1
|
Yu T, Jiang P. Exploring the Role of Chemokine-Related Gene Deregulation and Immune Infiltration in Ischemic Stroke: Insights into CXCL16 and SEMA3E as Potential Biomarkers. J Mol Neurosci 2024; 74:115. [PMID: 39663269 DOI: 10.1007/s12031-024-02295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Ischemic stroke is a leading cause of mortality and disability globally. Understanding the role of chemokine-related differently expressed genes (CDGs) in ischemic stroke pathophysiology is essential for advancing diagnostic and therapeutic strategies. We conducted comprehensive analyses using the GSE16561 dataset: chemokine pathway enrichment via GSVA, differential expression of 12 CDGs, Pearson correlation, and functional enrichment analyses (GO and KEGG). Machine learning algorithms were employed to develop diagnostic models, evaluated using ROC curve analysis. A nomogram was constructed and validated with independent datasets (GSE58294). Gene set enrichment analysis (GSEA) and immuno-infiltration analysis were also performed. Chemokine pathway scores were significantly elevated in ischemic stroke, indicating their potential involvement. Logistic regression emerged as the most effective diagnostic model, with CXCL16 and SEMA3E as significant biomarkers. The nomogram exhibited high discriminatory ability (AUC = 0.964), well-calibrated predictions, and clinical utility across datasets. GSEA highlighted key biological pathways associated with CXCL16 and SEMA3E. Immuno-infiltration analysis revealed significant differences in immune cell infiltration between control and ischemic stroke groups, with distinct correlations between CXCL16 and SEMA3E expression and immune cell populations. This study highlights the deregulation of CDGs in ischemic stroke and their implications in critical biological processes. CXCL16 and SEMA3E are identified as key biomarkers with potential diagnostic utility. Insights from gene set enrichment and immuno-infiltration analyses provide mechanistic understanding, suggesting novel therapeutic targets and enhancing clinical decision-making in ischemic stroke management.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Anaesthesiology, Shandong Provincial Third Hospital, Shandong University, Tianqiao District, No. 12, Middle Wuyingshan Road, Jinan, Shandong Province, China
| | - Peng Jiang
- Department of Anaesthesiology, Shandong Provincial Third Hospital, Shandong University, Tianqiao District, No. 12, Middle Wuyingshan Road, Jinan, Shandong Province, China.
| |
Collapse
|
2
|
Leroux LP, Chaparro V, Plouffe A, Johnston B, Jaramillo M. Toxoplasma gondii infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6 + cells. Infect Immun 2024; 92:e0030924. [PMID: 39436058 PMCID: PMC11556035 DOI: 10.1128/iai.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II T. gondii strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble T. gondii antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. Cxcl16 mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon T. gondii infection. Importantly, conditioned medium (CM) collected from T. gondii-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, T. gondii-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| |
Collapse
|
3
|
AlQot HE, Rylett RJ. Primate-specific 82-kDa choline acetyltransferase attenuates progression of Alzheimer's disease-like pathology in the APP NL-G-F knock-in mouse model. Sci Rep 2024; 14:27614. [PMID: 39528509 PMCID: PMC11555257 DOI: 10.1038/s41598-024-78751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloidosis, neuroinflammation, cholinergic dysfunction and cognitive impairment. In AD, the cholinergic neuronal marker choline acetyltransferase (ChAT) is reduced and the primate-specific nuclear isoform, 82-kDa ChAT, is mislocalized to cytoplasm. Cell-based studies suggest a role for 82-kDa ChAT in regulating expression of AD-related genes with potential reductions in β-amyloid (Aβ) levels. To study this further, we crossed transgenic mice expressing human 82-kDa ChAT with the AD mouse model APPNL-G-F and used molecular techniques and neurobehavioral tests to study the impact of 82-kDa ChAT on AD pathology. These mice had altered expression of genes linked to Aβ clearance and inflammation, and reduced cognitive decline, amyloidosis and gliosis. These effects were inversely related to age and Aβ plaque load and correlated best with 82-kDa ChAT localized to nuclei of neurons. The study suggests a role for 82-kDa ChAT in decreasing AD-like pathology.
Collapse
Affiliation(s)
- Hadir E AlQot
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Rebecca Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada.
| |
Collapse
|
4
|
D'Uonnolo G, Isci D, Nosirov B, Kuppens A, Wantz M, Nazarov PV, Golebiewska A, Rogister B, Chevigné A, Neirinckx V, Szpakowska M. Patient-based multilevel transcriptome exploration highlights relevant chemokines and chemokine receptor axes in glioblastoma. Comput Biol Med 2024; 182:109197. [PMID: 39353298 DOI: 10.1016/j.compbiomed.2024.109197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Chemokines and their receptors form a complex interaction network, crucial for precise leukocyte positioning and trafficking. In cancer, they promote malignant cell proliferation and survival but are also critical for immune cell infiltration in the tumor microenvironment. Glioblastoma (GBM) is the most common and lethal brain tumor, characterized by an immunosuppressive TME, with restricted immune cell infiltration. A better understanding of chemokine-receptor interactions is therefore essential for improving tumor immunogenicity. In this study, we assessed the expression of all human chemokines in adult-type diffuse gliomas, with particular focus on GBM, based on patient-derived samples. Publicly available bulk RNA sequencing datasets allowed us to identify the chemokines most abundantly expressed in GBM, with regard to disease severity and across different tumor subregions. To gain insight into the chemokines-receptor network at the single cell resolution, we explored GBmap, a curated resource integrating multiple scRNAseq datasets from different published studies. Our study constitutes the first patient-based handbook highlighting the relevant chemokine-receptor crosstalks, which are of significant interest in the perspective of a therapeutic modulation of the TME in GBM.
Collapse
Affiliation(s)
- Giulia D'Uonnolo
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - Bakhtiyor Nosirov
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg; Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Amandine Kuppens
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium
| | - May Wantz
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Petr V Nazarov
- Multiomics Data Science Research Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium; University Hospital, Neurology Department, University of Liège, Belgium
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Belgium.
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
5
|
Zhao L, Shireman J, Probelsky S, Rigg B, Wang X, Huff WX, Kwon JH, Dey M. CCL21 Induces Plasmacytoid Dendritic Cell Migration and Activation in a Mouse Model of Glioblastoma. Cancers (Basel) 2024; 16:3459. [PMID: 39456552 PMCID: PMC11506458 DOI: 10.3390/cancers16203459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that are traditionally divided into two distinct subsets: myeloid DCs (mDCs) and plasmacytoid DCs (pDCs). pDCs are known for their ability to secrete large amounts of cytokine type I interferons (IFN- α). In our previous work, we have demonstrated that pDC infiltration promotes glioblastoma (GBM) tumor immunosuppression through decreased IFN-α secretion via TLR-9 signaling and increased suppressive function of regulatory T cells (Tregs) via increased IL-10 secretion, resulting in poor overall outcomes in mouse models of GBM. Further dissecting the overall mechanism of pDC-mediated GBM immunosuppression, in this study, we identified CCL21 as highly upregulated by multiple GBM cell lines, which recruit pDCs to tumor sites via CCL21-CCR7 signaling. Furthermore, pDCs are activated by CCL21 in the GBM microenvironment through intracellular signaling of β-arrestin and CIITA. Finally, we found that CCL21-treated pDCs directly suppress CD8+ T cell proliferation without affecting regulatory T cells (Tregs) differentiation, which is considered the canonical pathway of immunotolerant regulation. Taken together, our results show that pDCs play a multifaced role in GBM immunosuppression, and CCL21 could be a novel therapeutic target in GBM to overcome pDC-mediated immunosuppression.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Samantha Probelsky
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Bailey Rigg
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Xiaohu Wang
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| | - Wei X. Huff
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.X.H.); (J.H.K.)
| | - Jae H. Kwon
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (W.X.H.); (J.H.K.)
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI 53706, USA; (L.Z.); (J.S.); (S.P.); (B.R.); (X.W.)
| |
Collapse
|
6
|
Mao Y, Meng Y, Zou K, Qin N, Wang Y, Yan J, Chen P, Cheng Y, Shi W, Zhou C, Chen H, Sheng J, Liu X, Pan J, Huang H. Advanced paternal age exacerbates neuroinflammation in offspring via m6A modification-mediated intergenerational inheritance. J Neuroinflammation 2024; 21:249. [PMID: 39367406 PMCID: PMC11453047 DOI: 10.1186/s12974-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The trend of postponing childbearing age is prevalent worldwide. Advanced paternal age (APA) is associated with adverse pregnancy outcomes and offspring health. However, the underlying mechanism by which paternal aging affects the risk of offspring neuropsychiatric disorders is unclear. Our study aims to explore the behavioral phenotypes and the pathologic epigenetic alterations of APA offspring inherited from aging sperm. METHODS Behavioral tests, ELISA assay, immunofluorescence and western blotting were performed on offspring mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA immunoprecipitation sequencing (RIP-seq) were used to investigate the modified N6-methyladenosine (m6A) profiles of paternal sperm and offspring hippocampus. Intervention of gene expression by lentivirus and adeno-associated virus in both vivo and vitro examined the potential therapeutic targets of intergenerational inherited neuroinflammation. RESULTS In our study, APA offspring exhibit cognitive impairment and autism-like behavior. An increase in neuroinflammation in APA offspring is associated with microglial overactivation, which manifests as abnormal morphology and augmented engulfment. MeRIP-seq of F0 sperm and F1 hippocampus reveal that Nr4a2 is hypermethylated with decreased expression in APA offspring involving in synaptic plasticity and microglial function. In addition, Ythdc1, an m6A reader protein, is markedly elevated in aging sperm and remains elevated in adult hippocampus of APA group. Enhanced Ythdc1 recognizes and suppresses the hypermethylated Nr4a2, thereby contributing to the abnormal phenotype in offspring. The overexpression of Ythdc1 triggers microglial activation in vitro and its suppression in the hippocampus of APA progeny alleviates behavioral aberrations and attenuates neuroinflammation. CONCLUSION Our study provides additional evidence of the abnormal behavioral phenotypes of APA offspring and reveals potential epigenetic inheritance signatures and targeted genes for future research.
Collapse
Affiliation(s)
- Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China
| | - Yicong Meng
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kexin Zou
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ningxin Qin
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinyu Wang
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - PinJia Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Weihui Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Chengliang Zhou
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixi Chen
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| |
Collapse
|
7
|
Lu J, Huo W, Ma Y, Wang X, Yu J. Suppressive immune microenvironment and CART therapy for glioblastoma: Future prospects and challenges. Cancer Lett 2024; 600:217185. [PMID: 39142498 DOI: 10.1016/j.canlet.2024.217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma, a highly malignant intracranial tumor, has acquired slow progress in treatment. Previous clinical trials involving targeted therapy and immune checkpoint inhibitors have shown no significant benefits in treating glioblastoma. This ineffectiveness is largely due to the complex immunosuppressive environment of glioblastoma. Glioblastoma cells exhibit low immunogenicity and strong heterogeneity and the immune microenvironment is replete with inhibitory cytokines, numerous immunosuppressive cells, and insufficient effective T cells. Fortunately, recent Phase I clinical trials of CART therapy for glioblastoma have confirmed its safety, with a small subset of patients achieving survival benefits. However, CART therapy continues to face challenges, including blood-brain barrier obstruction, antigen loss, and an immunosuppressive tumor microenvironment (TME). This article provides a detailed examination of glioblastoma's immune microenvironment, both from intrinsic and extrinsic tumor cell factors, reviews current clinical and basic research on multi-targets CART treatment, and concludes by outlining the key challenges in using CART cells for glioblastoma therapy.
Collapse
Affiliation(s)
- Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wen Huo
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Yingze Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
8
|
Song P, Deng H, Liu Y, Zhang M. Integrated bioinformatics analysis and experimental validation reveal the relationship between ALOX5AP and the prognosis and immune microenvironment in glioma. BMC Med Genomics 2024; 17:218. [PMID: 39169376 PMCID: PMC11337642 DOI: 10.1186/s12920-024-01991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Treatment of gliomas, the most prevalent primary malignant neoplasm of the central nervous system, is challenging. Arachidonate 5-lipoxygenase activating protein (ALOX5AP) is crucial for converting arachidonic acid into leukotrienes and is associated with poor prognosis in multiple cancers. Nevertheless, its relationship with the prognosis and the immune microenvironment of gliomas remains incompletely understood. METHODS The differential expression of ALOX5AP was evaluated based on public Databases. Kaplan-Meier, multivariate Cox proportional hazards regression analysis, time-dependent receiver operating characteristic, and nomogram were used to estimate the prognostic value of ALOX5AP. The relationship between ALOX5AP and immune infiltration was calculated using ESTIMATE and CIBERSORT algorithms. Relationships between ALOX5AP and human leukocyte antigen molecules, immune checkpoints, tumor mutation burden, TIDE score, and immunophenoscore were calculated to evaluate glioma immunotherapy response. Single gene GSEA and co-expression network-based GO and KEGG enrichment analysis were performed to explore the potential function of ALOX5AP. ALOX5AP expression was verified using multiplex immunofluorescence staining and its prognostic effects were confirmed using a glioma tissue microarray. RESULT ALOX5AP was highly expressed in gliomas, and the expression level was related to World Health Organization (WHO) grade, age, sex, IDH mutation status, 1p19q co-deletion status, MGMTp methylation status, and poor prognosis. Single-cell RNA sequencing showed that ALOX5AP was expressed in macrophages, monocytes, and T cells but not in tumor cells. ALOX5AP expression positively correlated with M2 macrophage infiltration and poor immunotherapy response. Immunofluorescence staining demonstrated that ALOX5AP was upregulated in WHO higher-grade gliomas, localizing to M2 macrophages. Glioma tissue microarray confirmed the adverse effect of ALOX5AP in the prognosis of glioma. CONCLUSION ALOX5AP is highly expressed in M2 macrophages and may act as a potential biomarker for predicting prognosis and immunotherapy response in patients with glioma.
Collapse
Affiliation(s)
- Ping Song
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China
| | - Hui Deng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China
| | - Yushu Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, Wuhan, 430030, P.R. China.
| |
Collapse
|
9
|
Dingyi L, Libin H, Jifeng P, Ding Z, Yulong L, Zhangyi W, Yunong Y, Qinghua W, Feng L. Silencing CXCL16 alleviate neuroinflammation and M1 microglial polarization in mouse brain hemorrhage model and BV2 cell model through PI3K/AKT pathway. Exp Brain Res 2024; 242:1917-1932. [PMID: 38896294 DOI: 10.1007/s00221-024-06875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Neuroinflammation and microglia polarization play pivotal roles in brain injury induced by intracerebral hemorrhage (ICH). Despite the well-established involvement of CXC motif chemokine ligand 16 (CXCL16) in regulating inflammatory responses across various diseases, its specific functions in the context of neuroinflammation and microglial polarization following ICH remain elusive. In this study, we investigated the impact of CXCL16 on neuroinflammation and microglia polarization using both mouse and cell models. Our findings revealed elevated CXCL16 expression in mice following ICH and in BV2 cells after lipopolysaccharide (LPS) stimulation. Specific silencing of CXCL16 using siRNA led to a reduction in the expression of neuroinflammatory factors, including IL-1β and IL-6, as well as decreased expression of the M1 microglia marker iNOS. Simultaneously, it enhanced the expression of anti-inflammatory factors such as IL-10 and the M2 microglia marker Arg-1. These results were consistent across both mouse and cell models. Intriguingly, co-administration of the PI3K-specific agonist 740 Y-P with siRNA in LPS-stimulated cells reversed the effects of siRNA. In conclusion, silencing CXCL16 can positively alleviate neuroinflammation and M1 microglial polarization in BV2 inflammation models and ICH mice. Furthermore, in BV2 cells, this beneficial effect is mediated through the PI3K/Akt pathway. Inhibition of CXCL16 could be a novel approach for treating and diagnosing cerebral hemorrhage.
Collapse
Affiliation(s)
- Lv Dingyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Hu Libin
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Piao Jifeng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Zhiquan Ding
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Li Yulong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wu Zhangyi
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yin Yunong
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Wang Qinghua
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Li Feng
- Neurosurgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
10
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Pimentel Vera LN, Arozqueta Basurto J, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS-wide repopulation by hematopoietic-derived microglia-like cells corrects progranulin deficiency in mice. Nat Commun 2024; 15:5654. [PMID: 38969669 PMCID: PMC11226701 DOI: 10.1038/s41467-024-49908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/17/2024] [Indexed: 07/07/2024] Open
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900, Monza, Italy
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Anay Limaye
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA, 94404, USA
| | - Kara L Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA, 94305, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Shui X, Chen J, Fu Z, Zhu H, Tao H, Li Z. Microglia in Ischemic Stroke: Pathogenesis Insights and Therapeutic Challenges. J Inflamm Res 2024; 17:3335-3352. [PMID: 38800598 PMCID: PMC11128258 DOI: 10.2147/jir.s461795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemic stroke is the most common type of stroke, which is the main cause of death and disability on a global scale. As the primary immune cells in the brain that are crucial for preserving homeostasis of the central nervous system microenvironment, microglia have been found to exhibit dual or even multiple effects at different stages of ischemic stroke. The anti-inflammatory polarization of microglia and release of neurotrophic factors may provide benefits by promoting neurological recovery at the lesion in the early phase after ischemic stroke. However, the pro-inflammatory polarization of microglia and secretion of inflammatory factors in the later phase of injury may exacerbate the ischemic lesion, suggesting the therapeutic potential of modulating the balance of microglial polarization to predispose them to anti-inflammatory transformation in ischemic stroke. Microglia-mediated signaling crosstalk with other cells may also be key to improving functional outcomes following ischemic stroke. Thus, this review provides an overview of microglial functions and responses under physiological and ischemic stroke conditions, including microglial activation, polarization, and interactions with other cells. We focus on approaches that promote anti-inflammatory polarization of microglia, inhibit microglial activation, and enhance beneficial cell-to-cell interactions. These targets may hold promise for the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xinyao Shui
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Jingsong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Ziyue Fu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Haoyue Zhu
- Clinical Medical College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
12
|
Bolini L, Campos RMP, Spiess DA, Lima-Rosa FL, Dantas DP, Conde L, Mendez-Otero R, Vale AM, Pimentel-Coelho PM. Long-term recruitment of peripheral immune cells to brain scars after a neonatal insult. Glia 2024; 72:546-567. [PMID: 37987116 DOI: 10.1002/glia.24490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.
Collapse
Affiliation(s)
- Lukas Bolini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Daiane Aparecida Spiess
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Luis Lima-Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danillo Pereira Dantas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Conde
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M Vale
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
13
|
Chia TY, Billingham LK, Boland L, Katz JL, Arrieta VA, Shireman J, Rosas AL, DeLay SL, Zillinger K, Geng Y, Kruger J, Silvers C, Wang H, Vazquez Cervantes GI, Hou D, Wang S, Wan H, Sonabend A, Zhang P, Lee-Chang C, Miska J. The CXCL16-CXCR6 axis in glioblastoma modulates T-cell activity in a spatiotemporal context. Front Immunol 2024; 14:1331287. [PMID: 38299146 PMCID: PMC10827847 DOI: 10.3389/fimmu.2023.1331287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Glioblastoma multiforme (GBM) pathobiology is characterized by its significant induction of immunosuppression within the tumor microenvironment, predominantly mediated by immunosuppressive tumor-associated myeloid cells (TAMCs). Myeloid cells play a pivotal role in shaping the GBM microenvironment and influencing immune responses, with direct interactions with effector immune cells critically impacting these processes. Methods Our study investigates the role of the CXCR6/CXCL16 axis in T-cell myeloid interactions within GBM tissues. We examined the surface expression of CXCL16, revealing its limitation to TAMCs, while microglia release CXCL16 as a cytokine. The study explores how these distinct expression patterns affect T-cell engagement, focusing on the consequences for T-cell function within the tumor environment. Additionally, we assessed the significance of CXCR6 expression in T-cell activation and the initial migration to tumor tissues. Results Our data demonstrates that CXCL16 surface expression on TAMCs results in predominant T-cell engagement with these cells, leading to impaired T-cell function within the tumor environment. Conversely, our findings highlight the essential role of CXCR6 expression in facilitating T-cell activation and initial migration to tumor tissues. The CXCL16-CXCR6 axis exhibits dualistic characteristics, facilitating the early stages of the T-cell immune response and promoting T-cell infiltration into tumors. However, once inside the tumor, this axis contributes to immunosuppression. Discussion The dual nature of the CXCL16-CXCR6 axis underscores its potential as a therapeutic target in GBM. However, our results emphasize the importance of carefully considering the timing and context of intervention. While targeting this axis holds promise in combating GBM, the complex interplay between TAMCs, microglia, and T cells suggests that intervention strategies need to be tailored to optimize the balance between promoting antitumor immunity and preventing immunosuppression within the dynamic tumor microenvironment.
Collapse
Affiliation(s)
- Tzu-Yi Chia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Leah K. Billingham
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lauren Boland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL, United States
| | - Joshua L. Katz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Victor A. Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jack Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Aurora-Lopez Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Susan L. DeLay
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kaylee Zillinger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuheng Geng
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeandre Kruger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Caylee Silvers
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiang Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Gustavo Ignacio Vazquez Cervantes
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Si Wang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hanxiao Wan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adam Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
14
|
Elguindy M, Young JS, Mondal I, Lu RO, Ho WS. Glioma-Immune Cell Crosstalk in Tumor Progression. Cancers (Basel) 2024; 16:308. [PMID: 38254796 PMCID: PMC10813573 DOI: 10.3390/cancers16020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Glioma progression is a complex process controlled by molecular factors that coordinate the crosstalk between tumor cells and components of the tumor microenvironment (TME). Among these, immune cells play a critical role in cancer survival and progression. The complex interplay between cancer cells and the immune TME influences the outcome of immunotherapy and other anti-cancer therapies. Here, we present an updated view of the pro- and anti-tumor activities of the main myeloid and lymphocyte cell populations in the glioma TME. We review the underlying mechanisms involved in crosstalk between cancer cells and immune cells that enable gliomas to evade the immune system and co-opt these cells for tumor growth. Lastly, we discuss the current and experimental therapeutic options being developed to revert the immunosuppressive activity of the glioma TME. Knowledge of the complex interplay that elapses between tumor and immune cells may help develop new combination treatments able to overcome tumor immune evasion mechanisms and enhance response to immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Winson S. Ho
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Nóbrega AHL, Pimentel RS, Prado AP, Garcia J, Frozza RL, Bernardi A. Neuroinflammation in Glioblastoma: The Role of the Microenvironment in Tumour Progression. Curr Cancer Drug Targets 2024; 24:579-594. [PMID: 38310461 DOI: 10.2174/0115680096265849231031101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 02/05/2024]
Abstract
Glioblastoma (GBM) stands as the most aggressive and lethal among the main types of primary brain tumors. It exhibits malignant growth, infiltrating the brain tissue, and displaying resistance toward treatment. GBM is a complex disease characterized by high degrees of heterogeneity. During tumour growth, microglia and astrocytes, among other cells, infiltrate the tumour microenvironment and contribute extensively to gliomagenesis. Tumour-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, are the most numerous nonneoplastic populations in the tumour microenvironment in GBM. The complex heterogeneous nature of GBM cells is facilitated by the local inflammatory tumour microenvironment, which mostly induces tumour aggressiveness and drug resistance. The immunosuppressive tumour microenvironment of GBM provides multiple pathways for tumour immune evasion, contributing to tumour progression. Additionally, TAMs and astrocytes can contribute to tumour progression through the release of cytokines and activation of signalling pathways. In this review, we summarize the role of the microenvironment in GBM progression, focusing on neuroinflammation. These recent advancements in research of the microenvironment hold the potential to offer a promising approach to the treatment of GBM in the coming times.
Collapse
Affiliation(s)
| | - Rafael Sampaio Pimentel
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Ana Paula Prado
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Jenifer Garcia
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Rudimar Luiz Frozza
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| | - Andressa Bernardi
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro/RJ, Brazil
| |
Collapse
|
16
|
Garofalo S, D'Alessandro G, Limatola C. Microglia in Glioma. ADVANCES IN NEUROBIOLOGY 2024; 37:513-527. [PMID: 39207710 DOI: 10.1007/978-3-031-55529-9_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Myeloid cells are fundamental constituents of the brain tumor microenvironment. In this chapter, we describe the state-of-the-art knowledge on the role of microglial cells in the cross-talk with the most common and aggressive brain tumor, glioblastoma. We report in vitro and in vivo studies related to glioblastoma patients and glioma models to outline the symbiotic interactions that microglia develop with tumoral cells, highlighting the heterogeneity of microglial functions in shaping the brain tumor microenvironment.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Zhi W, Wang Y, Jiang C, Gong Y, Chen Q, Mao X, Deng W, Zhao S. PLEKHA4 is a novel prognostic biomarker that reshapes the tumor microenvironment in lower-grade glioma. Front Immunol 2023; 14:1128244. [PMID: 37818357 PMCID: PMC10560889 DOI: 10.3389/fimmu.2023.1128244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Background Lower-grade glioma (LGG) is a primary intracranial tumor that carry a high risk of malignant transformation and limited therapeutic options. Emerging evidence indicates that the tumor microenvironment (TME) is a superior predictor for tumor progression and therapy response. PLEKHA4 has been demonstrated to be a biomarker for LGG that correlate with immune infiltration. However, the fundamental mechanism by which PLEKHA4 contributes to LGG is still poorly understood. Methods Multiple bioinformatic tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA2), Shiny Methylation Analysis Resource Tool (SMART), etc., were incorporated to analyze the PLEKHA4. ESTIMATE, ssGSEA, CIBERSORT, TIDE and CellMiner algorithms were employed to determine the association of PLEKHA4 with TME, immunotherapy response and drug sensitivities. Immunohistochemistry (IHC)-based tissue microarrays and M2 macrophage infiltration assay were conducted to verify their associations. Results PLEKHA4 expression was found to be dramatically upregulated and strongly associated with unfavorable overall survival (OS) and disease-specific survival (DSS) in LGG patients, as well as their poor clinicopathological characteristics. Cox regression analysis identified that PLEKHA4 was an independent prognostic factor. Methylation analysis revealed that DNA methylation correlates with PLEKHA4 expression and indicates a better outcome in LGG. Moreover, PLEKHA4 was remarkably correlated with immune responses and TME remodeling, as evidenced by its positive correlation with particular immune marker subsets and the putative infiltration of immune cells. Surprisingly, the proportion of M2 macrophages in TME was strikingly higher than others, inferring that PLEKHA4 may regulate the infiltration and polarization of M2 macrophages. Evidence provided by IHC-based tissue microarrays and M2 macrophage infiltration assay further validated our findings. Moreover, PLEKHA4 expression was found to be significantly correlated with chemokines, interleukins, and their receptors, further supporting the critical role of PLEKHA4 in reshaping the TME. Additionally, we found that PLEKHA4 expression was closely associated with drug sensitivities and immunotherapy responses, indicating that PLEKHA4 expression also had potential clinical significance in guiding immunotherapy and chemotherapy in LGG. Conclusion PLEKHA4 plays a pivotal role in reshaping the TME of LGG patients, and may serve as a potential predictor for LGG prognosis and therapy.
Collapse
Affiliation(s)
- Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chenyu Jiang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Gong
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyan Chen
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Mao
- Institute of Hygiene Toxicology, Wuhan Centre for Disease Prevention and Control, Wuhan, Hubei, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
18
|
Colella P, Sayana R, Suarez-Nieto MV, Sarno J, Nyame K, Xiong J, Vera LNP, Basurto JA, Corbo M, Limaye A, Davis KL, Abu-Remaileh M, Gomez-Ospina N. CNS Repopulation by Hematopoietic-Derived Microglia-Like Cells Corrects Progranulin deficiency. RESEARCH SQUARE 2023:rs.3.rs-3263412. [PMID: 37790525 PMCID: PMC10543302 DOI: 10.21203/rs.3.rs-3263412/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Hematopoietic stem cell transplantation can deliver therapeutic proteins to the CNS through donor-derived hematopoietic cells that become microglia-like cells. However, using standard conditioning approaches, hematopoietic stem cell transplantation is currently limited by low and slow engraftment of microglia-like cells. We report an efficient conditioning regimen based on Busulfan and a six-day course of microglia depletion using the colony-stimulating factor receptor 1 inhibitor PLX3397. Combining Busulfan-myeloablation and transient microglia depletion results in robust, rapid, and persistent microglia replacement by bone marrow-derived microglia-like cells throughout the CNS. Adding PLX3397 does not affect neurobehavior or has adverse effects on hematopoietic reconstitution. Through single-cell RNA sequencing and high-dimensional CyTOF mass cytometry, we show that microglia-like cells are a heterogeneous population and describe six distinct subpopulations. Though most bone-marrow-derived microglia-like cells can be classified as homeostatic microglia, their gene signature is a hybrid of homeostatic/embryonic microglia and border associated-macrophages. Busulfan-myeloablation and transient microglia depletion induce specific cytokines in the brain, ultimately combining myeloid proliferative and chemo-attractive signals that act locally to repopulate microglia from outside the niche. Importantly, this conditioning approach demonstrates therapeutic efficacy in a mouse model of GRN deficiency. Transplanting wild-type bone marrow into Grn-/- mice conditioned with Busulfan plus PLX3397 results in high engraftment of microglia-like cells in the brain and retina, restoring GRN levels and normalizing lipid metabolism.
Collapse
Affiliation(s)
- Pasqualina Colella
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | - Ruhi Sayana
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| | | | - Jolanda Sarno
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Jian Xiong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | | | | | - Marco Corbo
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA 94404
| | - Anay Limaye
- MedGenome, Inc, 348 Hatch Dr, Foster City, CA 94404
| | - Kara Lynn Davis
- Hematology, Oncology, Stem Cell Transplant, and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, 94305
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305
| |
Collapse
|
19
|
Schulz JA, Hartz AMS, Bauer B. ABCB1 and ABCG2 Regulation at the Blood-Brain Barrier: Potential New Targets to Improve Brain Drug Delivery. Pharmacol Rev 2023; 75:815-853. [PMID: 36973040 PMCID: PMC10441638 DOI: 10.1124/pharmrev.120.000025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
The drug efflux transporters ABCB1 and ABCG2 at the blood-brain barrier limit the delivery of drugs into the brain. Strategies to overcome ABCB1/ABCG2 have been largely unsuccessful, which poses a tremendous clinical problem to successfully treat central nervous system (CNS) diseases. Understanding basic transporter biology, including intracellular regulation mechanisms that control these transporters, is critical to solving this clinical problem.In this comprehensive review, we summarize current knowledge on signaling pathways that regulate ABCB1/ABCG2 at the blood-brain barrier. In Section I, we give a historical overview on blood-brain barrier research and introduce the role that ABCB1 and ABCG2 play in this context. In Section II, we summarize the most important strategies that have been tested to overcome the ABCB1/ABCG2 efflux system at the blood-brain barrier. In Section III, the main component of this review, we provide detailed information on the signaling pathways that have been identified to control ABCB1/ABCG2 at the blood-brain barrier and their potential clinical relevance. This is followed by Section IV, where we explain the clinical implications of ABCB1/ABCG2 regulation in the context of CNS disease. Lastly, in Section V, we conclude by highlighting examples of how transporter regulation could be targeted for therapeutic purposes in the clinic. SIGNIFICANCE STATEMENT: The ABCB1/ABCG2 drug efflux system at the blood-brain barrier poses a significant problem to successful drug delivery to the brain. The article reviews signaling pathways that regulate blood-brain barrier ABCB1/ABCG2 and could potentially be targeted for therapeutic purposes.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Anika M S Hartz
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy (J.A.S., B.B.), Sanders-Brown Center on Aging and Department of Pharmacology and Nutritional Sciences, College of Medicine (A.M.S.H.), University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
21
|
Jiang G, Zheng ZQ, Zhang J, Tian Z, Li X, Yu Z, Wang Z, You W, Chen G. Development and Validation of CXCR4 Nomogram-Based Immune Infiltration/Tumor Inflammation in Primary Glioblastoma. Brain Sci 2023; 13:1152. [PMID: 37626511 PMCID: PMC10452349 DOI: 10.3390/brainsci13081152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant and aggressive tumor with poor prognosis. Therefore, the discovery of new prognostic molecular markers is of great significance for clinical prognosis. The CXC chemokine receptor (CXCR) members play a key regulatory role in many cancers. In this study, we explore the clinical value and application of the CXCR members in primary glioblastoma. Two GBM datasets from The Cancer Genome Atlas (TCGA) and The China Glioma Genome Atlas (CGGA) databases were used to explore the relationship between differential expression of CXCRs and GBM subtypes as well as immune infiltration. C-X-C motif chemokine receptor 4 (CXCR4) was screened as an independent prognostic factor, and a nomogram and risk prediction model were developed and tested in the CGGA database using the TCGA database. Receiver operating curve (ROC) and decision curve analysis (DCA) found good accuracy and net benefit of the models. The correlation of CXCR4 with immune infiltration and tumor was analyzed using CancerSEA and TIMER. In in vitro experiments, we found that CXCR4 was significantly overexpressed in glioblastoma and was closely related to the inflammatory response of U251/U87 cells. CXCR4 is an excellent independent prognostic factor for glioblastoma and positively correlates with tumor inflammation.
Collapse
Affiliation(s)
- Guannan Jiang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zong-Qing Zheng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Jie Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zhichao Tian
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, China (Z.W.)
- Institute of Stroke Research, Soochow University, 188 Shizi Street, Suzhou 215006, China
| |
Collapse
|
22
|
Liu Y, Wu Z, Feng Y, Gao J, Wang B, Lian C, Diao B. Integration analysis of single-cell and spatial transcriptomics reveal the cellular heterogeneity landscape in glioblastoma and establish a polygenic risk model. Front Oncol 2023; 13:1109037. [PMID: 37397378 PMCID: PMC10308022 DOI: 10.3389/fonc.2023.1109037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background Glioblastoma (GBM) is adults' most common and fatally malignant brain tumor. The heterogeneity is the leading cause of treatment failure. However, the relationship between cellular heterogeneity, tumor microenvironment, and GBM progression is still elusive. Methods Integrated analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptome sequencing (stRNA-seq) of GBM were conducted to analyze the spatial tumor microenvironment. We investigated the subpopulation heterogeneity of malignant cells through gene set enrichment analyses, cell communications analyses, and pseudotime analyses. Significantly changed genes of the pseudotime analysis were screened to create a tumor progress-related gene risk score (TPRGRS) using Cox regression algorithms in the bulkRNA-sequencing(bulkRNA-seq) dataset. We combined the TPRGRS and clinical characteristics to predict the prognosis of patients with GBM. Furthermore, functional analysis was applied to uncover the underlying mechanisms of the TPRGRS. Results GBM cells were accurately charted to their spatial locations and uncovered their spatial colocalization. The malignant cells were divided into five clusters with transcriptional and functional heterogeneity, including unclassified malignant cells and astrocyte-like, mesenchymal-like, oligodendrocytes-progenitor-like, and neural-progenitor-like malignant cells. Cell-cell communications analysis in scRNA-seq and stRNA-seq identified ligand-receptor pairs of the CXCL, EGF, FGF, and MIF signaling pathways as bridges implying that tumor microenvironment may cause malignant cells' transcriptomic adaptability and disease progression. Pseudotime analysis showed the differentiation trajectory of GBM cells from proneural to mesenchymal transition and identified genes or pathways that affect cell differentiation. TPRGRS could successfully divide patients with GBM in three datasets into high- and low-risk groups, which was proved to be a prognostic factor independent of routine clinicopathological characteristics. Functional analysis revealed the TPRGRS associated with growth factor binding, cytokine activity, signaling receptor activator activity functions, and oncogenic pathways. Further analysis revealed the association of the TPRGRS with gene mutations and immunity in GBM. Finally, the external datasets and qRT-PCR verified high expressions of the TPRGRS mRNAs in GBM cells. Conclusion Our study provides novel insights into heterogeneity in GBM based on scRNA-seq and stRNA-seq data. Moreover, our study proposed a malignant cell transition-based TPRGRS through integrated analysis of bulkRNA-seq and scRNA-seq data, combined with the routine clinicopathological evaluation of tumors, which may provide more personalized drug regimens for GBM patients.
Collapse
Affiliation(s)
- Yaxuan Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Basic Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Zhenyu Wu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Yueyuan Feng
- Cancer Hospital, The First People's Hospital of Foshan, Foshan, Foshan, Guangdong, China
| | - Jiawei Gao
- College of Medicine, JiShou University, Xiangxi, Hunan, China
| | - Bo Wang
- College of Medicine, JiShou University, Xiangxi, Hunan, China
| | - Changlin Lian
- Cancer Hospital, The First People's Hospital of Foshan, Foshan, Foshan, Guangdong, China
| | - Bo Diao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Department of Basic Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Command and Hubei Key Laboratory of Central Nervous System Tumor and Intervention, Wuhan, Hubei, China
| |
Collapse
|
23
|
FU JINGYUE, CHEN RUI, ZHANG ZHIZHENG, ZHAO JIANYI, XIA TIANSONG. An inflammatory-related genes signature based model for prognosis prediction in breast cancer. Oncol Res 2023; 31:157-167. [PMID: 37304237 PMCID: PMC10207981 DOI: 10.32604/or.2023.027972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/14/2023] [Indexed: 06/13/2023] Open
Abstract
Background Breast cancer has become the most common malignant tumor in the world. It is vital to discover novel prognostic biomarkers despite the fact that the majority of breast cancer patients have a good prognosis because of the high heterogeneity of breast cancer, which causes the disparity in prognosis. Recently, inflammatory-related genes have been proven to play an important role in the development and progression of breast cancer, so we set out to investigate the predictive usefulness of inflammatory-related genes in breast malignancies. Methods We assessed the connection between Inflammatory-Related Genes (IRGs) and breast cancer by studying the TCGA database. Following differential and univariate Cox regression analysis, prognosis-related differentially expressed inflammatory genes were estimated. The prognostic model was constructed through the Least Absolute Shrinkage and Selector Operation (LASSO) regression based on the IRGs. The accuracy of the prognostic model was then evaluated using the Kaplan-Meier and Receiver Operating Characteristic (ROC) curves. The nomogram model was established to predict the survival rate of breast cancer patients clinically. Based on the prognostic expression, we also looked at immune cell infiltration and the function of immune-related pathways. The CellMiner database was used to research drug sensitivity. Results In this study, 7 IRGs were selected to construct a prognostic risk model. Further research revealed a negative relationship between the risk score and the prognosis of breast cancer patients. The ROC curve proved the accuracy of the prognostic model, and the nomogram accurately predicted survival rate. The scores of tumor-infiltrating immune cells and immune-related pathways were utilized to calculate the differences between the low- and high-risk groups, and then explored the relationship between drug susceptibility and the genes that were included in the model. Conclusion These findings contributed to a better understanding of the function of inflammatory-related genes in breast cancer, and the prognostic risk model provides a potentially promising prognostic strategy for breast cancer.
Collapse
|
24
|
Yang CA, Li JP, Lai YH, Huang YL, Lin CY, Lan JL. Assessing the Immune Cell Subset and Genetic Mutations in Patients With Palindromic Rheumatism Seronegative for Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide. Arthritis Rheumatol 2023; 75:187-200. [PMID: 35819819 DOI: 10.1002/art.42297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The etiology underlying cases of palindromic rheumatism (PR) not associated with other rheumatic diseases in patients who are seronegative for rheumatoid factor and anti-cyclic citrullinated peptide (seronegative PR) is unclear. We aimed to investigate the immune cells and genes involved. METHODS This was a single-center comparative study of 48 patients with seronegative PR and 48 healthy controls. Mass cytometry and RNA sequencing were used to identify distinct immune cell subsets in blood. Among the 48 seronegative PR patients, plasma samples from 40 patients were evaluated by enzyme-linked immunosorbent assay for cytokine levels, and peripheral blood samples from 25 patients were evaluated by flow cytometry for mononuclear cell subsets. Plasma samples from 21 patients were evaluated by real-time polymerase chain reaction for differential gene and protein expression, and samples from 3 patients were analyzed with whole-exome sequencing for gene mutations. RESULTS Immunophenotyping revealed a markedly increased frequency of CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells in seronegative PR patients with active flares compared with healthy controls (P < 0.0001 for both cell subset comparisons). Gene enrichment analyses of RNA-sequencing data from sorted CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells showed involvement of the inflammatory/stress response, phagocytosis, and regulation of apoptosis functional pathways. Up-regulated expression of CXCL16 and IL10RA was observed in monocytes from PR patients. Up-regulation of PFKFB3, DDIT4, and TGFB1, and down-regulation of PDIA6 were found in monocytes and lymphocytes from PR patients with active flares and PR patients in intercritical periods. Plasma levels of S100A8/A9 and interleukin-1β were elevated in PR patients. Whole-exome sequencing revealed novel polygenic mutations in HACL1, KDM5A, RASAL1, HAVCR2, PRDM9, MBOAT4, and JRKL. CONCLUSION In seronegative PR patients, we identified a distinct CD14+CD11b+CD36+ cell subset that can induce an inflammatory response under stress and exert antiinflammatory effects after phagocytosis of apoptotic cells, and a CD4+CD25-CD69+ T cell subset with pro- and antiinflammatory properties. Individuals with genetic mutations involving epigenetic modification, potentiation and resolution of stress-induced inflammation/apoptosis, and a dysregulated endoplasmic reticulum stress response could be predisposed to seronegative PR.
Collapse
Affiliation(s)
- Chin-An Yang
- College of Medicine, China Medical University, Division of Laboratory Medicine, China Medical University Hsinchu Hospital, and Departments of Medical Education and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Taiwan, and Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Ju-Pi Li
- Rheumatic Diseases Research Center, China Medical University Hospital, Department of Pathology, School of Medicine, Chung Shan Medical University and Chung Shan Medical University Hospital, Taiwan
| | - Yi-Hua Lai
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| | - Ya-Ling Huang
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Chien-Yu Lin
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Joung-Liang Lan
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| |
Collapse
|
25
|
Schropp V, Chunder R, Dietel B, Tacke S, Kuerten S. The presence of cerebellar B cell aggregates is associated with a specific chemokine profile in the cerebrospinal fluid in a mouse model of multiple sclerosis. J Neuroinflammation 2023; 20:18. [PMID: 36717913 PMCID: PMC9885581 DOI: 10.1186/s12974-023-02695-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The presence of meningeal ectopic lymphoid structures (ELS) in a subgroup of patients diagnosed with secondary progressive multiple sclerosis (SPMS) corresponds to a pronounced cortical inflammation and an aggravated disease course. In MP4-induced experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), B cell aggregates develop in the central nervous system (CNS) in the chronic stage of the disease. Therefore, the model is suitable for studying key molecules of ELS development and maintenance. Here, we investigated whether there is a specific cytokine and chemokine signature in paired cerebrospinal fluid (CSF) and serum samples associated with the presence of cerebellar B cell and T cell pathology and B cell aggregates of MP4-immunized mice. METHODS Paired CSF and serum samples were collected from the cisterna magna and periphery of MP4-immunized mice at the chronic stage of disease. A control group with mice immunized only with the adjuvant (vehicle) was included in the study. A selected panel of 34 cytokines and chemokines were measured by MAGPIX® for both cohorts. For the assessment of B cell and T cell infiltration, immunohistochemical staining was performed and analyzed using light microscopy. To detect specific chemokine receptors additional staining was conducted. RESULTS While we detected several upregulated cytokines and chemokines in the CSF of MP4-immunized mice independent of the extent of B cell and T cell pathology compared to vehicle-immunized mice, C-C motif chemokine ligand (CCL)-1 was associated with high B cell and T cell infiltration. Furthermore, the level of certain chemokines, including CCL1, CCL5, CCL7, CCL12, CCL22 and C-X-C motif chemokine ligand (CXCL)-13, was significantly increased (p < 0.05) in MP4-immunized mice showing a high number of B cell aggregates. While C-C motif chemokine receptor (CCR)5 had a ubiquitous expression independent of the extent of B cell and T cell pathology, C-X-C motif chemokine receptor (CXCR)-5 and CXCR6 expression was specifically associated with high B cell and T cell pathology. CONCLUSION Our data suggest that multiple cytokines and chemokines are involved in the pathophysiology of MP4-induced EAE. Furthermore, the presence of B cell aggregates was associated with a specific chemokine profile in the CSF, which might be useful for predicting the presence of these aggregates without the necessity to histologically screen the CNS tissue.
Collapse
Affiliation(s)
- Verena Schropp
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Rittika Chunder
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Barbara Dietel
- grid.5330.50000 0001 2107 3311Department of Cardiology and Angiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen University Hospital, 91054 Erlangen, Germany
| | - Sabine Tacke
- grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Kuerten
- grid.10388.320000 0001 2240 3300Medical Faculty, Institute of Neuroanatomy, University of Bonn, 53115 Bonn, Germany ,grid.5330.50000 0001 2107 3311Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
26
|
Li Y, Wang W, Hou X, Huang W, Zhang P, He Y, Wang B, Duan Q, Mao F, Guo D. Glioma-derived LRIG3 interacts with NETO2 in tumor-associated macrophages to modulate microenvironment and suppress tumor growth. Cell Death Dis 2023; 14:28. [PMID: 36639372 PMCID: PMC9839712 DOI: 10.1038/s41419-023-05555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Tumor-associated macrophages (TAMs) account for 30-50% of glioma microenvironment. The interaction between glioma tumor cells and TAMs can promote tumor progression, but the intrinsic mechanisms remain unclear. Herein, we reported that soluble LRIG3 (sLRIG3) derived from glioma tumor cells can block the M2 polarization of TAMs via interacting with NETO2, thus suppressing GBM malignant progression. The expression or activity of ADAM17 in glioma cells was positively correlated with the expression of sLRIG3 in cell supernatant. Soluble LRIG3 can suppress the M2-like polarity transformation of TAMs and inhibit the growth of tumor. High expression of LRIG3 predicts a good prognosis in patients with glioma. Mass spectrometry and Co-immunoprecipitation showed that sLRIG3 interacts with the CUB1 domain of NETO2 in TAMs. Silencing or knockout of NETO2 could block the effect of sLRIG3, which inhibited the M2-like polarity transformation of TAMs and promoted GBM tumor growth. However, overexpressing His-target NETO2 with CUB1 deletion mutation does not fully recover the suppressive effects of sLRIG3 on the TAM M2-polarization in NETO2-Knockout TAMs. Our study revealed vital molecular crosstalk between GBM tumor cells and TAMs. Glioma cells mediated the M2 polarization of TAM through the sLRIG3-NETO2 pathway and inhibited the progression of GBM, suggesting that sLRIG3-NETO2 may be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
27
|
Kazakova E, Iamshchikov P, Larionova I, Kzhyshkowska J. Macrophage scavenger receptors: Tumor support and tumor inhibition. Front Oncol 2023; 12:1096897. [PMID: 36686729 PMCID: PMC9853406 DOI: 10.3389/fonc.2022.1096897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are a heterogeneous population of myeloid cells that constitute up to 50% of the cell mass of human tumors. TAMs interact with the components of the tumor microenvironment (TME) by using scavenger receptors (SRs), a large superfamily of multifunctional receptors that recognize, internalize and transport to the endosomal/lysosomal pathway apoptotic cells, cytokines, matrix molecules, lipid modified lipoproteins and other unwanted-self ligands. In our review, we summarized state-of-the art for the role of macrophage scavenger receptors in tumor development and their significance as cancer biomarkers. In this review we focused on functional activity of TAM-expressing SRs in animal models and in patients, and summarized the data for different human cancer types about the prognostic significance of TAM-expressed SRs. We discussed the role of SRs in the regulation of cancer cell biology, cell-cell and cell-matrix interaction in TME, immune status in TME, angiogenesis, and intratumoral metabolism. Targeting of tumor-promoting SRs can be a promising therapeutic approach in anti-cancer therapy. In our review we provide evidence for both tumor supporting and tumor inhibiting functions of scavenger receptors expressed on TAMs. We focused on the key differences in the prognostic and functional roles of SRs that are specific for cancer types. We highlighted perspectives for inhibition of tumor-promoting SRs in anti-cancer therapy.
Collapse
Affiliation(s)
- Elena Kazakova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Pavel Iamshchikov
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina Larionova
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia
| | - Julia Kzhyshkowska
- Laboratory of translational cellular and molecular biomedicine, National Research Tomsk State University, Tomsk, Russia,Laboratory of Genetic Technologies, Siberian State Medical University, Tomsk, Russia,Institute of Transfusion Medicine and Immunology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany,German Red Cross Blood Service Baden-Württemberg – Hessen, Mannheim, Germany,*Correspondence: Julia Kzhyshkowska,
| |
Collapse
|
28
|
Xu C, Xiao M, Li X, Xin L, Song J, Zhan Q, Wang C, Zhang Q, Yuan X, Tan Y, Fang C. Origin, activation, and targeted therapy of glioma-associated macrophages. Front Immunol 2022; 13:974996. [PMID: 36275720 PMCID: PMC9582955 DOI: 10.3389/fimmu.2022.974996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The glioma tumor microenvironment plays a crucial role in the development, occurrence, and treatment of gliomas. Glioma-associated macrophages (GAMs) are the most widely infiltrated immune cells in the tumor microenvironment (TME) and one of the major cell populations that exert immune functions. GAMs typically originate from two cell types-brain-resident microglia (BRM) and bone marrow-derived monocytes (BMDM), depending on a variety of cytokines for recruitment and activation. GAMs mainly contain two functionally and morphologically distinct activation types- classically activated M1 macrophages (antitumor/immunostimulatory) and alternatively activated M2 macrophages (protumor/immunosuppressive). GAMs have been shown to affect multiple biological functions of gliomas, including promoting tumor growth and invasion, angiogenesis, energy metabolism, and treatment resistance. Both M1 and M2 macrophages are highly plastic and can polarize or interconvert under various malignant conditions. As the relationship between GAMs and gliomas has become more apparent, GAMs have long been one of the promising targets for glioma therapy, and many studies have demonstrated the therapeutic potential of this target. Here, we review the origin and activation of GAMs in gliomas, how they regulate tumor development and response to therapies, and current glioma therapeutic strategies targeting GAMs.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiang Li
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Lei Xin
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Jia Song
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Qi Zhan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Material Science and Engineering, Tianjin University, Tianjin, China
| | - Changsheng Wang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Qisong Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
| | - Xiaoye Yuan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- Hebei University School of Basic Medical Sciences, Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Chuan Fang, ; Yanli Tan,
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding, China
- *Correspondence: Chuan Fang, ; Yanli Tan,
| |
Collapse
|
29
|
Rosen SF, Soung AL, Yang W, Ai S, Kanmogne M, Davé VA, Artyomov M, Magee JA, Klein RS. Single-cell RNA transcriptome analysis of CNS immune cells reveals CXCL16/CXCR6 as maintenance factors for tissue-resident T cells that drive synapse elimination. Genome Med 2022; 14:108. [PMID: 36153630 PMCID: PMC9509564 DOI: 10.1186/s13073-022-01111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/05/2022] [Indexed: 12/31/2022] Open
Abstract
Background Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TRM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice. The signals involved in T cell-microglia interactions are unknown. Methods Here, we examined immune cells within the murine WNV-recovered forebrain using single-cell RNA sequencing to identify putative ligand-receptor pairs involved in intercellular communication between T cells and microglia. Clustering and differential gene analyses were followed by protein validation and genetic and antibody-based approaches utilizing an established murine model of WNV recovery in which microglia and complement promote ongoing hippocampal synaptic loss. Results Profiling of host transcriptome immune cells at 25 days post-infection in mice revealed a shift in forebrain homeostatic microglia to activated subpopulations with transcriptional signatures that have previously been observed in studies of neurodegenerative diseases. Importantly, CXCL16/CXCR6, a chemokine signaling pathway involved in TRM cell biology, was identified as critically regulating CXCR6 expressing CD8+ TRM cell numbers within the WNV-recovered forebrain. We demonstrate that CXCL16 is highly expressed by all myeloid cells, and its unique receptor, CXCR6, is highly expressed on all CD8+ T cells. Using genetic and pharmacological approaches, we demonstrate that CXCL16/CXCR6 not only is required for the maintenance of WNV-specific CD8 TRM cells in the post-infectious CNS, but also contributes to their expression of TRM cell markers. Moreover, CXCR6+CD8+ T cells are required for glial activation and ongoing synapse elimination. Conclusions We provide a comprehensive assessment of the role of CXCL16/CXCR6 as an interaction link between microglia and CD8+ T cells that maintains forebrain TRM cells, microglial and astrocyte activation, and ongoing synapse elimination in virally recovered animals. We also show that therapeutic targeting of CXCL16 in mice during recovery may reduce CNS CD8+ TRM cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01111-0.
Collapse
|
30
|
Mo Y, Xu W, Fu K, Chen H, Wen J, Huang Q, Guo F, Mo L, Yan J. The dual function of microglial polarization and its treatment targets in ischemic stroke. Front Neurol 2022; 13:921705. [PMID: 36212660 PMCID: PMC9538667 DOI: 10.3389/fneur.2022.921705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Stroke is the leading cause of disability and death worldwide, with ischemic stroke occurring in ~5% of the global population every year. Recently, many studies have been conducted on the inflammatory response after stroke. Microglial/macrophage polarization has a dual function and is critical to the pathology of ischemic stroke. Microglial/macrophage activation is important in reducing neuronal apoptosis, enhancing neurogenesis, and promoting functional recovery after ischemic stroke. In this review, we investigate the physiological characteristics and functions of microglia in the brain, the activation and phenotypic polarization of microglia and macrophages after stroke, the signaling mechanisms of polarization states, and the contribution of microglia to brain pathology and repair. We summarize recent advances in stroke-related microglia research, highlighting breakthroughs in therapeutic strategies for microglial responses after stroke, thereby providing new ideas for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hainan Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Ligen Mo
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jun Yan
| |
Collapse
|
31
|
Fan W, Wang D, Li G, Xu J, Ren C, Sun Z, Wang Z, Ma W, Zhao Z, Bao Z, Jiang T, Zhang Y. A novel chemokine-based signature for prediction of prognosis and therapeutic response in glioma. CNS Neurosci Ther 2022; 28:2090-2103. [PMID: 35985661 PMCID: PMC9627384 DOI: 10.1111/cns.13944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Gliomas are the primary malignant brain tumor and characterized as the striking cellular heterogeneity and intricate tumor microenvironment (TME), where chemokines regulate immune cell trafficking by shaping local networks. This study aimed to construct a chemokine-based gene signature to evaluate the prognosis and therapeutic response in glioma. METHODS In this study, 1024 patients (699 from TCGA and 325 from CGGA database) with clinicopathological information and mRNA sequencing data were enrolled. A chemokine gene signature was constructed by combining LASSO and SVM-RFE algorithm. GO, KEGG, and GSVA analyses were performed for function annotations of the chemokine signature. Candidate mRNAs were subsequently verified through qRT-PCR in an independent cohort including 28 glioma samples. Then, through immunohistochemical staining (IHC), we detected the expression of immunosuppressive markers and explore the role of this gene signature in immunotherapy for glioma. Lastly, the Genomics of Drug Sensitivity in Cancer (GDSC) were leveraged to predict the potential drug related to the gene signature in glioma. RESULTS A constructed chemokine gene signature was significantly associated with poorer survival, especially in glioblastoma, IDH wildtype. It also played an independent prognostic factor in both datasets. Moreover, biological function annotations of the predictive signature indicated the gene signature was positively associated with immune-relevant pathways, and the immunosuppressive protein expressions (PD-L1, IBA1, TMEM119, CD68, CSF1R, and TGFB1) were enriched in the high-risk group. In an immunotherapy of glioblastoma cohort, we confirmed the chemokine signature showed a good predictor for patients' response. Lastly, we predicted twelve potential agents for glioma patients with higher riskscore. CONCLUSION In all, our results highlighted a potential 4-chemokine signature for predicting prognosis in glioma and reflected the intricate immune landscape in glioma. It also threw light on integrating tailored risk stratification with precision therapy for glioblastoma.
Collapse
Affiliation(s)
- Wenhua Fan
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guanzhang Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Jianbao Xu
- The Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Changyuan Ren
- Sanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Zhiyan Sun
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Zhiliang Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Wenping Ma
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Zheng Zhao
- Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| | - Ying Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,Department Molecular Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA)BeijingChina
| |
Collapse
|
32
|
Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O, Gaoni-Yogev A, Meyer T, Krivitsky A, Shidlovsky N, Madi A, Ruppin E, Mayo L. Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain 2022; 145:3288-3307. [PMID: 35899587 DOI: 10.1093/brain/awac222] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant brain tumours are the cause of a disproportionate level of morbidity and mortality among cancer patients, an unfortunate statistic that has remained constant for decades. Despite considerable advances in the molecular characterization of these tumours, targeting the cancer cells has yet to produce significant advances in treatment. An alternative strategy is to target cells in the glioblastoma microenvironment, such as tumour-associated astrocytes. Astrocytes control multiple processes in health and disease, ranging from maintaining the brain's metabolic homeostasis, to modulating neuroinflammation. However, their role in glioblastoma pathogenicity is not well understood. Here we report that depletion of reactive astrocytes regresses glioblastoma and prolongs mouse survival. Analysis of the tumour-associated astrocyte translatome revealed astrocytes initiate transcriptional programmes that shape the immune and metabolic compartments in the glioma microenvironment. Specifically, their expression of CCL2 and CSF1 governs the recruitment of tumour-associated macrophages and promotes a pro-tumourigenic macrophage phenotype. Concomitantly, we demonstrate that astrocyte-derived cholesterol is key to glioma cell survival, and that targeting astrocytic cholesterol efflux, via ABCA1, halts tumour progression. In summary, astrocytes control glioblastoma pathogenicity by reprogramming the immunological properties of the tumour microenvironment and supporting the non-oncogenic metabolic dependency of glioblastoma on cholesterol. These findings suggest that targeting astrocyte immunometabolic signalling may be useful in treating this uniformly lethal brain tumour.
Collapse
Affiliation(s)
- Rita Perelroizen
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Bar Philosof
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noga Budick-Harmelin
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Chernobylsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Ron
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Katzir
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Dor Shimon
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Adi Tessler
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Orit Adir
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anat Gaoni-Yogev
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tom Meyer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Krivitsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nuphar Shidlovsky
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Lior Mayo
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
33
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
34
|
He J, Jiang Z, Lei J, Zhou W, Cui Y, Luo B, Zhang M. Prognostic Value and Therapeutic Perspectives of CXCR Members in the Glioma Microenvironment. Front Genet 2022; 13:787141. [PMID: 35571062 PMCID: PMC9091590 DOI: 10.3389/fgene.2022.787141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background: CXCR (CXC Chemokine Receptor) is a complex of the immune-associated protein involved in tumor activation, invasion, migration, and angiogenesis through various chemical signals in the tumor microenvironment (TME). However, significant prognostic characteristics of CXCR members and their impact on the occurrence and progression of glioma have not yet been fully elucidated. Methods: In this research, we used Oncomine, TCGA, GTEx, and CGGA databases to analyze the transcription and survival data of glioma patients. Afterward, the influence of CXCR members on the TME was explored using comprehensive bioinformatics analysis. Results: The mRNA expression levels of CXCR1/2/3/4/7 were significantly up-regulated in glioma than in normal samples, whereas the mRNA expression level of CXCR5 was decreased. We then summarized the genetic alteration landscape of CXCR and identified two molecular subtypes based on CXCR expression patterns in glioma. The characteristics of CXCRs were also investigated, including the clinicopathological parameters, TME cell infiltration, and prognosis of patients with glioma. After Lasso and multivariable Cox regression, a CR-Score for predicting overall survival (OS) was constructed and the predictive performance of the signature was validated. The high-risk group was a significantly poorer prognostic group than the low-risk group as judged by the CR-Score (TCGA cohort, p < 0.001, CGGA cohort, p < 0.001). Moreover, the CR-Score was significantly correlated to the tumor-immune infiltration and cancer stem cell (CSC) index. A risk scale-based nomogram incorporating clinical factors for individual risk estimation was established thereby. Conclusion: These findings may pave the way for enhancing our understanding of CXCR modification patterns and developing better immune therapeutic approaches for glioma.
Collapse
Affiliation(s)
- Jiarong He
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongzhong Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiawei Lei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biao Luo
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
35
|
Tumor-Associated Macrophages in Gliomas—Basic Insights and Treatment Opportunities. Cancers (Basel) 2022; 14:cancers14051319. [PMID: 35267626 PMCID: PMC8909866 DOI: 10.3390/cancers14051319] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Macrophages are a specialized immune cell type found in both invertebrates and vertebrates. Versatile in functionality, macrophages carry out important tasks such as cleaning cellular debris in healthy tissues and mounting immune responses during infection. In many cancer types, macrophages make up a significant portion of tumor tissue, and these are aptly called tumor-associated macrophages. In gliomas, a group of primary brain tumors, these macrophages are found in very high frequency. Tumor-associated macrophages can promote glioma development and influence the outcome of various therapeutic regimens. At the same time, these cells provide various potential points of intervention for therapeutic approaches in glioma patients. The significance of tumor-associated macrophages in the glioma microenvironment and potential therapeutic targets are the focus of this review. Abstract Glioma refers to a group of primary brain tumors which includes glioblastoma (GBM), astrocytoma and oligodendroglioma as major entities. Among these, GBM is the most frequent and most malignant one. The highly infiltrative nature of gliomas, and their intrinsic intra- and intertumoral heterogeneity, pose challenges towards developing effective treatments. The glioma microenvironment, in addition, is also thought to play a critical role during tumor development and treatment course. Unlike most other solid tumors, the glioma microenvironment is dominated by macrophages and microglia—collectively known as tumor-associated macrophages (TAMs). TAMs, like their homeostatic counterparts, are plastic in nature and can polarize to either pro-inflammatory or immunosuppressive states. Many lines of evidence suggest that immunosuppressive TAMs dominate the glioma microenvironment, which fosters tumor development, contributes to tumor aggressiveness and recurrence and, very importantly, impedes the therapeutic effect of various treatment regimens. However, through the development of new therapeutic strategies, TAMs can potentially be shifted towards a proinflammatory state which is of great therapeutic interest. In this review, we will discuss various aspects of TAMs in the context of glioma. The focus will be on the basic biology of TAMs in the central nervous system (CNS), potential biomarkers, critical evaluation of model systems for studying TAMs and finally, special attention will be given to the potential targeted therapeutic options that involve the TAM compartment in gliomas.
Collapse
|
36
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
37
|
Rolim GB, Dantas Lima AJP, Dos Santos Cardoso VI, de Fátima Machado Soares É, Nunes DN, Barros HCS, Leite AB, Alexandre-Moreira MS, Duarte AWF, de Sales Marques C, de Carvalho Fraga CA, de Queiroz AC. Can inflammasomes promote the pathophysiology of glioblastoma multiforme? A view about the potential of the anti-inflammasome therapy as pharmacological target. Crit Rev Oncol Hematol 2022; 172:103641. [PMID: 35189327 DOI: 10.1016/j.critrevonc.2022.103641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor with one of the worst general survivorship cases among the existing neoplasia. This aggressiveness is due to its complex molecular heterogeneity, immunohistochemistry and genetics. The current therapeutic approach brings little contribution to the improvement of the survival of the patients. Due to that, new forms of treatment have been explored, one of them being immunotherapy. In this aspect, the inflammasome pathway, which induces inflammation and immunosuppressive tumor response, contributing to the progression of the tumor, seems to be a new alternative to improve the treatment efficacy and the survival of the patients.
Collapse
Affiliation(s)
- Giovanna Barros Rolim
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Ayara Jhulia Palmeira Dantas Lima
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Vitória Ingryd Dos Santos Cardoso
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Érika de Fátima Machado Soares
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Danielle Nascimento Nunes
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Herbert Charles Silva Barros
- Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil
| | - Anderson Brandão Leite
- Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil
| | - Alysson Wagner Fernandes Duarte
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Carolinne de Sales Marques
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Carlos Alberto de Carvalho Fraga
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil
| | - Aline Cavalcanti de Queiroz
- Universidade Federal de Alagoas, Campus Arapiraca, Centro de Ciências Médicas e de Enfermagem, Av. Manoel Severino Barbosa, Bom Sucesso, CEP 57309-005 Arapiraca, AL, Brazil; Laboratório de Farmacologia e Imunologia, Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, CEP 57072-900 Maceió, AL, Brazil.
| |
Collapse
|
38
|
Fougner V, Hasselbalch B, Lassen U, Weischenfeldt J, Poulsen HS, Urup T. Implementing targeted therapies in the treatment of glioblastoma: Previous shortcomings, future promises, and a multimodal strategy recommendation. Neurooncol Adv 2022; 4:vdac157. [PMID: 36325372 PMCID: PMC9616055 DOI: 10.1093/noajnl/vdac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
The introduction of targeted therapies to the field of oncology has prolonged the survival of several tumor types. Despite extensive research and numerous trials, similar outcomes have unfortunately not been realized for glioblastoma. For more than 15 years, the standard treatment of glioblastoma has been unchanged. This review walks through the elements that have challenged the success of previous trials and highlight some future promises. Concurrently, this review describes how institutions, through a multimodal and comprehensive strategy with 4 essential components, may increase the probability of finding a meaningful role for targeted therapies in the treatment of glioblastoma. These components are (1) prudent trial designs, (2) considered drug and target selection, (3) harnessed real-world clinical and molecular evidence, and (4) incorporation of translational research.
Collapse
Affiliation(s)
- Vincent Fougner
- Department for Cancer Treatment, DCCC—Brain Tumor Center, Rigshospitalet, Copenhagen, Capitol Region of Denmark, Denmark
| | - Benedikte Hasselbalch
- Department for Cancer Treatment, DCCC—Brain Tumor Center, Rigshospitalet, Copenhagen, Capitol Region of Denmark, Denmark
| | - Ulrik Lassen
- Department for Cancer Treatment, DCCC—Brain Tumor Center, Rigshospitalet, Copenhagen, Capitol Region of Denmark, Denmark
| | - Joachim Weischenfeldt
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department for Cancer Treatment, DCCC—Brain Tumor Center, Rigshospitalet, Copenhagen, Capitol Region of Denmark, Denmark
| | - Thomas Urup
- Department for Cancer Treatment, DCCC—Brain Tumor Center, Rigshospitalet, Copenhagen, Capitol Region of Denmark, Denmark
| |
Collapse
|
39
|
Chen C, Du X, Liu H, Lu X, Li D, Qi J. Construction of a prognostic classifier and prediction of the immune landscape and immunosuppressive molecules in gliomas based on combination of inflammatory response-related genes and angiogenesis-associated genes. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221133708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective:We aimed to combine inflammatory response-related genes (IRRGs) and angiogenesis-associated genes (AAGs) to build a prognostic classifier and to predict immune landscapes and immunosuppressive molecules in gliomas. Introduction: Gliomas, the commonest primary brain tumors, account for about 80% of cancerous tumors in the central nervous system (CNS), featuring rapid progression, high malignancy, and extremely poor prognosis. The induction of inflammatory responses and angiogenesis have been considered to be closely related to tumors. However, there are little publications systematically elaborating on their impacts on gliomas. Methods: We downloaded the data of IRRGs and AAGs from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases, and retrieved 68 differentially expressed genes (DEGs), of which 13 DEGs pertained to the prognosis of glioma cases. Next, 9 DEGs were screened from the 13 major DEGs with predictive significance and utilized to build a 9-gene signature as a prognostic risk score model (PRSM) with the aid of univariate Cox regression analyses (CRA) and least absolute shrinkage and selection operator (LASSO)-CRA. On this basis, glioma patients fell into high-risk (HR) group and low-risk (LR) group. Later, we implemented Gene Set Enrichment Analysis (GSEA, Gene Set: WP_ANGIOGENESIS) and calculate the scores of cell infiltration and immune-associated function by harnessing single-sample GSEA (ssGSEA). Results: The prognosis was compared between the two groups by introducing Kaplan-Meier (KM) analysis, which yielded that HR group exhibited poorer prognosis. Additionally, the predictive capacity and independent characteristics were proven by the receiver operating characteristic curve (ROC) and multivariate CRA. Further, We took an evaluation of immune profiles, which unraveled that immunosuppressive cell count was distinctively larger in HS group. Finally, a protein-protein interaction (PPI) network of DEGs was built, and 10 hub genes were obtained, of which epidermal growth factor receptor (EGFR) was closely related to poor prognosis. Conclusion: A 9-gene signature was established on the strength of IRRGs and AAGs for predicting glioma prognosis, tumor microenvironment (TME), immune landscapes and immunosuppressive molecules. However, the molecular mechanism developed by this signature to function in tumor immunity needs further experimental research in the future and is expected to be a research target for glioma immunotherapy strategies.
Collapse
Affiliation(s)
- Chunbao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong City, People’s Republic of China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, People’s Republic of China
| | - Xue Du
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, People’s Republic of China
| | - Hongjun Liu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong City, People’s Republic of China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, People’s Republic of China
| | - Xingyu Lu
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, People’s Republic of China
| | - Dong Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, People’s Republic of China
| | - Jian Qi
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong City, People’s Republic of China
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, People’s Republic of China
| |
Collapse
|
40
|
Wan W, Liu G, Li X, Liu Y, Wang Y, Pan H, Hu J. MiR-191-5p alleviates microglial cell injury by targeting Map3k12 (mitogen-activated protein kinase kinase kinase 12) to inhibit the MAPK (mitogen-activated protein kinase) signaling pathway in Alzheimer's disease. Bioengineered 2021; 12:12678-12690. [PMID: 34818971 PMCID: PMC8810200 DOI: 10.1080/21655979.2021.2008638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple reports have elucidated that microRNAs are promising biomarkers for AD diagnosis and treatment. Herein, the effect of miR-191-5p on microglial cell injury and the underlying mechanism were explored. APP/PS1 transgenic mice were utilized to establish mouse model of AD. Amyloid-β protein 1-42 (Aβ1-42)-treated microglia were applied to establish in vitro cell model of AD. MiR-191-5p expression in hippocampus and microglia was measured by reverse transcription quantitative polymerase chain reaction. The viability and apoptosis of microglia were evaluated by Cell Counting Kit-8 assays and flow cytometry analyses, respectively. The binding relationship between miR-191-5p and its downstream target mitogen-activated protein kinase kinase kinase 12 (Map3k12) was determined by luciferase reporter assays. Pathological degeneration of hippocampus was tested using hematoxylin-eosin staining and Nissl staining. Aβ expression in hippocampus was examined via immunohistochemistry. In this study, miR-191-5p was downregulated in Aβ1-42-stimulated microglia and hippocampal tissues of APP/PS1 mice. MiR-191-5p overexpression facilitated cell viability and inhibited apoptosis rate of Aβ1-42-treated microglia. Mechanically, miR-191-5p targeted Map3k12 3'-untranslated region to downregulate Map3k12 expression. MiR-191-5p inhibited Aβ1-42-induced microglial cell injury and inactivated the MAPK signaling by downregulating Map3k12. Overall, miR-191-5p alleviated Aβ1-42-induced microglia cell injury by targeting Map3k12 to inhibit the MAPK signaling pathway in microglia.
Collapse
Affiliation(s)
- Wenjun Wan
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganzhe Liu
- Department of Neurology, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Li
- Department of Ultrasound Imaging, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Yu Liu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Ying Wang
- Department of Rehabilitation Medicine, Wuhan Central Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haisong Pan
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| | - Jun Hu
- Department of Radiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
41
|
Han T, Zuo Z, Qu M, Zhou Y, Li Q, Wang H. Comprehensive Analysis of Inflammatory Response-Related Genes, and Prognosis and Immune Infiltration in Patients With Low-Grade Glioma. Front Pharmacol 2021; 12:748993. [PMID: 34712139 PMCID: PMC8545815 DOI: 10.3389/fphar.2021.748993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Although low-grade glioma (LGG) has a good prognosis, it is prone to malignant transformation into high-grade glioma. It has been confirmed that the characteristics of inflammatory factors and immune microenvironment are closely related to the occurrence and development of tumors. It is necessary to clarify the role of inflammatory genes and immune infiltration in LGG. Methods: We downloaded the transcriptome gene expression data and corresponding clinical data of LGG patients from the TCGA and GTEX databases to screen prognosis-related differentially expressed inflammatory genes with the difference analysis and single-factor Cox regression analysis. The prognostic risk model was constructed by LASSO Cox regression analysis, which enables us to compare the overall survival rate of high- and low-risk groups in the model by Kaplan–Meier analysis and subsequently draw the risk curve and survival status diagram. We analyzed the accuracy of the prediction model via ROC curves and performed GSEA enrichment analysis. The ssGSEA algorithm was used to calculate the score of immune cell infiltration and the activity of immune-related pathways. The CellMiner database was used to study drug sensitivity. Results: In this study, 3 genes (CALCRL, MMP14, and SELL) were selected from 9 prognosis-related differential inflammation genes through LASSO Cox regression analysis to construct a prognostic risk model. Further analysis showed that the risk score was negatively correlated with the prognosis, and the ROC curve showed that the accuracy of the model was better. The age, grade, and risk score can be used as independent prognostic factors (p < 0.001). GSEA analysis confirmed that 6 immune-related pathways were enriched in the high-risk group. We found that the degree of infiltration of 12 immune cell subpopulations and the scores of 13 immune functions and pathways in the high-risk group were significantly increased by applying the ssGSEA method (p < 0.05). Finally, we explored the relationship between the genes in the model and the susceptibility of drugs. Conclusion: This study analyzed the correlation between the inflammation-related risk model and the immune microenvironment. It is expected to provide a reference for the screening of LGG prognostic markers and the evaluation of immune response.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifan Zuo
- The General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China
| | - Meilin Qu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinghui Zhou
- The General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Jinzhou, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Hongjin Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Establishment and validation of five autophagy-related signatures for predicting survival and immune microenvironment in glioma. Genes Genomics 2021; 44:79-95. [PMID: 34609723 DOI: 10.1007/s13258-021-01172-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gliomas, especially Glioblastoma multiforme, are the most frequent type of primary tumors in central nervous system. Increasing researches have revealed the relationship between autophagy and tumor, while the molecular mechanism of autophagy in glioma is still rarely reported. OBJECTIVE Our research aims to conform the autophagy-related genes (ARGs) implicated in the development and progression of glioma and improve our understanding of autophagy in glioma. METHODS 20 candidate ARGs were screened through the protein-protein interaction network. We also downloaded the publicly accessible glioma data for 665 individuals from TCGA and 970 individuals from CGGA with RNA sequences and clinicopathological information. Subsequently, univariate and multivariate Cox regression analysis identified 5 key ARGs among the 20 candidate genes as key prognostic genes for survival, GSEA and immune response analysis. RESULTS ATG5, BCL2L1, CASP3, CASP8, GAPDH were identified as key ARGs in our research. Further studies showed that the high-risk population was linked to a dismal prognosis and suggested an immune-inhibitory microenvironment. GSEA results demonstrated that high risk population was closely related to DNA repair, hypoxia pathways, implicated in immunosuppression and carcinogenesis. Through CMap, we finally identified 14 candidate drugs for the ARG high risk population. CONCLUSIONS This study established and verified an ARG risk model, which can serve as an independent predictor for prognosis, reflect on the strength of the immune response and predict the potential drugs in glioma. Our findings offer new understandings of ARG molecular mechanism and promising therapeutic targets for glioma treatment.
Collapse
|
43
|
Chen Z, Wu H, Yang H, Fan Y, Zhao S, Zhang M. Identification and validation of RNA-binding protein-related gene signature revealed potential associations with immunosuppression and drug sensitivity in glioma. Cancer Med 2021; 10:7418-7439. [PMID: 34482648 PMCID: PMC8525098 DOI: 10.1002/cam4.4248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioma is the most common central nervous system tumor in adults, and a considerable part of them are high‐degree ones with high malignancy and poor prognosis. At present, the classification and treatment of glioma are mainly based on its histological characteristics, so studies at the molecular level are needed. Methods RNA‐seq data from The Cancer Genome Atlas (TCGA) datasets (n = 703) and Chinese Glioma Genome Atlas (CGGA) were utilized to find out the differentially expressed RNA‐binding proteins (RBPs) between normal cerebral tissue and glioma. A prediction system for the prognosis of glioma patients based on 11 RBPs was established and validated using uni‐ and multi‐variate Cox regression analyses. STITCH and CMap databases were exploited to identify putative drugs and their targets. Single sample gene set enrichment analysis (ssGSEA) was used to calculate scores of specific immune‐related gene sets. IC50 of over 20,000 compounds in 60 cancer cell lines was collected from the CellMiner database to test the drug sensitivity prediction value of the RBP‐based signature. Results We established a reliable prediction system for the prognosis of glioma patients based on 11 RBPs including THOC3, LSM11, SARNP, PABPC1L2B, SMN1, BRCA1, ZC3H8, DZIP1L, HEXIM2, LARP4B, and ZC3H12B. These RBPs were primarily associated with ribosome and post‐transcriptional regulation. RBP‐based risk scores were closely related to immune cells and immune function. We also confirmed the potential of the signature to predict the drug sensitivity of currently approved or evaluated drugs. Conclusions Differentially expressed RBPs in glioma can be used as a basis for prognosis prediction, new drugs screening and drug sensitivity prediction. As RBP‐based glioma risk scores were associated with immunity, immunotherapy may become an important treatment for glioma in the future.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Songfeng Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
45
|
Andersen RS, Anand A, Harwood DSL, Kristensen BW. Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy. Cancers (Basel) 2021; 13:cancers13174255. [PMID: 34503065 PMCID: PMC8428223 DOI: 10.3390/cancers13174255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and malignant primary brain tumor. Standard of care includes surgery followed by radiation and temozolomide chemotherapy. Despite treatment, patients have a poor prognosis with a median survival of less than 15 months. The poor prognosis is associated with an increased abundance of tumor-associated microglia and macrophages (TAMs), which are known to play a role in creating a pro-tumorigenic environment and aiding tumor progression. Most treatment strategies are directed against glioblastoma cells; however, accumulating evidence suggests targeting of TAMs as a promising therapeutic strategy. While TAMs are typically dichotomously classified as M1 and M2 phenotypes, recent studies utilizing single cell technologies have identified expression pattern differences, which is beginning to give a deeper understanding of the heterogeneous subpopulations of TAMs in glioblastomas. In this review, we evaluate the role of TAMs in the glioblastoma microenvironment and discuss how their interactions with cancer cells have an extensive impact on glioblastoma progression and treatment resistance. Finally, we summarize the effects and challenges of therapeutic strategies, which specifically aim to target TAMs.
Collapse
Affiliation(s)
- Rikke Sick Andersen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
| | - Atul Anand
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Dylan Scott Lykke Harwood
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
46
|
Serpe C, Monaco L, Relucenti M, Iovino L, Familiari P, Scavizzi F, Raspa M, Familiari G, Civiero L, D’Agnano I, Limatola C, Catalano M. Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells 2021; 10:2066. [PMID: 34440835 PMCID: PMC8393731 DOI: 10.3390/cells10082066] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/26/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Brain homeostasis needs continuous exchange of intercellular information among neurons, glial cells, and immune cells, namely microglial cells. Extracellular vesicles (EVs) are active players of this process. All the cells of the body, including the brain, release at least two subtypes of EVs, the medium/large EVs (m/lEVs) and small EVs (sEVs). sEVs released by microglia play an important role in brain patrolling in physio-pathological processes. One of the most common and malignant forms of brain cancer is glioblastoma. Altered intercellular communications constitute a base for the onset and the development of the disease. In this work, we used microglia-derived sEVs to assay their effects in vitro on murine glioma cells and in vivo in a glioma model on C57BL6/N mice. Our findings indicated that sEVs carry messages to cancer cells that modify glioma cell metabolism, reducing lactate, nitric oxide (NO), and glutamate (Glu) release. sEVs affect Glu homeostasis, increasing the expression of Glu transporter Glt-1 on astrocytes. We demonstrated that these effects are mediated by miR-124 contained in microglia-released sEVs. The in vivo benefit of microglia-derived sEVs results in a significantly reduced tumor mass and an increased survival of glioma-bearing mice, depending on miR-124.
Collapse
Affiliation(s)
- Carmela Serpe
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy; (M.R.); (G.F.)
| | - Ludovica Iovino
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (L.C.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University, 00185 Rome, Italy;
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (F.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotond, Italy; (F.S.); (M.R.)
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University, 00185 Rome, Italy; (M.R.); (G.F.)
| | - Laura Civiero
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.I.); (L.C.)
- IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Igea D’Agnano
- Institute of Biomedical Technologies, CNR, 20054 Segrate, Italy;
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur Italia Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy; (C.S.); (L.M.)
| |
Collapse
|
47
|
Saddala MS, Yang X, Tang S, Huang H. Transcriptome-wide analysis reveals core sets of transcriptional regulators of sensome and inflammation genes in retinal microglia. Genomics 2021; 113:3058-3071. [PMID: 34242709 DOI: 10.1016/j.ygeno.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/15/2021] [Accepted: 07/02/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Retinal microglial cells (RMCs) play crucial roles in maintaining normal visual functions in a healthy eye. However, the underlying mechanisms of RMCs over-activation manifesting the alterations of sensome profile and inflammation state, which contribute to various retinal neurodegenerative diseases, remain elusive. Here, we aimed to identify the core set of sensome and pro-inflammatory genes and their regulators using transcriptome and data mining approaches. METHODS We performed paired-end RNA-sequencing in primary microglial cell cultures treated with TNFα/IFNϒ (10 ng/ml for 12 h) and PBS as a control. Gene enrichment analysis and hierarchical clustering for the differentially expressed transcripts highlight functional pathways and network perturbations. We examined overlaps of the mouse microglial gene expression profiles with the data-mined human sensome and pro-inflammatory marker genes. The core sets of sensome and pro-inflammatory genes were selected and predicted for transcription factors (TFs). The identified TFs in RNA-Seq are validated by the quantitative PCR method. RESULTS TNFα/IFNϒ induced 668 differentially expressed transcripts in retinal microglial cells relative to the control. Furthermore, gene enrichment analysis and the gene expression network revealed activated microglial genes, biological, molecular and inflammatory pathways. The overlapping analysis of the TNFα/IFNϒ-activated microglia genes and the data-mined human gene sets revealed 22 sensome and 61 pro-inflammatory genes. Based on network analysis, we determined 10 genes as the core sets of sensome and pro-inflammatory genes and predicted the top ten TFs that regulate them. The SP110, IRF1, FLI1, SP140 (sensome) and RELB, BATF2, NFKB2, TRAFD1, SP100, NFKB1 (inflammation) are differentially expressed between the TNFα/IFNϒ activated and the non-activated microglia which were validated by quantitative PCR. The outcomes indicate that these transcriptional regulators are highly expressed and may regulate the sensome and inflammatory genes of RMCs and switch them to over-activation. CONCLUSION Our results comprise a powerful, cross-species functional genomics resource for sensome and inflammation of RMCs, which may provide novel therapeutic approaches to prevent retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Madhu Sudhana Saddala
- University of Missouri School of Medicine, Columbia, Missouri, United States of America; Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xu Yang
- University of Missouri School of Medicine, Columbia, Missouri, United States of America; Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan, China
| | - Shibo Tang
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, Hunan, China
| | - Hu Huang
- University of Missouri School of Medicine, Columbia, Missouri, United States of America.
| |
Collapse
|
48
|
Dong R, Huang R, Wang J, Liu H, Xu Z. Effects of Microglial Activation and Polarization on Brain Injury After Stroke. Front Neurol 2021; 12:620948. [PMID: 34276530 PMCID: PMC8280287 DOI: 10.3389/fneur.2021.620948] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is one of the most common causes of death worldwide. The subsequent development of neuroinflammation and brain edema dramatically increases the risks associated with stroke, leading to a substantial increase in mortality. Although considerable progress has been made in improving cerebral perfusion in the acute phase of stroke, effective treatment options for the subacute and chronic phases associated with cerebral infarction are limited. Microglia, the innate immune cells of the central nervous system (CNS), can be activated and polarized to take on different phenotypes in response to stimulations associated with stroke, including pro-inflammatory and anti-inflammatory phenotypes, which affect the prognosis of stroke. Therefore, investigation of the activation and polarizing mechanisms of microglia plays a critical role in treating stroke. The aim of this article was to investigate the significance of microglial phenotype regulation in stroke treatment by summarizing the activation, polarizing mechanisms, and general microglia characteristics.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
49
|
Advances in Chemokine Signaling Pathways as Therapeutic Targets in Glioblastoma. Cancers (Basel) 2021; 13:cancers13122983. [PMID: 34203660 PMCID: PMC8232256 DOI: 10.3390/cancers13122983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
With a median patient survival of 15 months, glioblastoma (GBM) is still one of the deadliest malign tumors. Despite immense efforts, therapeutic regimens fail to prolong GBM patient overall survival due to various resistance mechanisms. Chemokine signaling as part of the tumor microenvironment plays a key role in gliomagenesis, proliferation, neovascularization, metastasis and tumor progression. In this review, we aimed to investigate novel therapeutic approaches targeting various chemokine axes, including CXCR2/CXCL2/IL-8, CXCR3/CXCL4/CXCL9/CXCL10, CXCR4/CXCR7/CXCL12, CXCR6/CXCL16, CCR2/CCL2, CCR5/CCL5 and CX3CR1/CX3CL1 in preclinical and clinical studies of GBM. We reviewed targeted therapies as single therapies, in combination with the standard of care, with antiangiogenic treatment as well as immunotherapy. We found that there are many antagonist-, antibody-, cell- and vaccine-based therapeutic approaches in preclinical and clinical studies. Furthermore, targeted therapies exerted their highest efficacy in combination with other established therapeutic applications. The novel chemokine-targeting therapies have mainly been examined in preclinical models. However, clinical applications are auspicious. Thus, it is crucial to broadly investigate the recently developed preclinical approaches. Promising preclinical applications should then be investigated in clinical studies to create new therapeutic regimens and to overcome therapy resistance to GBM treatment.
Collapse
|
50
|
Zhang Y, Yang X, Zhu XL, Bai H, Wang ZZ, Zhang JJ, Hao CY, Duan HB. S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma. Aging (Albany NY) 2021; 13:15459-15478. [PMID: 34148033 PMCID: PMC8221329 DOI: 10.18632/aging.203103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the better prognosis given by surgical resection and chemotherapy in low-grade glioma (LGG), progressive transformation is still a huge concern. In this case, the S100A gene family, being capable of regulating inflammatory responses, can promote tumor development. METHODS The analysis was carried out via ONCOMINE, GEPIA, cBioPortal, String, GeneMANIA, WebGestalt, LinkedOmics, TIMER, CGGA, R 4.0.2 and immunohistochemistry. RESULTS S100A2, S100A6, S100A10, S100A11, and S100A16 were up-regulated and S100A1 and S100A13 were down-regulated in LGG compared to normal tissues. S100A3, S100A4, S100A8, and S100A9 expression was up-regulated during the progression of glioma grade. In addition, genetic variation of the S100A family was high in LGG, and the S100A family genes mostly function through IL-17 signaling pathway, S100 binding protein, and inflammatory responses. The TIMER database also revealed a relationship between gene expression and immune cell infiltration. High expression of S100A2, S100A3, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, S100A13, and S100A16 was significantly associated with poor prognosis in LGG patients. S100A family genes S100A2, S100A3, S100A6, S100A10, and S100A11 may be prognosis-related genes in LGG, and were significantly associated with IDH mutation and 1p19q codeletion. The immunohistochemical staining results also confirmed that S100A2, S100A3, S100A6, S100A10, and S100A11 expression was upregulated in LGG. CONCLUSION The S100A family plays a vital role in LGG pathogenesis, presumably facilitating LGG progression via modulating inflammatory state and immune cell infiltration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xiao-Lin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hao Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Zhuang-Zhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Jun-Jie Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Chun-Yan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hu-Bin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang 033000, Shanxi, P.R. China
| |
Collapse
|