and 5 untreated patients as control. Peripheral blood samples were collected for TCR sequencing at baseline as well as one month and three months after the exposure to PARPi. To determine whether TCR diversity was related to PARPi efficacy, we compared the TCR repertoire between patients who had received PARPi and those who had not. RESULTS For patients receiving PARPi treatment or not, we evaluated changes in clone abundance during PARPi maintenance and the similarity of the TCR repertoire before and after the treatment. The results revealed that patients receiving PARPi had TCR repertoires that were more stable than those of untreated cases. We next correlated TCR diversity with the efficacy of PARPi in the treatment group. The rising trend of TCR diversity after three months with PARPi treatment was associated with a longer PFS (21.7 vs 7.4 months, hazard ratio = 0.19, p < 0.001) and a better response to PARPi (91.7% vs 25.0%, p = 0.004). Furthermore, we discovered that the primary characteristic with predictive value for the effectiveness of PARPi is the considerable reduction of the high-frequency T cell clones. CONCLUSION We suggested that the circulating TCR diversity could be a potential predictive biomarker for PARPi maintenance therapy in HGSOC.
Collapse
Affiliation(s)
- Tong Shu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Jing Bai
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Xiao Xiao
- Geneplus-Shenzhen Institute, Guangdong 518118, China
| | - Min Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Nan Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hongguo Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xuefeng Xia
- Geneplus-Beijing Institute, Beijing 102206, China
| | - Yunong Gao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| | - Hong Zheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Gynecologic Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
23
|
Lee JJ, Kang HJ, Kim SS, Charton C, Kim J, Lee JK. Unraveling the Transcriptomic Signatures of Homologous Recombination Deficiency in Ovarian Cancers. Adv Biol (Weinh) 2022; 6:e2200060. [PMID: 36116121 DOI: 10.1002/adbi.202200060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/03/2022] [Indexed: 01/28/2023]
Abstract
Homologous recombination deficiency (HRD) is a crucial driver of tumorigenesis by inducing impaired repair of double-stranded DNA breaks. Although HRD possibly triggers the production of numerous tumor neoantigens that sufficiently stimulate and activate various tumor-immune responses, a comprehensive understanding of the HRD-associated tumor microenvironment is elusive. To investigate the effect of HRD on the selective enrichment of transcriptomic signatures, 294 cases from The Cancer Genome Atlas-Ovarian Cancer project with both RNA-sequencing and SNP array data are analyzed. Differentially expressed gene analysis and network analysis are performed to identify HRD-specific signatures. Gene-sets associated with mitochondrial activation, including enhanced oxidative phosphorylation (OxPhos), are significantly enriched in the HRD-high group. Furthermore, a wide range of immune cell activation signatures is enriched in HRD-high cases of high-grade serous ovarian cancer (HGSOC). On further cell-type-specific analysis, M1-like macrophage genes are significantly enriched in HRD-high HGSOC cases, whereas M2-macrophage-related genes are not. The immune-response-associated genomic features, including tumor mutation rate, neoantigens, and tumor mutation burdens, correlated with HRD scores. In conclusion, the results of this study highlight the biological properties of HRD, including enhanced energy metabolism, increased tumor neoantigens and tumor mutation burdens, and consequent exacerbation of immune responses, particularly the enrichment of M1-like macrophages in HGSOC cases.
Collapse
Affiliation(s)
- Jae Jun Lee
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Hyun Ju Kang
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Stephanie S Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Clémentine Charton
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Jinho Kim
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, 13620, Republic of Korea
| | - Jin-Ku Lee
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| |
Collapse
|
24
|
Bao L, Geng Z, Wang J, He L, Kang A, Song J, Huang X, Zhang Y, Liu Q, Jiang T, Pang Y, Niu Y, Zhang R. Attenuated T cell activation and rearrangement of T cell receptor β repertoire in silica nanoparticle-induced pulmonary fibrosis of mice. ENVIRONMENTAL RESEARCH 2022; 213:113678. [PMID: 35710025 DOI: 10.1016/j.envres.2022.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Silica nanoparticles (SiNPs) cause pulmonary fibrosis through a complex immune response, but the underlying mechanisms by which SiNPs interact with T cells and affect their functions remain unclear. The T cell receptor (TCR) repertoire is closely related to T cell activation and proliferation and mediates innate and adaptive immunity. High-throughput sequencing of the TCR enables comprehensive monitoring of the immune microenvironment. Here, the role of the TCRβ repertoire was explored using a mouse model of SiNP-induced pulmonary fibrosis and a co-culture of RAW264.7 and CD4+ T cells. Our results demonstrated increased TCRβ expression and decreased CD25 and CD69 expression in CD4+ T cells from peripheral blood and lung collected 14 days after the induction of pulmonary fibrosis by SiNPs. Simultaneously, SiNPs significantly decreased CD25 and CD69 expression in CD4+ T cells in vitro via RAW264.7 cell presentation. Mechanistically, pLCK and pZap70 expression, involved in mediating T cell activation, were also decreased in the lung of mice with SiNP-induced pulmonary fibrosis. Furthermore, the profile of the TCRβ repertoire in mice with SiNP-induced pulmonary fibrosis showed that SiNPs markedly altered the usage of V genes, VJ gene combinations, and CDR3 amino acids in lung tissue. Collectively, our data suggested that SiNPs could interfere with T cell activation by macrophage presentation via the LCK/Zap70 pathway and rearrange the TCRβ repertoire for adaptive immunity and the pulmonary microenvironment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Juan Wang
- Department of Statistics, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Liyi He
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jianshi Song
- School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
25
|
Wang M, Gao P, Ren L, Duan J, Yang S, Wang H, Wang H, Sun J, Gao X, Li B, Li S, Su W. Profiling the peripheral blood T cell receptor repertoires of gastric cancer patients. Front Immunol 2022; 13:848113. [PMID: 35967453 PMCID: PMC9367216 DOI: 10.3389/fimmu.2022.848113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer driven by somatic mutations may express neoantigens that can trigger T-cell immune responses. Since T-cell receptor (TCR) repertoires play critical roles in anti-tumor immune responses for oncology, next-generation sequencing (NGS) was used to profile the hypervariable complementarity-determining region 3 (CDR3) of the TCR-beta chain in peripheral blood samples from 68 gastric cancer patients and 49 healthy controls. We found that most hyper-expanded CDR3 are individual-specific, and the gene usage of TRBV3-1 is more frequent in the tumor group regardless of tumor stage than in the healthy control group. We identified 374 hyper-expanded tumor-specific CDR3, which may play a vital role in anti-tumor immune responses. The patients with stage IV gastric cancer have higher EBV-specific CDR3 abundance than the control. In conclusion, analysis of the peripheral blood TCR repertoires may provide the biomarker for gastric cancer prognosis and guide future immunotherapy.
Collapse
Affiliation(s)
- Mengyao Wang
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | | | - Laifeng Ren
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jingjing Duan
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Silu Yang
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haina Wang
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Hongxia Wang
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Junning Sun
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | | | - Bo Li
- BGI-Shenzhen, Shenzhen, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- *Correspondence: Wen Su, ; Shuaicheng Li,
| | - Wen Su
- Department of Immunology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Wen Su, ; Shuaicheng Li,
| |
Collapse
|
26
|
Gao H, Yu L, Yan F, Zheng Y, Huang H, Zhuang X, Zeng Y. Landscape of B Cell Receptor Repertoires in COVID-19 Patients Revealed Through CDR3 Sequencing of Immunoglobulin Heavy and Light Chains. Immunol Invest 2022; 51:1994-2008. [PMID: 35797435 DOI: 10.1080/08820139.2022.2092407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The outbreak and persistence of coronavirus disease 2019 (COVID-19) threaten human health. B cells play a vital role in fighting the infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite many studies on the immune responses in COVID-19 patients, it is still unclear how B cell receptor (BCR) constituents, including immunoglobulin heavy (IGHs) and light chains (IGLs), respond to SARS-CoV-2 in patients with varying symptoms. In this study, we conducted complementarity-determining region 3 (CDR3) sequencing of BCR IGHs and IGLs from the peripheral blood of COVID-19 patients and healthy donors. The results showed significantly reduced clonal diversity, more expanded clones, and longer CDR3 lengths of IGH and IGL in COVID-19 patients than those in healthy individuals. The IGLs had a much higher percentage of VJ skew usage (47.83% IGLV and 42.86% IGLJ were significantly regulated) than the IGHs (12.09% IGHV and 0% IGHJ) between the healthy individuals and patients, which indicated the importance of BCR light chains. Furthermore, we found a largely expanded IGLV3-25 gene cluster mostly pairing with IGLJ1 and ILGJ2 in COVID-19 patients and a newly identified upregulated IGLJ1 gene and IGLJ2+IGLV13-21 recombination, both of which are potential sources of SARS-CoV-2-targeting antibodies. Our findings on specific immune B-cell signatures associated with COVID-19 have clinical implications for vaccine and biomarker development for disease diagnosis.
Collapse
Affiliation(s)
- Hongzhi Gao
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.,Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Liying Yu
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Central Laboratory, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Youxian Zheng
- Department of Microbiology, Quanzhou Municipal Center for Disease Control and Prevention, Fujian Province, Quanzhou, China
| | - Hongbo Huang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xibin Zhuang
- Department of Pulmonary and Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
27
|
Bai H, Ma J, Mao W, Zhang X, Nie Y, Hao J, Wang X, Qin H, Zeng Q, Hu F, Qi X, Chen X, Li D, Zhang B, Shi B, Zhang C. Identification of TCR repertoires in asymptomatic COVID-19 patients by single-cell T-cell receptor sequencing. Blood Cells Mol Dis 2022; 97:102678. [PMID: 35716403 PMCID: PMC9162783 DOI: 10.1016/j.bcmd.2022.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 12/03/2022]
Abstract
The T cell-mediated immune responses associated with asymptomatic infection (AS) of SARS-CoV-2 remain largely unknown. The diversity of T-cell receptor (TCR) repertoire is essential for generating effective immunity against viral infections in T cell response. Here, we performed the single-cell TCR sequencing of the PBMC samples from five AS subjects, 33 symptomatic COVID-19 patients and eleven healthy controls to investigate the size and the diversity of TCR repertoire. We subsequently analyzed the TCR repertoire diversity, the V and J gene segment deference, and the dominant combination of αβ VJ gene pairing among these three study groups. Notably, we revealed significant TCR preference in the AS group, including the skewed usage of TRAV1-2-J33-TRBV6-4-J2-2 and TRAV1-2-J33-TRBV6-1-J2-3. Our findings may shed new light on understanding the immunopathogenesis of COVID-19 and help identify optimal TCRs for development of novel therapeutic strategies against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Han Bai
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Weikang Mao
- LC-BIO TECHNOLOGIES (HANGZHOU) CO., LTD., Hanghzhou 310000, China
| | - Xuan Zhang
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Yijun Nie
- Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China
| | - Jingcan Hao
- Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Qiqi Zeng
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Xiaobei Chen
- Department of Infectious Diseases, The Renmin Hospital of Wuhan University, East campus, Gaoxin 6th Road, East Lake New Technology Development Zone, Wuhan 430040, China
| | - Dong Li
- Department of Clinical Laboratory, The Renmin Hospital of Wuhan University, East campus, Gaoxin 6th Road, East Lake New Technology Development Zone, Wuhan 430040, China
| | - Binghong Zhang
- The Renmin Hospital of Wuhan University, East campus, Gaoxin 6th Road, East Lake New Technology Development Zone, Wuhan 430040, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China; Center for Molecular Diagnosis and Precision Medicine, The Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, 17 Yongwai Zhengjie, Nanchang 330006, China; Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
28
|
Cancer evolution: special focus on the immune aspect of cancer. Semin Cancer Biol 2022; 86:420-435. [PMID: 35589072 DOI: 10.1016/j.semcancer.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Cancer is an evolutionary disease. Intra-tumor heterogeneity (ITH), which describes the diversity within individual tumors, sets the foundation for evolution. The fitness of tumor cells is determined by their microenvironment, which exerts intense selection pressure that generally favors cells with survival and proliferation advantages. It has been revealed that host immunity dramatically influences the evolutionary trajectory of cancer. As technologies advance, a refined map of the immune system's involvement in cancer evolution has gradually come to our knowledge. Here we specifically view cancer through the lens of evolutionary immunological biology. We will cover the neoplastic evolution under immunosurveillance, including how the host immunity shapes the tumor evolutionary trajectory and how progressive tumors modulate the host immunity to survive. A comprehensive understanding of the interplay between cancer evolution and cancer immunity provides clues to combating cancer strategically.
Collapse
|
29
|
Kockelbergh H, Evans S, Deng T, Clyne E, Kyriakidou A, Economou A, Luu Hoang KN, Woodmansey S, Foers A, Fowler A, Soilleux EJ. Utility of Bulk T-Cell Receptor Repertoire Sequencing Analysis in Understanding Immune Responses to COVID-19. Diagnostics (Basel) 2022; 12:1222. [PMID: 35626377 PMCID: PMC9140453 DOI: 10.3390/diagnostics12051222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Measuring immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 19 (COVID-19), can rely on antibodies, reactive T cells and other factors, with T-cell-mediated responses appearing to have greater sensitivity and longevity. Because each T cell carries an essentially unique nucleic acid sequence for its T-cell receptor (TCR), we can interrogate sequence data derived from DNA or RNA to assess aspects of the immune response. This review deals with the utility of bulk, rather than single-cell, sequencing of TCR repertoires, considering the importance of study design, in terms of cohort selection, laboratory methods and analysis. The advances in understanding SARS-CoV-2 immunity that have resulted from bulk TCR repertoire sequencing are also be discussed. The complexity of sequencing data obtained by bulk repertoire sequencing makes analysis challenging, but simple descriptive analyses, clonal analysis, searches for specific sequences associated with immune responses to SARS-CoV-2, motif-based analyses, and machine learning approaches have all been applied. TCR repertoire sequencing has demonstrated early expansion followed by contraction of SARS-CoV-2-specific clonotypes, during active infection. Maintenance of TCR repertoire diversity, including the maintenance of diversity of anti-SARS-CoV-2 response, predicts a favourable outcome. TCR repertoire narrowing in severe COVID-19 is most likely a consequence of COVID-19-associated lymphopenia. It has been possible to follow clonotypic sequences longitudinally, which has been particularly valuable for clonotypes known to be associated with SARS-CoV-2 peptide/MHC tetramer binding or with SARS-CoV-2 peptide-induced cytokine responses. Closely related clonotypes to these previously identified sequences have been shown to respond with similar kinetics during infection. A possible superantigen-like effect of the SARS-CoV-2 spike protein has been identified, by means of observing V-segment skewing in patients with severe COVID-19, together with structural modelling. Such a superantigen-like activity, which is apparently absent from other coronaviruses, may be the basis of multisystem inflammatory syndrome and cytokine storms in COVID-19. Bulk TCR repertoire sequencing has proven to be a useful and cost-effective approach to understanding interactions between SARS-CoV-2 and the human host, with the potential to inform the design of therapeutics and vaccines, as well as to provide invaluable pathogenetic and epidemiological insights.
Collapse
Affiliation(s)
- Hannah Kockelbergh
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK;
| | - Shelley Evans
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Tong Deng
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Ella Clyne
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Anna Kyriakidou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1QP, UK; (A.K.); (A.E.)
| | - Andreas Economou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 1QP, UK; (A.K.); (A.E.)
| | - Kim Ngan Luu Hoang
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| | - Stephen Woodmansey
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
- Department of Respiratory Medicine, University Hospitals of Morecambe Bay, Kendal LA9 7RG, UK
| | - Andrew Foers
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7YF, UK;
| | - Anna Fowler
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK;
| | - Elizabeth J. Soilleux
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK; (S.E.); (T.D.); (E.C.); (K.N.L.H.); (S.W.)
| |
Collapse
|
30
|
Liu M, Goo J, Liu Y, Sun W, Wu MC, Hsu L, He Q. TCR-L: an analysis tool for evaluating the association between the T-cell receptor repertoire and clinical phenotypes. BMC Bioinformatics 2022; 23:152. [PMID: 35484495 PMCID: PMC9052542 DOI: 10.1186/s12859-022-04690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background T cell receptors (TCRs) play critical roles in adaptive immune responses, and recent advances in genome technology have made it possible to examine the T cell receptor (TCR) repertoire at the individual sequence level. The analysis of the TCR repertoire with respect to clinical phenotypes can yield novel insights into the etiology and progression of immune-mediated diseases. However, methods for association analysis of the TCR repertoire have not been well developed. Methods We introduce an analysis tool, TCR-L, for evaluating the association between the TCR repertoire and disease outcomes. Our approach is developed under a mixed effect modeling, where the fixed effect represents features that can be explicitly extracted from TCR sequences while the random effect represents features that are hidden in TCR sequences and are difficult to be extracted. Statistical tests are developed to examine the two types of effects independently, and then the p values are combined. Results Simulation studies demonstrate that (1) the proposed approach can control the type I error well; and (2) the power of the proposed approach is greater than approaches that consider fixed effect only or random effect only. The analysis of real data from a skin cutaneous melanoma study identifies an association between the TCR repertoire and the short/long-term survival of patients. Conclusion The TCR-L can accommodate features that can be extracted as well as features that are hidden in TCR sequences. TCR-L provides a powerful approach for identifying association between TCR repertoire and disease outcomes.
Collapse
Affiliation(s)
- Meiling Liu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Juna Goo
- Department of Mathematics, Boise State University, Boise, USA
| | - Yang Liu
- Department of Mathematics and Statistics, Wright State University, Dayton, USA
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Qianchuan He
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, USA.
| |
Collapse
|
31
|
Aran A, Garrigós L, Curigliano G, Cortés J, Martí M. Evaluation of the TCR Repertoire as a Predictive and Prognostic Biomarker in Cancer: Diversity or Clonality? Cancers (Basel) 2022; 14:cancers14071771. [PMID: 35406543 PMCID: PMC8996954 DOI: 10.3390/cancers14071771] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The TCR is the T cell antigen receptor, and it is responsible of the T cell activation, through the HLA-antigen complex recognition. Studying the TCR repertoire in patients with cancer can help to better understand the anti-tumoural responses and it has been suggested to have predictive and or/prognostic values, both for the disease and in response to treatments. The aim of this review is to summarize TCR repertoire studies performed in patients with cancer found in the literature, thoroughly analyse the different factors that can be involved in shaping the TCR repertoire, and draw the current conclusions in this field, especially focusing on whether the TCR diversity—or its opposite, the clonality—can be used as predictors or prognostic biomarkers of the disease. Abstract T cells play a vital role in the anti-tumoural response, and the presence of tumour-infiltrating lymphocytes has shown to be directly correlated with a good prognosis in several cancer types. Nevertheless, some patients presenting tumour-infiltrating lymphocytes do not have favourable outcomes. The TCR determines the specificities of T cells, so the analysis of the TCR repertoire has been recently considered to be a potential biomarker for patients’ progression and response to therapies with immune checkpoint inhibitors. The TCR repertoire is one of the multiple elements comprising the immune system and is conditioned by several factors, including tissue type, tumour mutational burden, and patients’ immunogenetics. Its study is crucial to understanding the anti-tumoural response, how to beneficially modulate the immune response with current or new treatments, and how to better predict the prognosis. Here, we present a critical review including essential studies on TCR repertoire conducted in patients with cancer with the aim to draw the current conclusions and try to elucidate whether it is better to encounter higher clonality with few TCRs at higher frequencies, or higher diversity with many different TCRs at lower frequencies.
Collapse
Affiliation(s)
- Andrea Aran
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
| | - Laia Garrigós
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
| | - Giuseppe Curigliano
- Division of Early Drug Development, European Institute of Oncology, IRCCS, 20141 Milano, Italy;
- Department of Oncology and Hemato-Oncology, University of Milano, 20122 Milano, Italy
| | - Javier Cortés
- International Breast Cancer Center (IBCC), 08017 Barcelona, Spain; (L.G.); (J.C.)
- Medica Scientia Innovation Research (MedSIR), 08018 Barcelona, Spain
- Medica Scientia Innovation Research (MedSIR), Ridgewood, NJ 07450, USA
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Mercè Martí
- Immunology Unit, Department of Cell Biology, Physiology and Immunology, Institut de Biotecnologia I Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain;
- Correspondence: ; Tel.: +34-935812409
| |
Collapse
|
32
|
Wang Z, Zhong Y, Zhang Z, Zhou K, Huang Z, Yu H, Liu L, Liu S, Yang H, Zhou J, Fan J, Wu L, Sun Y. Characteristics and Clinical Significance of T-Cell Receptor Repertoire in Hepatocellular Carcinoma. Front Immunol 2022; 13:847263. [PMID: 35371059 PMCID: PMC8965762 DOI: 10.3389/fimmu.2022.847263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies have demonstrated that the T-cell receptor (TCR) repertoire is associated with prognosis and immune therapy response in several types of cancer. However, the comprehensive features of TCR repertoire in tumor-infiltrating and circulating T cells, as well as its clinical significance of diagnosis in hepatocellular carcinoma (HCC) patients, are still unknown. In this study, we perform paired tumor/peritumoral tissues and peripheral blood samples from 58 patients with HCC and sequenced them with high-throughput TCR to comprehensively analyze the characteristics of TCR and the clinical significance of peripheral TCR sequence. By exploring the abundance and diversity of TCR repertoires, we observe that there was a significantly higher TCR diversity in peripheral blood than in tumoral and peritumoral tissues, while tumoral and peritumoral tissues showed similar TCR diversity. A substantial difference in the usage frequencies of several Vβ, Jβ genes, and TCRβ VJ pairings was found among three types of tissues. Moreover, we reveal that HCC patients have a unique profile of TCR repertoire in peripheral blood in contrast to healthy individuals. We further establish an HCC diagnostic model based on TCRβ VJ pairing usage in peripheral blood, which yields a best-fit area under the curve (AUC) of 0.9746 ± 0.0481 (sensitivity = 0.9675 ± 0.0603, specificity = 0.9998 ± 0.0007, average of 100 repeats) in the test set. Our study describes the characteristics of tissue infiltration and circulating T-cell bank in patients with HCC and shows the potential of using circulating TCR sequence as a biomarker for the non-invasive diagnosis of patients with HCC.
Collapse
Affiliation(s)
- Zifei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
| | - Yu Zhong
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
| | - Zefan Zhang
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kaiqian Zhou
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zhihao Huang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Hao Yu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Longqi Liu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Shiping Liu
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Liang Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Yunfan Sun
- Zhong-Hua Precision Medical Center, Zhongshan Hospital, Fudan University-BGI, Shanghai, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
33
|
Colbert LE, El MB, Lynn EJ, Bronk J, Karpinets TV, Wu X, Chapman BV, Sims TT, Lin D, Kouzy R, Sammouri J, Biegert G, Delgado Medrano AY, Olvera A, Sastry KJ, Eifel PJ, Jhingran A, Lin L, Ramondetta LM, Futreal AP, Jazaeri AA, Schmeler KM, Yue J, Mitra A, Yoshida-Court K, Wargo JA, Solley TN, Hegde V, Nookala SS, Yanamandra AV, Dorta-Estremera S, Mathew G, Kavukuntla R, Papso C, Ahmed-Kaddar M, Kim M, Zhang J, Reuben A, Holliday EB, Minsky BD, Koong AC, Koay EJ, Das P, Taniguchi CM, Klopp A. Expansion of Candidate HPV-Specific T Cells in the Tumor Microenvironment during Chemoradiotherapy Is Prognostic in HPV16 + Cancers. Cancer Immunol Res 2022; 10:259-271. [PMID: 35045973 DOI: 10.1158/2326-6066.cir-21-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/26/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023]
Abstract
Human papillomavirus (HPV) infection causes 600,000 new cancers worldwide each year. HPV-related cancers express the oncogenic proteins E6 and E7, which could serve as tumor-specific antigens. It is not known whether immunity to E6 and E7 evolves during chemoradiotherapy or affects survival. Using T cells from 2 HPV16+ patients, we conducted functional T-cell assays to identify candidate HPV-specific T cells and common T-cell receptor motifs, which we then analyzed across 86 patients with HPV-related cancers. The HPV-specific clones and E7-related T-cell receptor motifs expanded in the tumor microenvironment over the course of treatment, whereas non-HPV-specific T cells did not. In HPV16+ patients, improved recurrence-free survival was associated with HPV-responsive T-cell expansion during chemoradiotherapy.
Collapse
Affiliation(s)
- Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Molly B El
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Erica J Lynn
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julianna Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bhavana V Chapman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis T Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramez Kouzy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Julie Sammouri
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Greyson Biegert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adilene Olvera
- Department of Infectious Diseases and Infection Control, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - K Jagannadha Sastry
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patricia J Eifel
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lilie Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lois M Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrew P Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amir A Jazaeri
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jingyan Yue
- McGovern Medical School at UTHealth, Houston, Texas
| | - Aparna Mitra
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Travis N Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Venkatesh Hegde
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sita S Nookala
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ananta V Yanamandra
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephanie Dorta-Estremera
- McGovern Medical School at UTHealth, Houston, Texas.,Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Geena Mathew
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rohit Kavukuntla
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cassidy Papso
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mustapha Ahmed-Kaddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minsoo Kim
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emma B Holliday
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bruce D Minsky
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eugene J Koay
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prajnan Das
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ann Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
34
|
Tian G, Li M, Lv G. Analysis of T-Cell Receptor Repertoire in Transplantation: Fingerprint of T Cell-mediated Alloresponse. Front Immunol 2022; 12:778559. [PMID: 35095851 PMCID: PMC8790170 DOI: 10.3389/fimmu.2021.778559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
T cells play a key role in determining allograft function by mediating allogeneic immune responses to cause rejection, and recent work pointed their role in mediating tolerance in transplantation. The unique T-cell receptor (TCR) expressed on the surface of each T cell determines the antigen specificity of the cell and can be the specific fingerprint for identifying and monitoring. Next-generation sequencing (NGS) techniques provide powerful tools for deep and high-throughput TCR profiling, and facilitate to depict the entire T cell repertoire profile and trace antigen-specific T cells in circulation and local tissues. Tailing T cell transcriptomes and TCR sequences at the single cell level provides a full landscape of alloreactive T-cell clones development and biofunction in alloresponse. Here, we review the recent advances in TCR sequencing techniques and computational tools, as well as the recent discovery in overall TCR profile and antigen-specific T cells tracking in transplantation. We further discuss the challenges and potential of using TCR sequencing-based assays to profile alloreactive TCR repertoire as the fingerprint for immune monitoring and prediction of rejection and tolerance.
Collapse
Affiliation(s)
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Chen C, Liu SYM, Chen Y, Ou Q, Bao H, Xu L, Zhang Y, Zhong W, Zhou Q, Yang XN, Shao Y, Wu YL, Liu SY, Li Y. Predictive value of TCR Vβ-Jβ profile for adjuvant gefitinib in EGFR mutant NSCLC from ADJUVANT-CTONG 1104 trial. JCI Insight 2022; 7:e152631. [PMID: 35014626 PMCID: PMC8765044 DOI: 10.1172/jci.insight.152631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022] Open
Abstract
Herein, we characterize the landscape and prognostic significance of the T cell receptor (TCR) repertoire of early-stage non-small cell lung cancer (NSCLC) for patients with an epidermal growth factor receptor (EGFR) mutation. β Chain TCR sequencing was used to characterize the TCR repertoires of paraffin-preserved pretreatment tumor and tumor-adjacent tissues from 57 and 44 patients with stage II/III NSCLC with an EGFR mutation treated with gefitinib or chemotherapy in the ADJUVANT-CTONG 1104 trial. The TCR diversity was significantly decreased in patients with an EGFR mutation, and patients with high TCR diversity had a favorable overall survival (OS). A total of 10 TCR Vβ-Jβ rearrangements were significantly associated with OS. Patients with a higher frequency of Vβ5-6Jβ2-1, Vβ20-1Jβ2-1, Vβ24-1Jβ2-1, and Vβ29-1Jβ2-7 had significantly longer OS. Weighted combinations of the 4 TCRs were significantly associated with OS and disease-free survival (DFS) of patients, which could further stratify the high and low TCR diversity groups. Importantly, Vβ5-6Jβ2-1, Vβ20-1Jβ2-1, and Vβ24-1Jβ2-1 had a significant relationship with gefitinib treatment, while Vβ29-1Jβ2-7 was associated with chemotherapy. Four TCR Vβ-Jβ rearrangements related to favorable OS and DFS for adjuvant gefitinib and chemotherapy in patients with an EGFR mutation with stage II/III NSCLC; this may provide a novel perspective for the adjuvant setting for resectable NSCLC.
Collapse
Affiliation(s)
- Cunte Chen
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| | - Si-Yang Maggie Liu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
- Department of Hematology, First Affiliated Hospital, Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- Chinese Thoracic Oncology Group (CTONG), Guangzhou, China
| | - Yedan Chen
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Qiuxiang Ou
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Hua Bao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| | - Yikai Zhang
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| | - Wenzhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qing Zhou
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xue-Ning Yang
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yang Shao
- Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, and
| |
Collapse
|
36
|
Yang H, Berezowska S, Dorn P, Zens P, Chen P, Peng RW, Marti TM, Kocher GJ, Schmid RA, Hall SR. Tumor-infiltrating lymphocytes are functionally inactivated by CD90+ stromal cells and reactivated by combined Ibrutinib and Rapamycin in human pleural mesothelioma. Am J Cancer Res 2022; 12:167-185. [PMID: 34987640 PMCID: PMC8690914 DOI: 10.7150/thno.61209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Despite evidence suggesting that the tumor microenvironment (TME) in malignant pleural mesothelioma (MPM) is linked with poor prognosis, there is a lack of studies that functionally characterize stromal cells and tumor-infiltrating lymphocytes (TILs). Here, we aim to characterize the stromal subsets within MPM, investigate their relationship to TILs, and explore the potential therapeutic targets. Methods: We curated a core set of genes defining stromal/immune signatures expressed by mesenchymal cells within the TME using molecular analysis of The Cancer Genome Atlas (TCGA) MPM cohort. Stromal and immune profiles were molecularly characterized using flow cytometry, immunohistochemistry, microarray, and functionally evaluated using T cell-activation/expansion, coculture assays and drug compounds treatment, based on samples from an independent MPM cohort. Results: We found that a high extracellular matrix (ECM)/stromal gene signature, a high ECM score, or the ratio of ECM to an immune activation gene signature are significantly associated with poor survival in the MPM cohort in TCGA. Analysis of an independent MPM cohort (n = 12) revealed that CD8+ and CD4+ TILs were characterized by PD1 overexpression and concomitant downregulation in degranulation and CD127. This coincided with an increase in CD90+ cells that overexpressed PD-L1 and were enriched for ECM/stromal genes, activated PI3K-mTOR signaling and suppressed T cells. Protein array data demonstrated that MPM samples with high PD-L1 expression were most associated with activation of the mTOR pathway. Further, to reactivate functionally indolent TILs, we reprogrammed ex vivo TILs with Ibrutinib plus Rapamycin to block interleukin-2-inducible kinase (ITK) and mTOR pathways, respectively. The combination treatment shifted effector memory (TEM) CD8+ and CD4+ TILs towards T cells that re-expressed CD45RA (TEMRA) while concomitantly downregulating exhaustion markers. Gene expression analysis confirmed that Ibrutinib plus Rapamycin downregulated coinhibitory and T cell signature pathways while upregulating pathways involved in DNA damage and repair and immune cell adhesion and migration. Conclusions: Our results suggest that targeting the TME may represent a novel strategy to redirect the fate of endogenous TILs with the goal of restoring anti-tumor immunity and control of tumor growth in MPM.
Collapse
|
37
|
Yu K, Ravoor A, Malats N, Pineda S, Sirota M. A Pan-Cancer Analysis of Tumor-Infiltrating B Cell Repertoires. Front Immunol 2022; 12:790119. [PMID: 35069569 PMCID: PMC8767103 DOI: 10.3389/fimmu.2021.790119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor-infiltrating B cells can play an important role in anti-tumor responses but their presence is not well understood. In this study, we extracted the B cell receptor repertoires from 9522 tumor and adjacent non-tumor samples across 28 tumor types in the Cancer Genome Atlas project and performed diversity and network analysis. We identified differences in diversity and network statistics across tumor types and subtypes and observed a trend towards increased clonality in primary tumors compared to adjacent non-tumor tissues. We also found significant associations between the repertoire features and mutation load, tumor stage, and age. Our V-gene usage analysis identified similar V-gene usage patterns in colorectal and endometrial cancers. Lastly, we evaluated the prognostic value of the repertoire features and identified significant associations with survival in seven tumor types. This study warrants further research into better understanding the role of tumor-infiltrating B cells across a wide range of tumor types.
Collapse
Affiliation(s)
- Katharine Yu
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Akshay Ravoor
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Silvia Pineda
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco (UCSF), San Francisco, CA, United States
| |
Collapse
|
38
|
Cai G, Guan Z, Jin Y, Su Z, Chen X, Liu Q, Wang C, Yin X, Zhang L, Ye G, Luo W. Circulating T-Cell Repertoires Correlate With the Tumor Response in Patients With Breast Cancer Receiving Neoadjuvant Chemotherapy. JCO Precis Oncol 2022; 6:e2100120. [PMID: 35025620 PMCID: PMC8769146 DOI: 10.1200/po.21.00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Neoadjuvant chemotherapy (NAC) has been widely used in patients with breast cancer to minish tumor burden and increase resection rate of cancer. T-cell repertoire has been believed to be able to monitor antitumor immune responses. This study aimed to explore the dynamic change of T-cell repertoire and its clinical value in evaluating the tumor response in patients with breast cancer receiving NAC. MATERIALS AND METHODS Ninety-four patients who underwent NAC before surgery were recruited, and peripheral blood samples were collected at multiple time points during NAC. High-throughput T-cell receptor (TCR)-β sequencing was used to characterize the T-cell repertoire of every sample and analyzed the changes in circulating T-cell repertoire during NAC. RESULTS We found that the diversity of TCR repertoires was associated with age and clinical stage of the patients with breast cancer. The distribution of Vβ and Jβ genes in TCR repertoires was skewed in patients with human epidermal growth factor receptor 2-positive (HER2+) breast cancer. Vβ20.1 and Vβ30 expression levels before NAC correlate with tumor response after all cycles of NAC in HER2- and HER2+ patients, respectively. Some CDR3 motifs that correlated with clinical response in either HER2+ or HER2- patients were identified. Besides, TCR repertoire evolved during NAC and the diversity of TCR repertoire decreased more after two cycles of NAC in patients with good tumor response after all cycles of NAC (P = .0061). CONCLUSION Our results demonstrated that TCR repertoire correlated with the characteristics of the tumor, such as the expression status of HER2. Moreover, some characteristics of TCR repertoires that correlated with clinical response were identified and they might provide useful information to tailor therapeutic regimens at the early cycle of NAC.
Collapse
Affiliation(s)
- Gengxi Cai
- The First People's Hospital of Foshan, Foshan, China
| | - Zhanwen Guan
- The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- The First People's Hospital of Foshan, Foshan, China
| | - Zuhui Su
- The First People's Hospital of Foshan, Foshan, China
| | | | - Qing Liu
- The First People's Hospital of Foshan, Foshan, China
| | | | - Xiaoxia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
| | - Lifang Zhang
- The First People's Hospital of Foshan, Foshan, China
| | - Guolin Ye
- The First People's Hospital of Foshan, Foshan, China
| | - Wei Luo
- The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|
39
|
Marquez S, Babrak L, Greiff V, Hoehn KB, Lees WD, Luning Prak ET, Miho E, Rosenfeld AM, Schramm CA, Stervbo U. Adaptive Immune Receptor Repertoire (AIRR) Community Guide to Repertoire Analysis. Methods Mol Biol 2022; 2453:297-316. [PMID: 35622333 PMCID: PMC9761518 DOI: 10.1007/978-1-0716-2115-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adaptive immune receptor repertoires (AIRRs) are rich with information that can be mined for insights into the workings of the immune system. Gene usage, CDR3 properties, clonal lineage structure, and sequence diversity are all capable of revealing the dynamic immune response to perturbation by disease, vaccination, or other interventions. Here we focus on a conceptual introduction to the many aspects of repertoire analysis and orient the reader toward the uses and advantages of each. Along the way, we note some of the many software tools that have been developed for these investigations and link the ideas discussed to chapters on methods provided elsewhere in this volume.
Collapse
Affiliation(s)
- Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lmar Babrak
- Institute of Biomedical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - William D Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, UK
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Enkelejda Miho
- Institute of Biomedical Engineering and Medical Informatics, School of Life Sciences, FHNW University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- aiNET GmbH, Basel, Switzerland
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chaim A Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Ulrik Stervbo
- Center for Translational Medicine, Immunology, and Transplantation, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
- Immundiagnostik, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany.
| |
Collapse
|
40
|
Cardinale A, De Luca CD, Locatelli F, Velardi E. Thymic Function and T-Cell Receptor Repertoire Diversity: Implications for Patient Response to Checkpoint Blockade Immunotherapy. Front Immunol 2021; 12:752042. [PMID: 34899700 PMCID: PMC8652142 DOI: 10.3389/fimmu.2021.752042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/05/2021] [Indexed: 01/05/2023] Open
Abstract
The capacity of T cells to recognize and mount an immune response against tumor antigens depends on the large diversity of the T-cell receptor (TCR) repertoire generated in the thymus during the process of T-cell development. However, this process is dramatically impaired by immunological insults, such as that caused by cytoreductive cancer therapies and infections, and by the physiological decline of thymic function with age. Defective thymic function and a skewed TCR repertoire can have significant clinical consequences. The presence of an adequate pool of T cells capable of recognizing specific tumor antigens is a prerequisite for the success of cancer immunotherapy using checkpoint blockade therapy. However, while this approach has improved the chances of survival of patients with different types of cancer, a large proportion of them do not respond. The limited response rate to checkpoint blockade therapy may be linked to a suboptimal TCR repertoire in cancer patients prior to therapy. Here, we focus on the role of the thymus in shaping the T-cell pool in health and disease, discuss how the TCR repertoire influences patients’ response to checkpoint blockade therapy and highlight approaches able to manipulate thymic function to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Antonella Cardinale
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | | | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.,Department of Maternal and Child Health, Sapienza University of Rome, Rome, Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
41
|
Wang C, Zhu T, Zhao Z, Chen B, Chen T, Dong Q, Liu M, Zhuang S, Yang F, Liu Y, Yang M, Gu Y, Liang H. Pan-cancer multi-omics analyses reveal crosstalk between the Hippo and immune signaling pathways in the tumor microenvironment. FEBS Lett 2021; 596:449-464. [PMID: 34855209 DOI: 10.1002/1873-3468.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
The Hippo signaling pathway is critical for carcinogenesis. However, the roles of the Hippo signaling pathway in the tumor immune microenvironment have been rarely investigated. This study systematically analyzed the relationship between the Hippo signaling pathway and immune cell infiltration across 32 cancer types. Both bioinformatics analyses and biological experiments revealed that the downstream effector of Hippo signaling YAP1 might inhibit CD8+ T cell infiltration by upregulating the expression of the transcription factor CREB1 in uterine corpus endometrial carcinoma. In addition, esophageal carcinoma (ESCA) patients were classified into three subtypes based on the Hippo-immune gene panel. The subtypes of ESCA had distinct characteristics in immune cell infiltration, immune pathways, and prognosis. Thus, this study also reveals a new classification of the immune subtypes with prognostic characteristics in ESCA.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, China
| | - Tong Zhu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, China
| | - Zhangxiang Zhao
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Tingting Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Shuping Zhuang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Fan Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yaoyao Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Min Yang
- Guangdong Cardiovascular Institute, Guangdong Province People's Hospital, Guangzhou, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Haihai Liang
- The Sino-Russian Medical Research Center of Jinan University, The Institute of Chronic Disease of Jinan University, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Shibata T, Shah S, Evans T, Coleman H, Lieblong BJ, Spencer HJ, Quick CM, Sasagawa T, Stephens OW, Peterson E, Johann D, Lu YC, Nakagawa M. Expansion of Human Papillomavirus-Specific T Cells in Periphery and Cervix in a Therapeutic Vaccine Recipient Whose Cervical High-Grade Squamous Intraepithelial Lesion Regressed. Front Immunol 2021; 12:645299. [PMID: 34659195 PMCID: PMC8515132 DOI: 10.3389/fimmu.2021.645299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Advances in high-throughput sequencing have revolutionized the manner with which we can study T cell responses. We describe a woman who received a human papillomavirus (HPV) therapeutic vaccine called PepCan, and experienced complete resolution of her cervical high-grade squamous intraepithelial lesion. By performing bulk T cell receptor (TCR) β deep sequencing of peripheral blood mononuclear cells before and after 4 vaccinations, 70 putatively vaccine-specific clonotypes were identified for being significantly increased using a beta-binomial model. In order to verify the vaccine-specificity of these clonotypes, T cells with specificity to a region, HPV 16 E6 91-115, previously identified to be vaccine-induced using an interferon-γ enzyme-linked immunospot assay, were sorted and analyzed using single-cell RNA-seq and TCR sequencing. HPV specificity in 60 of the 70 clonotypes identified to be vaccine-specific was demonstrated. TCR β bulk sequencing of the cervical liquid-based cytology samples and cervical formalin-fixed paraffin-embedded samples before and after 4 vaccinations demonstrated the presence of these HPV-specific T cells in the cervix. Combining traditional and cutting-edge immunomonitoring techniques enabled us to demonstrate expansion of HPV-antigen specific T cells not only in the periphery but also in the cervix. Such an approach should be useful as a novel approach to assess vaccine-specific responses in various anatomical areas.
Collapse
Affiliation(s)
- Takeo Shibata
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Sumit Shah
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Teresa Evans
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hannah Coleman
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin J Lieblong
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Horace J Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Charles M Quick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Owen W Stephens
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Erich Peterson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Donald Johann
- Department of Internal Medicine (Hematology-Oncology Division), University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Yong-Chen Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mayumi Nakagawa
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
43
|
Song Y, Nie L, Zhang YT. LncRNAs specifically overexpressed in endocervical adenocarcinoma are associated with an unfavorable recurrence prognosis and the immune response. PeerJ 2021; 9:e12116. [PMID: 34616607 PMCID: PMC8462375 DOI: 10.7717/peerj.12116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cervical cancer is the fourth most common gynecological tumor in terms of both the incidence and mortality of females worldwide. Cervical squamous cell carcinoma (CSCC) accounts for 70–80% of cervical cancers, and endocervical adenocarcinoma (EAC) accounts for 20–25%. Unlike CSCC, EAC has worse clinical outcomes and prognosis. In this study, we explored the relationship between various types of long noncoding RNAs (lncRNAs) and pathological types of cervical cancer. Methods RNA sequencing (RNA-Seq) and clinical data from The Cancer Genome Atlas (TCGA) were used in this study. A single-sample gene set enrichment analysis (ssGSEA) and the ESTIMATE package were used to assess lncRNA activity and immune responses, respectively. RT-qPCR was performed to verify our findings. Results We explored the relationship between various types of lncRNAs and pathological types of cervical cancer. A series of long intergenic noncoding RNAs (lincRNAs) and antisense RNAs, which are the major types of lncRNAs, were identified to be specifically expressed in EAC and associated with a poor recurrence prognosis in patients with cervical cancer, suggesting that they might serve as independent prognostic markers of recurrence in patients with cervical cancer. RT-qPCR was performed to verify the 10 EAC-specific lncRNAs in cervical cancer samples we collected. Furthermore, the overexpression of these lncRNAs was positively correlated with EAC pathology levels but negatively correlated with immune responses in the microenvironment of cervical cancer. Conclusions These lncRNAs potentially represent new biomarkers for the prediction of the recurrence prognosis and help obtain deeper insights into potential immunotherapeutic approaches for treating cervical cancer.
Collapse
Affiliation(s)
- Yong Song
- Department of Public Health, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,School of Health Sciences, Wuhan University, Wuhan, Hubei, China
| | - Long Nie
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Yu-Ting Zhang
- School of Nursing, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J Hematol Oncol 2021; 14:160. [PMID: 34620200 PMCID: PMC8499512 DOI: 10.1186/s13045-021-01166-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
In this era of precision medicine, with the help of biomarkers, immunotherapy has significantly improved prognosis of many patients with malignant tumor. Deficient mismatch repair (dMMR)/microsatellite instability (MSI) status is used as a biomarker in clinical practice to predict favorable response to immunotherapy and prognosis. MSI is an important characteristic which facilitates mutation and improves the likelihood of a favorable response to immunotherapy. However, many patients with dMMR/MSI still respond poorly to immunotherapies, which partly results from intratumor heterogeneity propelled by dMMR/MSI. In this review, we discuss how dMMR/MSI facilitates mutations in tumor cells and generates intratumor heterogeneity, especially through type II interferon (IFN-γ) signaling and tumor-infiltrating lymphocytes (TILs). We discuss the mechanism of immunotherapy from the perspective of dMMR/MSI, molecular pathways and TILs, and we discuss how intratumor heterogeneity hinders the therapeutic effect of immunotherapy. Finally, we summarize present techniques and strategies to look at the tumor as a whole to design personalized regimes and achieve favorable prognosis.
Collapse
Affiliation(s)
- Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
45
|
Bao L, Hao C, Wang J, Guo F, Geng Z, Wang D, Zhao Y, Li Y, Yao W. In vitro co-culture model of human monocyte-derived dendritic cells and T cells to evaluate the sensitization of dinitrochlorobenzene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112331. [PMID: 34015634 DOI: 10.1016/j.ecoenv.2021.112331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Exposure to sensitizer has been suggested to be hazardous to human health, evaluation the sensitization of sensitizer is particularly important and urgently needed. Dendritic cells (DCs) exert an irreplaceable function in immunity, and the T cell receptor (TCR) repertoire is key to ensuring immune response to foreign antigens. We hypothesized that a co-culture model of human monocyte-derived dendritic cells (Mo-DCs) and T cells could be employed to evaluate the sensitization of DNCB. An experimental model of DNCB-induced sensitization in rat was employed to examine alterations of cluster of differentiation CD103+ DCs and T cells. A co-cultured model of Mo-DCs and T cells was developed in vitro to assess the sensitization of DNCB through the phenotypic and functional alterations of Mo-DCs, as well as the TCR repertoire. We found that the CD103+ DCs phenotype and T-helper (Th) cells polarization altered in sensitization rats. In vitro, phenotypic alteration of Mo-DCs caused by DNCB were consistent with in vivo results, antigen uptake capacity of Mo-DCs diminished and capacity of Mo-DCs to prime T cell increased. Clones of the TCR repertoire and the diversity of TCR repertoire were enhanced, changes were noted in the usage of variable, joining, and variable-joining gene combinations. DNCB exposure potentiated alterations and characteristics of Mo-DCs and the TCR repertoire in a co-culture model. Such changes provided innovative ideas for evaluating sensitization of DNCB.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Juan Wang
- Department of Staistics, Hebei General Hospital, Shijiazhuang, Hebei 050000, China
| | - Feifei Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Di Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Youliang Zhao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yiping Li
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
46
|
Zhang Y, Zhu Y, Wang J, Xu Y, Wang Z, Liu Y, Di X, Feng L, Zhang Y. A comprehensive model based on temporal dynamics of peripheral T cell repertoire for predicting post-treatment distant metastasis of nasopharyngeal carcinoma. Cancer Immunol Immunother 2021; 71:675-688. [PMID: 34342668 DOI: 10.1007/s00262-021-03016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Many nasopharyngeal carcinoma (NPC) patients develop distant metastases after treatment, leading to poor outcomes. To date, there are no peripheral biomarkers suitable for all NPC patients to predict distant metastasis. Hence, we purposed to develop a noninvasive comprehensive model for predicting post-treatment distant metastasis of all NPC. Since T-cell receptor β chain (TCRB) repertoire has achieved prognostic prediction in many cancers, the clinical characteristics and parameters of TCRB repertoire of 71 cases of peripheral blood samples (pairwise pre-treatment and post-treatment samples from 40 NPC patients who without (nM, n = 21) or with (M, n = 19) post-treatment distant metastasis) were collected. The least absolute shrinkage and selection operator algorithm was used to construct a distant metastasis prediction model. In terms of TCRB repertoire parameters, the diversity of TCRB repertoire was significantly decreased in M group after treatment but not in nM group. Ascending TCRB diversity and higher similarity between pre- and post-treatment samples showed better distant metastasis-free survival (DMFS). The similarity still had robust DMFS prediction in patients with reduced TCRB diversity. More importantly, the 5-factor comprehensive model consisting of basic clinical characteristics and TCRB repertoire indices showed a higher prognostic accuracy than any one individual factor in DMFS predicting. In conclusion, treatment had different effects on the composition of TCRB repertoire in patients without and with post-treatment distant metastasis. The dynamics of TCRB diversity, the similarity of TCRB repertoires, and combinations of these factors with basic clinical characteristics could serve as noninvasive DMFS predictors for all NPC patients.
Collapse
Affiliation(s)
- Yajing Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yujie Zhu
- Department of Blood Transfusion, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Zekun Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Yang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China
| | - Xuebing Di
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ye Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing, China.
| |
Collapse
|
47
|
Construction of Immune-Associated Nomogram for Predicting the Recurrence Survival Risk of Stage I Cervical Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6699131. [PMID: 34337046 PMCID: PMC8289578 DOI: 10.1155/2021/6699131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
Background Various studies reported that the prognosis of patients with cervical cancer (CC) was significantly associated with immunity, whereas limited studies have explored whether immune-associated genes could be classifiers for recurrence-free survival (RFS) of stage I CC. Thus, an improved immune-related gene signature for stage I CC patients' prognosis is urgently required. Materials and Methods We retrospectively analyzed the gene expression profiles of stage I CC patients in the GSE44001 set from the Gene Expression Omnibus (GEO) database. The stage I CC patients were randomly divided into the training group and the internal validation group. The training patients were adopted to develop a prognostic immune gene-based signature; meanwhile, the internal validation patients were used to validate the power of the selected immune gene-related signature using univariate Cox proportional hazard analysis, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analysis. The accuracy and reliability of the immune gene-related signature were evaluated based on Kaplan-Meier analysis and time-dependent receiver operating characteristic (ROC) curves. Results High power of the 8-immune gene signature was found on the basis of ROC analysis (AUC at 1, 3, and 5 years were exhibited in the internal validation group (0.702, 0.715, and 0.728, respectively), external validation group (0.702, 0.825, and 0.842, respectively), and entire GEO dataset (0.840, 0.894, and 0.852, respectively)). Besides, C-index, ROC, calibration plots, and decision curve analysis (DCA) also acted well in our nomogram, suggestive of a high ability of the nomogram to elevate the prognostic prediction of stage I CC patients. Conclusions In this study, we successfully constructed an integrated 8-immune gene-based signature which could accurately identify patients with low prognostic risk from those with high prognostic risk. In addition, we developed an immune-related nomogram which can elevate the prognostic prediction of stage I CC patients.
Collapse
|
48
|
Dvorkin S, Levi R, Louzoun Y. Autoencoder based local T cell repertoire density can be used to classify samples and T cell receptors. PLoS Comput Biol 2021; 17:e1009225. [PMID: 34310600 PMCID: PMC8341707 DOI: 10.1371/journal.pcbi.1009225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 08/05/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Recent advances in T cell repertoire (TCR) sequencing allow for the characterization of repertoire properties, as well as the frequency and sharing of specific TCR. However, there is no efficient measure for the local density of a given TCR. TCRs are often described either through their Complementary Determining region 3 (CDR3) sequences, or theirV/J usage, or their clone size. We here show that the local repertoire density can be estimated using a combined representation of these components through distance conserving autoencoders and Kernel Density Estimates (KDE). We present ELATE-an Encoder-based LocAl Tcr dEnsity and show that the resulting density of a sample can be used as a novel measure to study repertoire properties. The cross-density between two samples can be used as a similarity matrix to fully characterize samples from the same host. Finally, the same projection in combination with machine learning algorithms can be used to predict TCR-peptide binding through the local density of known TCRs binding a specific target.
Collapse
MESH Headings
- Algorithms
- Amino Acid Sequence
- Complementarity Determining Regions/classification
- Complementarity Determining Regions/genetics
- Computational Biology
- Databases, Genetic
- Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Humans
- Immunoglobulin Variable Region/genetics
- Machine Learning
- Receptors, Antigen, T-Cell/classification
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/classification
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Software
Collapse
Affiliation(s)
- Shirit Dvorkin
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Reut Levi
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
49
|
Abstract
Immunotherapy has revolutionized cancer treatment, but efficacy remains limited in most clinical settings. Cancer is a systemic disease that induces many functional and compositional changes to the immune system as a whole. Immunity is regulated by interactions of diverse cell lineages across tissues. Therefore, an improved understanding of tumour immunology must assess the systemic immune landscape beyond the tumour microenvironment (TME). Importantly, the peripheral immune system is required to drive effective natural and therapeutically induced antitumour immune responses. In fact, emerging evidence suggests that immunotherapy drives new immune responses rather than the reinvigoration of pre-existing immune responses. However, new immune responses in individuals burdened with tumours are compromised even beyond the TME. Herein, we aim to comprehensively outline the current knowledge of systemic immunity in cancer.
Collapse
Affiliation(s)
- Kamir J Hiam-Galvez
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Breanna M Allen
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA
| | - Matthew H Spitzer
- Department of Otolaryngology - Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
50
|
Su Z, Jin Y, Zhang Y, Guan Z, Li H, Chen X, Xie C, Zhang C, Liu X, Li P, Ye P, Zhang L, Kong Y, Luo W. The Diagnostic and Prognostic Potential of the B-Cell Repertoire in Membranous Nephropathy. Front Immunol 2021; 12:635326. [PMID: 34122405 PMCID: PMC8190383 DOI: 10.3389/fimmu.2021.635326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/07/2021] [Indexed: 11/13/2022] Open
Abstract
Membranous nephropathy (MN), an autoimmune glomerular disease, is one of the most common causes of nephrotic syndrome in adults. In current clinical practice, the diagnosis is dependent on renal tissue biopsy. A new method for diagnosis and prognosis surveillance is urgently needed for patients. In the present study, we recruited 66 MN patients before any treatment and 11 healthy control (HC) and analyzed multiple aspects of the immunoglobulin heavy chain (IGH) repertoire of these samples using high-throughput sequencing. We found that the abnormalities of CDR-H3 length, hydrophobicity, somatic hypermutation (SHM), and germ line index were progressively more prominent in patients with MN, and the frequency of IGHV3-66 in post-therapy patients was significantly lower than that in pre-therapy patients. Moreover, we found that the IGHV3-38 gene was significantly related to PLA2R, which is the most commonly used biomarker. The most important discovery was that several IGHV, IGHD transcripts, CDR-H3 length, and SHM rate in pre-therapy patients had the potential to predict the therapeutic effect. Our study further demonstrated that the IGH repertoire could be a potential biomarker for prognosis prediction of MN. The landscape of circulating B-lymphocyte repertoires sheds new light on the detection and surveillance of MN.
Collapse
Affiliation(s)
- Zuhui Su
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yabin Jin
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yu Zhang
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Zhanwen Guan
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Huishi Li
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Xiangping Chen
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Chao Xie
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Chuling Zhang
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Xiaofen Liu
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Peixian Li
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Peiyi Ye
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Lifang Zhang
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| | - Yaozhong Kong
- Nephrology Department, The First People's Hospital of Foshan, Foshan, China
| | - Wei Luo
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan, China
| |
Collapse
|