1
|
Riccabona JR, Spoendlin FC, Fischer ALM, Loeffler JR, Quoika PK, Jenkins TP, Ferguson JA, Smorodina E, Laustsen AH, Greiff V, Forli S, Ward AB, Deane CM, Fernández-Quintero ML. Assessing AF2's ability to predict structural ensembles of proteins. Structure 2024; 32:2147-2159.e2. [PMID: 39332396 DOI: 10.1016/j.str.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Recent breakthroughs in protein structure prediction have enhanced the precision and speed at which protein configurations can be determined. Additionally, molecular dynamics (MD) simulations serve as a crucial tool for capturing the conformational space of proteins, providing valuable insights into their structural fluctuations. However, the scope of MD simulations is often limited by the accessible timescales and the computational resources available, posing challenges to comprehensively exploring protein behaviors. Recently emerging approaches have focused on expanding the capability of AlphaFold2 (AF2) to predict conformational substates of protein. Here, we benchmark the performance of various workflows that have adapted AF2 for ensemble prediction and compare the obtained structures with ensembles obtained from MD simulations and NMR. We provide an overview of the levels of performance and accessible timescales that can currently be achieved with machine learning (ML) based ensemble generation. Significant minima of the free energy surfaces remain undetected.
Collapse
Affiliation(s)
- Jakob R Riccabona
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Fabian C Spoendlin
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, UK
| | - Anna-Lena M Fischer
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Patrick K Quoika
- Center for Functional Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany
| | - Timothy P Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - James A Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eva Smorodina
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, UK.
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck, Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
da Silva PC, Martinez L. Extended Conformational Selection in the Antigen-Antibody Interaction of the PfAMA1 Protein. J Phys Chem B 2024; 128:8400-8408. [PMID: 39172501 PMCID: PMC11382265 DOI: 10.1021/acs.jpcb.4c03734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/20/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Plasmodium falciparum apical membrane antigen 1 (PfAMA1) is a surface protein found in two stages of the malaria life cycle. This is a protein involved in a reorientation movement of the parasite so that cell invasion occurs in the so-called "moving junction", relevant when the membranes of the parasite and the host are in contact. The structure of a conformational epitope of domain III of PfAMA1 in complex with the monoclonal antibody Fab F8.12.19 is experimentally known. Here, we used molecular dynamics with enhanced sampling by Hamiltonian replica exchange molecular dynamics (HREMD) to understand the effect of intermolecular interactions, conformational variability, and intrinsically disordered regions on the mechanism of antigen-antibody interaction. Clustering methods and the analysis of conformational variability were used in order to understand the influence of the presence of the partner protein in the complex. The free-state epitope accesses a broader conformational pool, including disordered conformations not seen in the bound state. The simulations suggest an extended conformational selection mechanism in which the antibody stabilizes a conformational set of the epitope existing in the free state. The stabilization of the active conformation occurs mainly through hydrogen bonds: Tyr(H33)-Asp493, His(L94)-Val510, Ser(L93)-Glu511, Tyr(H56)-Asp485, and Tyr(H35)-Asp493. The antibody has a structure with few flexible regions, and only the complementarity determining region (CDR) H3 shows greater plasticity in the presence of the epitope.
Collapse
Affiliation(s)
- Pamella
Cristiny Carneiro da Silva
- Institute of Chemistry and
Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas (UNICAMP), 13083-861 Campinas, SP, Brazil
| | - Leandro Martinez
- Institute of Chemistry and
Center for Computing in Engineering & Sciences, Universidade Estadual de Campinas (UNICAMP), 13083-861 Campinas, SP, Brazil
| |
Collapse
|
3
|
Bashour H, Smorodina E, Pariset M, Zhong J, Akbar R, Chernigovskaya M, Lê Quý K, Snapkow I, Rawat P, Krawczyk K, Sandve GK, Gutierrez-Marcos J, Gutierrez DNZ, Andersen JT, Greiff V. Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability. Commun Biol 2024; 7:922. [PMID: 39085379 PMCID: PMC11291509 DOI: 10.1038/s42003-024-06561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Designing effective monoclonal antibody (mAb) therapeutics faces a multi-parameter optimization challenge known as "developability", which reflects an antibody's ability to progress through development stages based on its physicochemical properties. While natural antibodies may provide valuable guidance for mAb selection, we lack a comprehensive understanding of natural developability parameter (DP) plasticity (redundancy, predictability, sensitivity) and how the DP landscapes of human-engineered and natural antibodies relate to one another. These gaps hinder fundamental developability profile cartography. To chart natural and engineered DP landscapes, we computed 40 sequence- and 46 structure-based DPs of over two million native and human-engineered single-chain antibody sequences. We find lower redundancy among structure-based compared to sequence-based DPs. Sequence DP sensitivity to single amino acid substitutions varied by antibody region and DP, and structure DP values varied across the conformational ensemble of antibody structures. We show that sequence DPs are more predictable than structure-based ones across different machine-learning tasks and embeddings, indicating a constrained sequence-based design space. Human-engineered antibodies localize within the developability and sequence landscapes of natural antibodies, suggesting that human-engineered antibodies explore mere subspaces of the natural one. Our work quantifies the plasticity of antibody developability, providing a fundamental resource for multi-parameter therapeutic mAb design.
Collapse
Affiliation(s)
- Habib Bashour
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Jahn Zhong
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
4
|
Zhao G, Richaud AD, Williamson RT, Feig M, Roche SP. De Novo Synthesis and Structural Elucidation of CDR-H3 Loop Mimics. ACS Chem Biol 2024; 19:1583-1592. [PMID: 38916527 PMCID: PMC11299430 DOI: 10.1021/acschembio.4c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context. CD and NMR data revealed that these stable standalone β-hairpin scaffolds are well-folded and retain many of the native bulge CDR-H3 features in water. In particular, the tryptophan residue, highly conserved across CDR-H3 sequences, was found to extend the kinked base of these β-bulges through a combination of stabilizing intramolecular hydrogen bond and CH/π interaction. The structural ensemble consistent with our NMR observations exposed the dynamic nature of residues at the base of the loop, suggesting that β-bulges act as molecular hinges connecting the rigid stem to the more flexible loops of CDR-H3s. We anticipate that this deeper structural understanding of CDR-H3s will lay the foundation to inform the design of antibody drugs broadly and engineer novel CDR-H3 peptide scaffolds as therapeutics.
Collapse
Affiliation(s)
- Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Alexis D. Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - R. Thomas Williamson
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28409, United States
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Stéphane P. Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| |
Collapse
|
5
|
Vu MH, Robert PA, Akbar R, Swiatczak B, Sandve GK, Haug DTT, Greiff V. Linguistics-based formalization of the antibody language as a basis for antibody language models. NATURE COMPUTATIONAL SCIENCE 2024; 4:412-422. [PMID: 38877120 DOI: 10.1038/s43588-024-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Apparent parallels between natural language and antibody sequences have led to a surge in deep language models applied to antibody sequences for predicting cognate antigen recognition. However, a linguistic formal definition of antibody language does not exist, and insight into how antibody language models capture antibody-specific binding features remains largely uninterpretable. Here we describe how a linguistic formalization of the antibody language, by characterizing its tokens and grammar, could address current challenges in antibody language model rule mining.
Collapse
Affiliation(s)
- Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway.
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
| | | | | | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
6
|
McConnell SA, Casadevall A. Immunoglobulin constant regions provide stabilization to the paratope and enforce epitope specificity. J Biol Chem 2024; 300:107397. [PMID: 38763332 PMCID: PMC11215335 DOI: 10.1016/j.jbc.2024.107397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.
Collapse
Affiliation(s)
- Scott A McConnell
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Fischer AL, Tichy A, Kokot J, Hoerschinger VJ, Wild RF, Riccabona JR, Loeffler JR, Waibl F, Quoika PK, Gschwandtner P, Forli S, Ward AB, Liedl KR, Zacharias M, Fernández-Quintero ML. The Role of Force Fields and Water Models in Protein Folding and Unfolding Dynamics. J Chem Theory Comput 2024; 20:2321-2333. [PMID: 38373307 PMCID: PMC10938642 DOI: 10.1021/acs.jctc.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Protein folding is a fascinating, not fully understood phenomenon in biology. Molecular dynamics (MD) simulations are an invaluable tool to study conformational changes in atomistic detail, including folding and unfolding processes of proteins. However, the accuracy of the conformational ensembles derived from MD simulations inevitably relies on the quality of the underlying force field in combination with the respective water model. Here, we investigate protein folding, unfolding, and misfolding of fast-folding proteins by examining different force fields with their recommended water models, i.e., ff14SB with the TIP3P model and ff19SB with the OPC model. To this end, we generated long conventional MD simulations highlighting the perks and pitfalls of these setups. Using Markov state models, we defined kinetically independent conformational substates and emphasized their distinct characteristics, as well as their corresponding state probabilities. Surprisingly, we found substantial differences in thermodynamics and kinetics of protein folding, depending on the combination of the protein force field and water model, originating primarily from the different water models. These results emphasize the importance of carefully choosing the force field and the respective water model as they determine the accuracy of the observed dynamics of folding events. Thus, the findings support the hypothesis that the water model is at least equally important as the force field and hence needs to be considered in future studies investigating protein dynamics and folding in all areas of biophysics.
Collapse
Affiliation(s)
- Anna-Lena
M. Fischer
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Anna Tichy
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Valentin J. Hoerschinger
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Robert F. Wild
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Jakob R. Riccabona
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Johannes R. Loeffler
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Patrick K. Quoika
- Center
for Protein Assemblies (CPA), Physics Department, Chair of Theoretical
Biophysics, Technical University of Munich, D-80333 Munich, Germany
| | | | - Stefano Forli
- Department
of Integrative Structural and Computational Biology, Scripps Research Institute, La
Jolla, California 92037, United States
| | - Andrew B. Ward
- Department
of Integrative Structural and Computational Biology, Scripps Research Institute, La
Jolla, California 92037, United States
| | - Klaus R. Liedl
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| | - Martin Zacharias
- Center
for Protein Assemblies (CPA), Physics Department, Chair of Theoretical
Biophysics, Technical University of Munich, D-80333 Munich, Germany
| | - Monica L. Fernández-Quintero
- Institute
for General, Inorganic and Theoretical Chemistry, Center for Molecular
Biosciences Innsbruck (CMBI), University
of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
8
|
Tulika T, Pedersen RW, Rimbault C, Ahmadi S, Rivera‐de‐Torre E, Fernández‐Quintero ML, Loeffler JR, Bohn M, Ljungars A, Ledsgaard L, Voldborg BG, Ruso‐Julve F, Andersen JT, Laustsen AH. Phage display assisted discovery of a pH-dependent anti-α-cobratoxin antibody from a natural variable domain library. Protein Sci 2023; 32:e4821. [PMID: 37897425 PMCID: PMC10659949 DOI: 10.1002/pro.4821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Recycling IgG antibodies bind to their target antigen at physiological pH in the blood stream and release them upon endocytosis when pH levels drop, allowing the IgG antibodies to be recycled into circulation via FcRn-mediated cellular pathways, while the antigens undergo lysosomal degradation. This enables recycling antibodies to achieve comparable therapeutic effect at lower doses than their non-recycling counterparts. The development of such antibodies is typically achieved by histidine doping of their variable regions or by performing in vitro antibody selection campaigns utilizing histidine doped libraries. Both are strategies that may introduce sequence liabilities. Here, we present a methodology that employs a naïve antibody phage display library, consisting of natural variable domains, to discover antibodies that bind α-cobratoxin from the venom of Naja kaouthia in a pH-dependent manner. As a result, an antibody was discovered that exhibits a 7-fold higher off-rate at pH 5.5 than pH 7.4 in bio-layer interferometry experiments. Interestingly, no histidine residues were found in its variable domains, and in addition, the antibody showed pH-dependent binding to a histidine-devoid antigen mutant. As such, the results demonstrate that pH-dependent antigen-antibody binding may not always be driven by histidine residues. By employing molecular dynamics simulations, different protonation states of titratable residues were found, which potentially could be responsible for the observed pH-dependent antigen binding properties of the antibody. Finally, given the typically high diversity of naïve antibody libraries, the methodology presented here can likely be applied to discover recycling antibodies against different targets ab initio without the need for histidine doping.
Collapse
Affiliation(s)
- Tulika Tulika
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Rasmus W. Pedersen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Charlotte Rimbault
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Shirin Ahmadi
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | - Monica L. Fernández‐Quintero
- Center for Molecular Biosciences Innsbruck, Department of GeneralInorganic and Theoretical Chemistry, University of InnsbruckInnsbruckAustria
| | - Johannes R. Loeffler
- Center for Molecular Biosciences Innsbruck, Department of GeneralInorganic and Theoretical Chemistry, University of InnsbruckInnsbruckAustria
| | - Markus‐Frederik Bohn
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Anne Ljungars
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Line Ledsgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Bjørn G. Voldborg
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Fulgencio Ruso‐Julve
- Department of PharmacologyUniversity of OsloOsloNorway
- Department of ImmunologyOslo University Hospital RikshospitaletOsloNorway
- Precision Immunotherapy AllianceUniversity of OsloOsloNorway
| | - Jan Terje Andersen
- Department of PharmacologyUniversity of OsloOsloNorway
- Department of ImmunologyOslo University Hospital RikshospitaletOsloNorway
- Precision Immunotherapy AllianceUniversity of OsloOsloNorway
| | - Andreas H. Laustsen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
9
|
Tang X, Kokot J, Waibl F, Fernández-Quintero ML, Kamenik AS, Liedl KR. Addressing Challenges of Macrocyclic Conformational Sampling in Polar and Apolar Solvents: Lessons for Chameleonicity. J Chem Inf Model 2023; 63:7107-7123. [PMID: 37943023 PMCID: PMC10685455 DOI: 10.1021/acs.jcim.3c01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
We evaluated a workflow to reliably sample the conformational space of a set of 47 peptidic macrocycles. Starting from SMILES strings, we use accelerated molecular dynamics simulations to overcome high energy barriers, in particular, the cis-trans isomerization of peptide bonds. We find that our approach performs very well in polar solvents like water and dimethyl sulfoxide. Interestingly, the protonation state of a secondary amine in the ring only slightly influences the conformational ensembles of our test systems. For several of the macrocycles, determining the conformational distribution in chloroform turns out to be considerably more challenging. Especially, the choice of partial charges crucially influences the ensembles in chloroform. We address these challenges by modifying initial structures and the choice of partial charges. Our results suggest that special care has to be taken to understand the configurational distribution in apolar solvents, which is a key step toward a reliable prediction of membrane permeation of macrocycles and their chameleonic properties.
Collapse
Affiliation(s)
- Xuechen Tang
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Janik Kokot
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Franz Waibl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, 8093 Zürich, Switzerland
| | | | - Anna S. Kamenik
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department
of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Lecerf M, Lacombe RV, Dimitrov JD. Polyreactivity of antibodies from different B-cell subpopulations is determined by distinct sequence patterns of variable region. Front Immunol 2023; 14:1266668. [PMID: 38077343 PMCID: PMC10710144 DOI: 10.3389/fimmu.2023.1266668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
An antibody molecule that can bind to multiple distinct antigens is defined as polyreactive. In the present study, we performed statistical analyses to assess sequence correlates of polyreactivity of >600 antibodies cloned from different B-cell types of healthy humans. The data revealed several sequence patterns of variable regions of heavy and light immunoglobulin chains that determine polyreactivity. The most prominent identified patterns were increased number of basic amino acid residues, reduced frequency of acidic residues, increased number of aromatic and hydrophobic residues, and longer length of CDR L1. Importantly, our study revealed that antibodies isolated from different B-cell populations used distinct sequence patterns (or combinations of them) for polyreactive antigen binding. Furthermore, we combined the data from sequence analyses with molecular modeling of selected polyreactive antibodies and demonstrated that human antibodies can use multiple pathways for achieving antigen-binding promiscuity. These data reconcile some contradictions in the literature regarding the determinants of antibody polyreactivity. Moreover, our study demonstrates that the mechanism of polyreactivity of antibodies evolves during immune response and might be tailored to specific functional properties of different B-cell compartments. Finally, these data can be of use for efforts in the development and engineering of therapeutic antibodies.
Collapse
Affiliation(s)
| | | | - Jordan D. Dimitrov
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
11
|
Fischman S, Levin I, Rondeau JM, Štrajbl M, Lehmann S, Huber T, Nimrod G, Cebe R, Omer D, Kovarik J, Bernstein S, Sasson Y, Demishtein A, Shlamkovich T, Bluvshtein O, Grossman N, Barak-Fuchs R, Zhenin M, Fastman Y, Twito S, Vana T, Zur N, Ofran Y. "Redirecting an anti-IL-1β antibody to bind a new, unrelated and computationally predicted epitope on hIL-17A". Commun Biol 2023; 6:997. [PMID: 37773269 PMCID: PMC10542344 DOI: 10.1038/s42003-023-05369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Antibody engineering technology is at the forefront of therapeutic antibody development. The primary goal for engineering a therapeutic antibody is the generation of an antibody with a desired specificity, affinity, function, and developability profile. Mature antibodies are considered antigen specific, which may preclude their use as a starting point for antibody engineering. Here, we explore the plasticity of mature antibodies by engineering novel specificity and function to a pre-selected antibody template. Using a small, focused library, we engineered AAL160, an anti-IL-1β antibody, to bind the unrelated antigen IL-17A, with the introduction of seven mutations. The final redesigned antibody, 11.003, retains favorable biophysical properties, binds IL-17A with sub-nanomolar affinity, inhibits IL-17A binding to its cognate receptor and is functional in a cell-based assay. The epitope of the engineered antibody can be computationally predicted based on the sequence of the template antibody, as is confirmed by the crystal structure of the 11.003/IL-17A complex. The structures of the 11.003/IL-17A and the AAL160/IL-1β complexes highlight the contribution of germline residues to the paratopes of both the template and re-designed antibody. This case study suggests that the inherent plasticity of antibodies allows for re-engineering of mature antibodies to new targets, while maintaining desirable developability profiles.
Collapse
Affiliation(s)
| | - Itay Levin
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | | | | | - Sylvie Lehmann
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Thomas Huber
- Novartis Institutes for Biomedical Research, Basel, Switzerland
- Ridgelinediscovery, Basel, Switzerland
| | | | - Régis Cebe
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dotan Omer
- Biolojic Design LTD, Rehovot, Israel
- EmendoBio Inc., Rehovot, Israel
| | - Jiri Kovarik
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | | | - Alik Demishtein
- Biolojic Design LTD, Rehovot, Israel
- Anima Biotech, Ramat-Gan, Israel
| | | | - Olga Bluvshtein
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | | | | | | | | | - Shir Twito
- Biolojic Design LTD, Rehovot, Israel
- Enzymit LTD, Ness Ziona, Israel
| | - Tal Vana
- Biolojic Design LTD, Rehovot, Israel
| | - Nevet Zur
- Biolojic Design LTD, Rehovot, Israel
| | - Yanay Ofran
- Biolojic Design LTD, Rehovot, Israel
- The Goodman Faculty of Life Sciences, Nanotechnology Building, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
12
|
Gaudreault F, Corbeil CR, Sulea T. Enhanced antibody-antigen structure prediction from molecular docking using AlphaFold2. Sci Rep 2023; 13:15107. [PMID: 37704686 PMCID: PMC10499836 DOI: 10.1038/s41598-023-42090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Predicting the structure of antibody-antigen complexes has tremendous value in biomedical research but unfortunately suffers from a poor performance in real-life applications. AlphaFold2 (AF2) has provided renewed hope for improvements in the field of protein-protein docking but has shown limited success against antibody-antigen complexes due to the lack of co-evolutionary constraints. In this study, we used physics-based protein docking methods for building decoy sets consisting of low-energy docking solutions that were either geometrically close to the native structure (positives) or not (negatives). The docking models were then fed into AF2 to assess their confidence with a novel composite score based on normalized pLDDT and pTMscore metrics after AF2 structural refinement. We show benefits of the AF2 composite score for rescoring docking poses both in terms of (1) classification of positives/negatives and of (2) success rates with particular emphasis on early enrichment. Docking models of at least medium quality present in the decoy set, but not necessarily highly ranked by docking methods, benefitted most from AF2 rescoring by experiencing large advances towards the top of the reranked list of models. These improvements, obtained without any calibration or novel methodologies, led to a notable level of performance in antibody-antigen unbound docking that was never achieved previously.
Collapse
Affiliation(s)
- Francis Gaudreault
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Christopher R Corbeil
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada.
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
13
|
Math BA, Waibl F, Lamp LM, Fernández‐Quintero ML, Liedl KR. Cross-linking disulfide bonds govern solution structures of diabodies. Proteins 2023; 91:1316-1328. [PMID: 37376973 PMCID: PMC10952579 DOI: 10.1002/prot.26509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/19/2023] [Indexed: 06/29/2023]
Abstract
In the last years, antibodies have emerged as a promising new class of therapeutics, due to their combination of high specificity with long serum half-life and low risk of side-effects. Diabodies are a popular novel antibody format, consisting of two Fv domains connected with short linkers. Like IgG antibodies, they simultaneously bind two target proteins. However, they offer altered properties, given their smaller size and higher rigidity. In this study, we conducted the-to our knowledge-first molecular dynamics (MD) simulations of diabodies and find a surprisingly high conformational flexibility in the relative orientation of the two Fv domains. We observe rigidifying effects through the introduction of disulfide bonds in the Fv -Fv interface and characterize the effect of different disulfide bond locations on the conformation. Additionally, we compare VH -VL orientations and paratope dynamics between diabodies and an antigen binding fragment (Fab) of the same sequence. We find mostly consistent structures and dynamics, indicating similar antigen binding properties. The most significant differences can be found within the CDR-H2 loop dynamics. Of all CDR loops, the CDR-H2 is located closest to the artificial Fv -Fv interface. All examined diabodies show similar VH -VL orientations, Fv -Fv packing and CDR loop conformations. However, the variant with a P14C-K64C disulfide bond differs most from the Fab in our measures, including the CDR-H3 loop conformational ensemble. This suggests altered antigen binding properties and underlines the need for careful validation of the disulfide bond locations in diabodies.
Collapse
Affiliation(s)
- Barbara A. Math
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Leonida M. Lamp
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Monica L. Fernández‐Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| |
Collapse
|
14
|
Rappazzo CG, Fernández-Quintero ML, Mayer A, Wu NC, Greiff V, Guthmiller JJ. Defining and Studying B Cell Receptor and TCR Interactions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:311-322. [PMID: 37459189 PMCID: PMC10495106 DOI: 10.4049/jimmunol.2300136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/15/2023] [Indexed: 07/20/2023]
Abstract
BCRs (Abs) and TCRs (or adaptive immune receptors [AIRs]) are the means by which the adaptive immune system recognizes foreign and self-antigens, playing an integral part in host defense, as well as the emergence of autoimmunity. Importantly, the interaction between AIRs and their cognate Ags defies a simple key-in-lock paradigm and is instead a complex many-to-many mapping between an individual's massively diverse AIR repertoire, and a similarly diverse antigenic space. Understanding how adaptive immunity balances specificity with epitopic coverage is a key challenge for the field, and terms such as broad specificity, cross-reactivity, and polyreactivity remain ill-defined and are used inconsistently. In this Immunology Notes and Resources article, a group of experimental, structural, and computational immunologists define commonly used terms associated with AIR binding, describe methodologies to study these binding modes, as well as highlight the implications of these different binding modes for therapeutic design.
Collapse
Affiliation(s)
| | | | - Andreas Mayer
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
15
|
Guloglu B, Deane CM. Specific attributes of the V L domain influence both the structure and structural variability of CDR-H3 through steric effects. Front Immunol 2023; 14:1223802. [PMID: 37564639 PMCID: PMC10410447 DOI: 10.3389/fimmu.2023.1223802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Antibodies, through their ability to target virtually any epitope, play a key role in driving the adaptive immune response in jawed vertebrates. The binding domains of standard antibodies are their variable light (VL) and heavy (VH) domains, both of which present analogous complementarity-determining region (CDR) loops. It has long been known that the VH CDRs contribute more heavily to the antigen-binding surface (paratope), with the CDR-H3 loop providing a major modality for the generation of diverse paratopes. Here, we provide evidence for an additional role of the VL domain as a modulator of CDR-H3 structure, using a diverse set of antibody crystal structures and a large set of molecular dynamics simulations. We show that specific attributes of the VL domain such as subtypes, CDR canonical forms and genes can influence the structural diversity of the CDR-H3 loop, and provide a physical model for how this effect occurs through inter-loop contacts and packing of CDRs against each other. Our results indicate that the rigid minor loops fine-tune the structure of CDR-H3, thereby contributing to the generation of surfaces complementary to the vast number of possible epitope topologies, and provide insights into the interdependent nature of CDR conformations, an understanding of which is important for the rational antibody design process.
Collapse
Affiliation(s)
- Bora Guloglu
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, United Kingdom
| | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Jaszczyszyn I, Bielska W, Gawlowski T, Dudzic P, Satława T, Kończak J, Wilman W, Janusz B, Wróbel S, Chomicz D, Galson JD, Leem J, Kelm S, Krawczyk K. Structural modeling of antibody variable regions using deep learning-progress and perspectives on drug discovery. Front Mol Biosci 2023; 10:1214424. [PMID: 37484529 PMCID: PMC10361724 DOI: 10.3389/fmolb.2023.1214424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
AlphaFold2 has hallmarked a generational improvement in protein structure prediction. In particular, advances in antibody structure prediction have provided a highly translatable impact on drug discovery. Though AlphaFold2 laid the groundwork for all proteins, antibody-specific applications require adjustments tailored to these molecules, which has resulted in a handful of deep learning antibody structure predictors. Herein, we review the recent advances in antibody structure prediction and relate them to their role in advancing biologics discovery.
Collapse
Affiliation(s)
- Igor Jaszczyszyn
- NaturalAntibody, Kraków, Poland
- Medical University of Warsaw, Warsaw, Poland
| | - Weronika Bielska
- NaturalAntibody, Kraków, Poland
- Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | | | | | | | | - Jinwoo Leem
- Alchemab Therapeutics Ltd., London, United Kingdom
| | | | | |
Collapse
|
17
|
Martin GM, Fernández-Quintero ML, Lee WH, Pholcharee T, Eshun-Wilson L, Liedl KR, Pancera M, Seder RA, Wilson IA, Ward AB. Structural basis of epitope selectivity and potent protection from malaria by PfCSP antibody L9. Nat Commun 2023; 14:2815. [PMID: 37198165 PMCID: PMC10192352 DOI: 10.1038/s41467-023-38509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
A primary objective in malaria vaccine design is the generation of high-quality antibody responses against the circumsporozoite protein of the malaria parasite, Plasmodium falciparum (PfCSP). To enable rational antigen design, we solved a cryo-EM structure of the highly potent anti-PfCSP antibody L9 in complex with recombinant PfCSP. We found that L9 Fab binds multivalently to the minor (NPNV) repeat domain, which is stabilized by a unique set of affinity-matured homotypic, antibody-antibody contacts. Molecular dynamics simulations revealed a critical role of the L9 light chain in integrity of the homotypic interface, which likely impacts PfCSP affinity and protective efficacy. These findings reveal the molecular mechanism of the unique NPNV selectivity of L9 and emphasize the importance of anti-homotypic affinity maturation in protective immunity against P. falciparum.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Monica L Fernández-Quintero
- Department of General, Inorganic, and Theoretical Chemistry, Center for Chemistry and Biomedicine, The University of Innsbruck; Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tossapol Pholcharee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Biochemistry, University of Oxford, Oxford, OX1 3DR, UK
| | - Lisa Eshun-Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Klaus R Liedl
- Department of General, Inorganic, and Theoretical Chemistry, Center for Chemistry and Biomedicine, The University of Innsbruck; Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Structural mechanism of Fab domain dissociation as a measure of interface stability. J Comput Aided Mol Des 2023; 37:201-215. [PMID: 36918473 PMCID: PMC10049950 DOI: 10.1007/s10822-023-00501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/23/2023] [Indexed: 03/16/2023]
Abstract
Therapeutic antibodies should not only recognize antigens specifically, but also need to be free from developability issues, such as poor stability. Thus, the mechanistic understanding and characterization of stability are critical determinants for rational antibody design. In this study, we use molecular dynamics simulations to investigate the melting process of 16 antigen binding fragments (Fabs). We describe the Fab dissociation mechanisms, showing a separation in the VH-VL and in the CH1-CL domains. We found that the depths of the minima in the free energy curve, corresponding to the bound states, correlate with the experimentally determined melting temperatures. Additionally, we provide a detailed structural description of the dissociation mechanism and identify key interactions in the CDR loops and in the CH1-CL interface that contribute to stabilization. The dissociation of the VH-VL or CH1-CL domains can be represented by conformational changes in the bend angles between the domains. Our findings elucidate the melting process of antigen binding fragments and highlight critical residues in both the variable and constant domains, which are also strongly germline dependent. Thus, our proposed mechanisms have broad implications in the development and design of new and more stable antigen binding fragments.
Collapse
|
19
|
Seidler CA, Kokot J, Fernández-Quintero ML, Liedl KR. Structural Characterization of Nanobodies during Germline Maturation. Biomolecules 2023; 13:380. [PMID: 36830754 PMCID: PMC9953242 DOI: 10.3390/biom13020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Camelid heavy-chain antibody variable domains (VHH), nanobodies, are the smallest-known functional antibody fragments with high therapeutic potential. In this study, we investigate a VHH binding to hen egg-white lysozyme (HEL). We structurally and dynamically characterized the conformational diversity of four VHH variants to elucidate the antigen-binding process. For two of these antibodies, not only are the dissociation constants known, but also the experimentally determined crystal structures of the VHH in complex with HEL are available. We performed well-tempered metadynamics simulations in combination with molecular dynamics simulations to capture a broad conformational space and to reconstruct the thermodynamics and kinetics of conformational transitions in the antigen-binding site, the paratope. By kinetically characterizing the loop movements of the paratope, we found that, with an increase in affinity, the state populations shift towards the binding competent conformation. The contacts contributing to antigen binding, and those who contribute to the overall stability, show a clear trend towards less variable but more intense contacts. Additionally, these investigated nanobodies clearly follow the conformational selection paradigm, as the binding competent conformation pre-exists within the structural ensembles without the presence of the antigen.
Collapse
Affiliation(s)
| | | | - Monica L. Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Licari G, Martin KP, Crames M, Mozdzierz J, Marlow MS, Karow-Zwick AR, Kumar S, Bauer J. Embedding Dynamics in Intrinsic Physicochemical Profiles of Market-Stage Antibody-Based Biotherapeutics. Mol Pharm 2023; 20:1096-1111. [PMID: 36573887 PMCID: PMC9906779 DOI: 10.1021/acs.molpharmaceut.2c00838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
Adequate stability, manufacturability, and safety are crucial to bringing an antibody-based biotherapeutic to the market. Following the concept of holistic in silico developability, we introduce a physicochemical description of 91 market-stage antibody-based biotherapeutics based on orthogonal molecular properties of variable regions (Fvs) embedded in different simulation environments, mimicking conditions experienced by antibodies during manufacturing, formulation, and in vivo. In this work, the evaluation of molecular properties includes conformational flexibility of the Fvs using molecular dynamics (MD) simulations. The comparison between static homology models and simulations shows that MD significantly affects certain molecular descriptors like surface molecular patches. Moreover, the structural stability of a subset of Fv regions is linked to changes in their specific molecular interactions with ions in different experimental conditions. This is supported by the observation of differences in protein melting temperatures upon addition of NaCl. A DEvelopability Navigator In Silico (DENIS) is proposed to compare mAb candidates for their similarity with market-stage biotherapeutics in terms of physicochemical properties and conformational stability. Expanding on our previous developability guidelines (Ahmed et al. Proc. Natl. Acad. Sci. 2021, 118 (37), e2020577118), the hydrodynamic radius and the protein strand ratio are introduced as two additional descriptors that enable a more comprehensive in silico characterization of biotherapeutic drug candidates. Test cases show how this approach can facilitate identification and optimization of intrinsically developable lead candidates. DENIS represents an advanced computational tool to progress biotherapeutic drug candidates from discovery into early development by predicting drug properties in different aqueous environments.
Collapse
Affiliation(s)
- Giuseppe Licari
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| | - Kyle P. Martin
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Maureen Crames
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Joseph Mozdzierz
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Michael S. Marlow
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Anne R. Karow-Zwick
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| | - Sandeep Kumar
- Biotherapeutics
Discovery & In silico Team, Boehringer
Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut 06877, United States
| | - Joschka Bauer
- Early
Stage Pharmaceutical Development, Pharmaceutical Development Biologicals
& In silico Team, Boehringer Ingelheim
International GmbH & Co. KG, Biberach/Riss 88397, Germany
| |
Collapse
|
21
|
Fernández-Quintero ML, Fischer ALM, Kokot J, Waibl F, Seidler CA, Liedl KR. The influence of antibody humanization on shark variable domain (VNAR) binding site ensembles. Front Immunol 2022; 13:953917. [PMID: 36177031 PMCID: PMC9514858 DOI: 10.3389/fimmu.2022.953917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
|
22
|
Juengsanguanpornsuk W, Kitisripanya T, Boonsnongcheep P, Yusakul G, Srisongkram T, Sakamoto S, Putalun W. Improvement in the binding specificity of anti-isomiroestrol antibodies by expression as fragments under oxidizing conditions inside the SHuffle T7 E. coli cytoplasm. Biosci Biotechnol Biochem 2022; 86:1368-1377. [PMID: 35876636 DOI: 10.1093/bbb/zbac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022]
Abstract
Sensitive and specific analysis of isomiroestrol (Iso) is required for the quality control of Pueraria candollei, an herb used to treat menopausal disorders. The anti-isomiroestrol monoclonal antibody (Iso-mAb) exhibits cross-reactivity with miroestrol and deoxymiroestrol, which impacts the analytical results. Here, the active and soluble forms of the single-chain variable fragment (Iso-scFv) and fragment antigen-binding (Iso-Fab) against Iso were expressed using Escherichia coli SHuffle® T7 to alter the binding specificity. The Iso-scFv format exhibited a higher binding activity than the Iso-Fab format. The reactivity of Iso-scFv towards Iso was comparable to that of the parental Iso-mAb. Remarkably, the binding specificity of the scFv structure was improved and cross-reactivity against analogs was reduced from 13.3-21.0% to less than 1%. The structure of recombinant antibodies affects the binding characteristics. Therefore, the immunoassays should improve specificity; these findings can be useful in agricultural processes and for quality monitoring of P. candollei-related materials.
Collapse
Affiliation(s)
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tarapong Srisongkram
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
23
|
Leem J, Mitchell LS, Farmery JH, Barton J, Galson JD. Deciphering the language of antibodies using self-supervised learning. PATTERNS 2022; 3:100513. [PMID: 35845836 PMCID: PMC9278498 DOI: 10.1016/j.patter.2022.100513] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
An individual’s B cell receptor (BCR) repertoire encodes information about past immune responses and potential for future disease protection. Deciphering the information stored in BCR sequence datasets will transform our understanding of disease and enable discovery of novel diagnostics and antibody therapeutics. A key challenge of BCR sequence analysis is the prediction of BCR properties from their amino acid sequence alone. Here, we present an antibody-specific language model, Antibody-specific Bidirectional Encoder Representation from Transformers (AntiBERTa), which provides a contextualized representation of BCR sequences. Following pre-training, we show that AntiBERTa embeddings capture biologically relevant information, generalizable to a range of applications. As a case study, we fine-tune AntiBERTa to predict paratope positions from an antibody sequence, outperforming public tools across multiple metrics. To our knowledge, AntiBERTa is the deepest protein-family-specific language model, providing a rich representation of BCRs. AntiBERTa embeddings are primed for multiple downstream tasks and can improve our understanding of the language of antibodies. AntiBERTa is an antibody-specific transformer model for representation learning AntiBERTa embeddings capture aspects of antibody function Attention maps of AntiBERTa correspond to structural contacts and binding sites AntiBERTa can be fine-tuned for state-of-the-art paratope prediction
Understanding antibody function is critical for deciphering the biology of disease and for the discovery of novel therapeutic antibodies. The challenge is the vast diversity of antibody variants compared with the limited labeled data available. We overcome this challenge by using self-supervised learning to train a large antibody-specific language model, followed by transfer learning, to fine-tune the model for predicting information related to antibody function. We initially demonstrate the success of the model by providing leading results in antibody binding site prediction. The model is amenable to further fine-tuning for diverse applications to improve our understanding of antibody function.
Collapse
Affiliation(s)
- Jinwoo Leem
- Alchemab Therapeutics, Ltd., East Side, Office 1.02, Kings Cross, London N1C 4AX, UK
- Corresponding author
| | - Laura S. Mitchell
- Alchemab Therapeutics, Ltd., East Side, Office 1.02, Kings Cross, London N1C 4AX, UK
| | - James H.R. Farmery
- Alchemab Therapeutics, Ltd., East Side, Office 1.02, Kings Cross, London N1C 4AX, UK
| | - Justin Barton
- Alchemab Therapeutics, Ltd., East Side, Office 1.02, Kings Cross, London N1C 4AX, UK
| | - Jacob D. Galson
- Alchemab Therapeutics, Ltd., East Side, Office 1.02, Kings Cross, London N1C 4AX, UK
| |
Collapse
|
24
|
Wong MTY, Kelm S, Liu X, Taylor RD, Baker T, Essex JW. Higher Affinity Antibodies Bind With Lower Hydration and Flexibility in Large Scale Simulations. Front Immunol 2022; 13:884110. [PMID: 35707541 PMCID: PMC9190259 DOI: 10.3389/fimmu.2022.884110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
We have carried out a long-timescale simulation study on crystal structures of nine antibody-antigen pairs, in antigen-bound and antibody-only forms, using molecular dynamics with enhanced sampling and an explicit water model to explore interface conformation and hydration. By combining atomic level simulation and replica exchange to enable full protein flexibility, we find significant numbers of bridging water molecules at the antibody-antigen interface. Additionally, a higher proportion of interactions excluding bulk waters and a lower degree of antigen bound CDR conformational sampling are correlated with higher antibody affinity. The CDR sampling supports enthalpically driven antibody binding, as opposed to entropically driven, in that the difference between antigen bound and unbound conformations do not correlate with affinity. We thus propose that interactions with waters and CDR sampling are aspects of the interface that may moderate antibody-antigen binding, and that explicit hydration and CDR flexibility should be considered to improve antibody affinity prediction and computational design workflows.
Collapse
Affiliation(s)
- Mabel T. Y. Wong
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | - Jonathan W. Essex
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- *Correspondence: Jonathan W. Essex,
| |
Collapse
|
25
|
Nanobody Paratope Ensembles in Solution Characterized by MD Simulations and NMR. Int J Mol Sci 2022; 23:ijms23105419. [PMID: 35628231 PMCID: PMC9141556 DOI: 10.3390/ijms23105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 01/27/2023] Open
Abstract
Variable domains of camelid antibodies (so-called nanobodies or VHH) are the smallest antibody fragments that retain complete functionality and therapeutic potential. Understanding of the nanobody-binding interface has become a pre-requisite for rational antibody design and engineering. The nanobody-binding interface consists of up to three hypervariable loops, known as the CDR loops. Here, we structurally and dynamically characterize the conformational diversity of an anti-GFP-binding nanobody by using molecular dynamics simulations in combination with experimentally derived data from nuclear magnetic resonance (NMR) spectroscopy. The NMR data contain both structural and dynamic information resolved at various timescales, which allows an assessment of the quality of protein MD simulations. Thus, in this study, we compared the ensembles for the anti-GFP-binding nanobody obtained from MD simulations with results from NMR. We find excellent agreement of the NOE-derived distance maps obtained from NMR and MD simulations and observe similar conformational spaces for the simulations with and without NOE time-averaged restraints. We also compare the measured and calculated order parameters and find generally good agreement for the motions observed in the ps–ns timescale, in particular for the CDR3 loop. Understanding of the CDR3 loop dynamics is especially critical for nanobodies, as this loop is typically critical for antigen recognition.
Collapse
|
26
|
Blackler RJ, Müller-Loennies S, Pokorny-Lehrer B, Legg MSG, Brade L, Brade H, Kosma P, Evans SV. Antigen binding by conformational selection in near-germline antibodies. J Biol Chem 2022; 298:101901. [PMID: 35395245 PMCID: PMC9112003 DOI: 10.1016/j.jbc.2022.101901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/20/2023] Open
Abstract
Conformational flexibility in antibody-combining sites has been hypothesized to facilitate polyspecificity toward multiple unique epitopes and enable the limited germline repertoire to match an overwhelming diversity of potential antigens; however, elucidating the mechanisms of antigen recognition by flexible antibodies has been understandably challenging. Here, multiple liganded and unliganded crystal structures of the near-germline anticarbohydrate antibodies S25–2 and S25–39 are reported, which reveal an unprecedented diversity of complementarity-determining region H3 conformations in apparent equilibrium. These structures demonstrate that at least some germline or near-germline antibodies are flexible entities sensitive to their chemical environments, with conformational selection available as an evolved mechanism that preserves the inherited ability to recognize common pathogens while remaining adaptable to new threats.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
| | | | - Barbara Pokorny-Lehrer
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Max S G Legg
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada
| | - Lore Brade
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Helmut Brade
- Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Paul Kosma
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC, Canada.
| |
Collapse
|
27
|
Cook JD, Khondker A, Lee JE. Conformational plasticity of the HIV-1 gp41 immunodominant region is recognized by multiple non-neutralizing antibodies. Commun Biol 2022; 5:291. [PMID: 35361878 PMCID: PMC8971491 DOI: 10.1038/s42003-022-03235-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/08/2022] [Indexed: 12/17/2022] Open
Abstract
The early humoral immune response to acute HIV-1 infection is largely non-neutralizing. The principal target of these antibodies is the primary immunodominant region (PID) on the gp41 fusion protein. The PID is a highly conserved 15-residue region displayed on the surface of HIV-1 virions. In this study, we analyzed the humoral determinants of HIV-1 gp41 PID binding using biophysical, structural, and computational methods. In complex with a patient-derived near-germline antibody fragment, the PID motif adopts an elongated random coil, whereas the PID bound to affinity-matured Fab adopts a strand-turn-helix conformation. Molecular dynamics simulations showed that the PID is structurally plastic suggesting that the PID can form an ensemble of structural states recognized by various non-neutralizing antibodies, facilitating HIV-1 immunodominance observed in acute and chronic HIV-1 infections. An improved understanding of how the HIV-1 gp41 PID misdirects the early humoral response should guide the development of an effective HIV-1 vaccine. The 15-amino-acid primary immunodominant (PID) region on HIV-1 gp41 adopts an ensemble of conformational states. This conformational plasticity is suggested to misdirect the early humoral immune response.
Collapse
Affiliation(s)
- Jonathan D Cook
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Adree Khondker
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Jeffrey E Lee
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
28
|
Fernández-Quintero ML, Kroell KB, Grunewald LJ, Fischer ALM, Riccabona JR, Liedl KR. CDR loop interactions can determine heavy and light chain pairing preferences in bispecific antibodies. MAbs 2022; 14:2024118. [PMID: 35090383 PMCID: PMC8803122 DOI: 10.1080/19420862.2021.2024118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
As the current biotherapeutic market is dominated by antibodies, the design of different antibody formats, like bispecific antibodies, is critical to the advancement of the field. In contrast to monovalent antibodies, which consist of two identical antigen-binding sites, bispecific antibodies can target two different epitopes by containing two different antigen-binding sites. Thus, the rise of new formats as successful therapeutics has reignited the interest in advancing and facilitating the efficient production of bispecific antibodies. Here, we investigate the influence of point mutations in the antigen-binding site, the paratope, on heavy and light chain pairing preferences by using molecular dynamics simulations. In agreement with experiments, we find that specific residues in the antibody variable domain (Fv), i.e., the complementarity-determining region (CDR) L3 and H3 loops, determine heavy and light chain pairing preferences. Excitingly, we observe substantial population shifts in CDR-H3 and CDR-L3 loop conformations in solution accompanied by a decrease in bispecific IgG yield. These conformational changes in the CDR3 loops induced by point mutations also influence all other CDR loop conformations and consequentially result in different CDR loop states in solution. However, besides their effect on the obtained CDR loop ensembles, point mutations also lead to distinct interaction patterns in the VH-VL interface. By comparing the interaction patterns among all investigated variants, we observe specific contacts in the interface that drive heavy and light chain pairing. Thus, these findings have broad implications in the field of antibody engineering and design because they provide a mechanistic understanding of antibody interfaces, by identifying critical factors driving the pairing preferences, and thus can help to advance the design of bispecific antibodies.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina B Kroell
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lukas J Grunewald
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Anna-Lena M Fischer
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Jakob R Riccabona
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Akbar R, Bashour H, Rawat P, Robert PA, Smorodina E, Cotet TS, Flem-Karlsen K, Frank R, Mehta BB, Vu MH, Zengin T, Gutierrez-Marcos J, Lund-Johansen F, Andersen JT, Greiff V. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. MAbs 2022; 14:2008790. [PMID: 35293269 PMCID: PMC8928824 DOI: 10.1080/19420862.2021.2008790] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
Collapse
Affiliation(s)
- Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Habib Bashour
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Philippe A. Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eva Smorodina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia
| | | | - Karine Flem-Karlsen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Robert Frank
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Brij Bhushan Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Norway
| | - Talip Zengin
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Bioinformatics, Mugla Sitki Kocman University, Turkey
| | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo and Oslo University Hospital, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
30
|
Higashida R, Matsunaga Y. Enhanced Conformational Sampling of Nanobody CDR H3 Loop by Generalized Replica-Exchange with Solute Tempering. Life (Basel) 2021; 11:life11121428. [PMID: 34947959 PMCID: PMC8706460 DOI: 10.3390/life11121428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
The variable domains of heavy-chain antibodies, known as nanobodies, are potential substitutes for IgG antibodies. They have similar affinities to antigens as antibodies, but are more heat resistant. Their small size allows us to exploit computational approaches for structural modeling or design. Here, we investigate the applicability of an enhanced sampling method, a generalized replica-exchange with solute tempering (gREST) for sampling CDR-H3 loop structures of nanobodies. In the conventional replica-exchange methods, temperatures of only a whole system or scaling parameters of a solute molecule are selected for temperature or parameter exchange. In gREST, we can flexibly select a part of a solute molecule and a part of the potential energy terms as a parameter exchange region. We selected the CDR-H3 loop and investigated which potential energy term should be selected for the efficient sampling of the loop structures. We found that the gREST with dihedral terms can explore a global conformational space, but the relaxation to the global equilibrium is slow. On the other hand, gREST with all the potential energy terms can sample the equilibrium distribution, but the structural exploration is slower than with dihedral terms. The lessons learned from this study can be applied to future studies of loop modeling.
Collapse
|
31
|
Paratope states in solution improve structure prediction and docking. Structure 2021; 30:430-440.e3. [PMID: 34838187 DOI: 10.1016/j.str.2021.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/10/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Structure-based antibody design and accurate predictions of antibody-antigen interactions remain major challenges in computational biology. By using molecular dynamics simulations, we show that a single static X-ray structure is not sufficient to identify determinants of antibody-antigen recognition. Here, we investigate antibodies that undergo substantial conformational changes upon antigen binding and have been classified as difficult cases in an extensive benchmark for antibody-antigen docking. We present thermodynamics and transition kinetics of these conformational rearrangements and show that paratope states can be used to improve antibody-antigen docking. By using the unbound antibody X-ray structure as starting structure for molecular dynamics simulations, we retain a binding competent conformation substantially different to the unbound antibody X-ray structure. We also observe that the kinetically dominant antibody paratope conformations are chosen by the bound antigen conformation with the highest probability. Thus, we show that paratope states in solution can improve antibody-antigen docking and structure prediction.
Collapse
|
32
|
Kamenik AS, Singh I, Lak P, Balius TE, Liedl KR, Shoichet BK. Energy penalties enhance flexible receptor docking in a model cavity. Proc Natl Acad Sci U S A 2021; 118:e2106195118. [PMID: 34475217 PMCID: PMC8433570 DOI: 10.1073/pnas.2106195118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Protein flexibility remains a major challenge in library docking because of difficulties in sampling conformational ensembles with accurate probabilities. Here, we use the model cavity site of T4 lysozyme L99A to test flexible receptor docking with energy penalties from molecular dynamics (MD) simulations. Crystallography with larger and smaller ligands indicates that this cavity can adopt three major conformations: open, intermediate, and closed. Since smaller ligands typically bind better to the cavity site, we anticipate an energy penalty for the cavity opening. To estimate its magnitude, we calculate conformational preferences from MD simulations. We find that including a penalty term is essential for retrospective ligand enrichment; otherwise, high-energy states dominate the docking. We then prospectively docked a library of over 900,000 compounds for new molecules binding to each conformational state. Absent a penalty term, the open conformation dominated the docking results; inclusion of this term led to a balanced sampling of ligands against each state. High ranked molecules were experimentally tested by Tm upshift and X-ray crystallography. From 33 selected molecules, we identified 18 ligands and determined 13 crystal structures. Most interesting were those bound to the open cavity, where the buried site opens to bulk solvent. Here, highly unusual ligands for this cavity had been predicted, including large ligands with polar tails; these were confirmed both by binding and by crystallography. In docking, incorporating protein flexibility with thermodynamic weightings may thus access new ligand chemotypes. The MD approach to accessing and, crucially, weighting such alternative states may find general applicability.
Collapse
Affiliation(s)
- Anna S Kamenik
- Institute of General, Inorganic, and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Isha Singh
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Parnian Lak
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Trent E Balius
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Klaus R Liedl
- Institute of General, Inorganic, and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
33
|
Fernández-Quintero ML, Kroell KB, Bacher LM, Loeffler JR, Quoika PK, Georges G, Bujotzek A, Kettenberger H, Liedl KR. Germline-Dependent Antibody Paratope States and Pairing Specific V H-V L Interface Dynamics. Front Immunol 2021; 12:675655. [PMID: 34447370 PMCID: PMC8382685 DOI: 10.3389/fimmu.2021.675655] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Antibodies have emerged as one of the fastest growing classes of biotherapeutic proteins. To improve the rational design of antibodies, we investigate the conformational diversity of 16 different germline combinations, which are composed of 4 different kappa light chains paired with 4 different heavy chains. In this study, we systematically show that different heavy and light chain pairings strongly influence the paratope, interdomain interaction patterns and the relative VH-VL interface orientations. We observe changes in conformational diversity and substantial population shifts of the complementarity determining region (CDR) loops, resulting in distinct dominant solution structures and differently favored canonical structures. Additionally, we identify conformational changes in the structural diversity of the CDR-H3 loop upon different heavy and light chain pairings, as well as upon changes in sequence and structure of the neighboring CDR loops, despite having an identical CDR-H3 loop amino acid sequence. These results can also be transferred to all CDR loops and to the relative VH-VL orientation, as certain paratope states favor distinct interface angle distributions. Furthermore, we directly compare the timescales of sidechain rearrangements with the well-described transition kinetics of conformational changes in the backbone of the CDR loops. We show that sidechain flexibilities are strongly affected by distinct heavy and light chain pairings and decipher germline-specific structural features co-determining stability. These findings reveal that all CDR loops are strongly correlated and that distinct heavy and light chain pairings can result in different paratope states in solution, defined by a characteristic combination of CDR loop conformations and VH-VL interface orientations. Thus, these results have broad implications in the field of antibody engineering, as they clearly show the importance of considering paired heavy and light chains to understand the antibody binding site, which is one of the key aspects in the design of therapeutics.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina B Kroell
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lisa M Bacher
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Johannes R Loeffler
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Patrick K Quoika
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
34
|
Fernández-Quintero ML, Georges G, Varga JM, Liedl KR. Ensembles in solution as a new paradigm for antibody structure prediction and design. MAbs 2021; 13:1923122. [PMID: 34030577 PMCID: PMC8158028 DOI: 10.1080/19420862.2021.1923122] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The rise of antibodies as a promising and rapidly growing class of biotherapeutic proteins has motivated numerous studies to characterize and understand antibody structures. In the past decades, the number of antibody crystal structures increased substantially, which revolutionized the atomistic understanding of antibody functions. Even though numerous static structures are known, various biophysical properties of antibodies (i.e., specificity, hydrophobicity and stability) are governed by their dynamic character. Additionally, the importance of high-quality structures in structure–function relationship studies has substantially increased. These structure–function relationship studies have also created a demand for precise homology models of antibody structures, which allow rational antibody design and engineering when no crystal structure is available. Here, we discuss various aspects and challenges in antibody design and extend the paradigm of describing antibodies with only a single static structure to characterizing them as dynamic ensembles in solution.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Janos M Varga
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
35
|
Fernández-Quintero ML, Seidler CA, Quoika PK, Liedl KR. Shark Antibody Variable Domains Rigidify Upon Affinity Maturation-Understanding the Potential of Shark Immunoglobulins as Therapeutics. Front Mol Biosci 2021; 8:639166. [PMID: 33959632 PMCID: PMC8093575 DOI: 10.3389/fmolb.2021.639166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/17/2021] [Indexed: 12/22/2022] Open
Abstract
Sharks and other cartilaginous fish are the phylogenetically oldest living organisms that have antibodies as part of their adaptive immune system. As part of their humoral adaptive immune response, they produce an immunoglobulin, the so-called immunoglobulin new antigen receptor (IgNAR), a heavy-chain only antibody. The variable domain of an IgNAR, also known as V NAR , binds the antigen as an independent soluble domain. In this study, we structurally and dynamically characterized the affinity maturation mechanism of the germline and somatically matured (PBLA8) V NAR to better understand their function and their applicability as therapeutics. We observed a substantial rigidification upon affinity maturation, which is accompanied by a higher number of contacts, thereby contributing to the decrease in flexibility. Considering the static x-ray structures, the observed rigidification is not obvious, as especially the mutated residues undergo conformational changes during the simulation, resulting in an even stronger network of stabilizing interactions. Additionally, the simulations of the V NAR in complex with the hen egg-white lysozyme show that the V NAR antibodies evidently follow the concept of conformational selection, as the binding-competent state already preexisted even without the presence of the antigen. To have a more detailed description of antibody-antigen recognition, we also present here the binding/unbinding mechanism between the hen egg-white lysozyme and both the germline and matured V NAR s. Upon maturation, we observed a substantial increase in the resulting dissociation-free energy barrier. Furthermore, we were able to kinetically and thermodynamically describe the binding process and did not only identify a two-step binding mechanism, but we also found a strong population shift upon affinity maturation toward the native binding pose.
Collapse
Affiliation(s)
| | | | | | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
White HN. B-Cell Memory Responses to Variant Viral Antigens. Viruses 2021; 13:565. [PMID: 33810456 PMCID: PMC8066974 DOI: 10.3390/v13040565] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
A central feature of vertebrate immune systems is the ability to form antigen-specific immune memory in response to microbial challenge and so provide protection against future infection. In conflict with this process is the ability that many viruses have to mutate their antigens to escape infection- or vaccine-induced antibody memory responses. Mutable viruses such as dengue virus, influenza virus and of course coronavirus have a major global health impact, exacerbated by this ability to evade immune responses through mutation. There have been several outstanding recent studies on B-cell memory that also shed light on the potential and limitations of antibody memory to protect against viral antigen variation, and so promise to inform new strategies for vaccine design. For the purposes of this review, the current understanding of the different memory B-cell (MBC) populations, and their potential to recognize mutant antigens, will be described prior to some examples from antibody responses against the highly mutable RNA based flaviviruses, influenza virus and SARS-CoV-2.
Collapse
Affiliation(s)
- Harry N White
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
37
|
Fernández-Quintero ML, Kroell KB, Hofer F, Riccabona JR, Liedl KR. Mutation of Framework Residue H71 Results in Different Antibody Paratope States in Solution. Front Immunol 2021; 12:630034. [PMID: 33737932 PMCID: PMC7960778 DOI: 10.3389/fimmu.2021.630034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Characterizing and understanding the antibody binding interface have become a pre-requisite for rational antibody design and engineering. The antigen-binding site is formed by six hypervariable loops, known as the complementarity determining regions (CDRs) and by the relative interdomain orientation (VH-VL). Antibody CDR loops with a certain sequence have been thought to be limited to a single static canonical conformation determining their binding properties. However, it has been shown that antibodies exist as ensembles of multiple paratope states, which are defined by a characteristic combination of CDR loop conformations and interdomain orientations. In this study, we thermodynamically and kinetically characterize the prominent role of residue 71H (Chothia nomenclature), which does not only codetermine the canonical conformation of the CDR-H2 loop but also results in changes in conformational diversity and population shifts of the CDR-H1 and CDR-H3 loop. As all CDR loop movements are correlated, conformational rearrangements of the heavy chain CDR loops also induce conformational changes in the CDR-L1, CDR-L2, and CDR-L3 loop. These overall conformational changes of the CDR loops also influence the interface angle distributions, consequentially leading to different paratope states in solution. Thus, the type of residue of 71H, either an alanine or an arginine, not only influences the CDR-H2 loop ensembles, but co-determines the paratope states in solution. Characterization of the functional consequences of mutations of residue 71H on the paratope states and interface orientations has broad implications in the field of antibody engineering.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina B Kroell
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Florian Hofer
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Jakob R Riccabona
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
38
|
Vajda S, Porter KA, Kozakov D. Progress toward improved understanding of antibody maturation. Curr Opin Struct Biol 2021; 67:226-231. [PMID: 33610066 DOI: 10.1016/j.sbi.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Upon encountering an antigen, antibodies mature through various rounds of somatic mutations, resulting in higher affinities and specificities to the particular antigen. We review recent progress in four areas of antibody maturation studies. (1) Next-generation and single-cell sequencing have revolutionized the analysis of antibody repertoires by dramatically increasing the sequences available to study the state and evolution of the immune system. Computational methods, including machine learning tools, have been developed for reconstituting antibody clonal lineages and for general repertoire analysis. (2) The availability of X-ray structures, thermodynamic and kinetic data, and molecular dynamics simulations provide information on the biophysical mechanisms responsible for improved affinity. (3) In addition to improved binding to a specific antigen, providing affinity-independent diversity and self/nonself discrimination are fundamental functions of the immune system. Recent studies, including X-ray structures, yield improved understanding of both mechanisms. (4) Results from in vivo maturation help to develop methods of in vitro maturation to improve antibody properties for therapeutic applications, frequently combining computational and experimental approaches.
Collapse
Affiliation(s)
- Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston MA 02215, United States.
| | - Kathryn A Porter
- Department of Biomedical Engineering, Boston University, Boston MA 02215, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook NY 11794, United States; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook NY, 11790, United States.
| |
Collapse
|
39
|
Fernández-Quintero ML, Heiss MC, Pomarici ND, Math BA, Liedl KR. Antibody CDR loops as ensembles in solution vs. canonical clusters from X-ray structures. MAbs 2021; 12:1744328. [PMID: 32264741 PMCID: PMC7153821 DOI: 10.1080/19420862.2020.1744328] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the past decade, the relevance of antibodies as therapeutics has increased substantially. Therefore, structural and functional characterization, in particular of the complementarity-determining regions (CDRs), is crucial to the design and engineering of antibodies with unique binding properties. Various studies have focused on classifying the CDR loops into a small set of main-chain conformations to facilitate antibody design by assuming that certain sequences can only adopt a limited number of conformations. Here, we present a kinetic classification of CDR loop structures as ensembles in solution. Using molecular dynamics simulations in combination with strong experimental structural information, we observe conformational transitions between canonical clusters and additional dominant solution structures in the micro-to-millisecond timescale for all CDR loops, independent of length and sequence composition. Besides identifying all relevant conformations in solution, our results revealed that various canonical cluster medians actually belong to the same kinetic minimum. Additionally, we reconstruct the kinetics and probabilities of the conformational transitions between canonical clusters, and thereby extend the model of static canonical structures to reveal a dynamic conformational ensemble in solution as a new paradigm in the field of antibody structure design. Abbreviations: CDR: Complementary-determining region; Fv: Antibody variable fragment; PCCA: Perron cluster analysis; tICA: Time-lagged independent component analysis; VH: Heavy chain variable region; VL: Light chain variable region
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Martin C Heiss
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Nancy D Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Barbara A Math
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Hofer F, Kamenik AS, Fernández-Quintero ML, Kraml J, Liedl KR. pH-Induced Local Unfolding of the Phl p 6 Pollen Allergen From cpH-MD. Front Mol Biosci 2021; 7:603644. [PMID: 33511157 PMCID: PMC7835895 DOI: 10.3389/fmolb.2020.603644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Susceptibility to endosomal degradation is a decisive contribution to a protein's immunogenicity. It is assumed that the processing kinetics of structured proteins are inherently linked to their probability of local unfolding. In this study, we quantify the impact of endosomal acidification on the conformational stability of the major timothy grass pollen allergen Phl p 6. We use state of the art sampling approaches in combination with constant pH MD techniques to profile pH-dependent local unfolding events in atomistic detail. Integrating our findings into the current view on type 1 allergic sensitization, we characterize local protein dynamics in the context of proteolytic degradation at neutral and acidic pH for the wild type protein and point mutants with varying proteolytic stability. We analyze extensive simulation data using Markov state models and retrieve highly reliable thermodynamic and kinetic information at varying pH levels. Thereby we capture the impact of endolysosomal acidification on the structure and dynamics of the Phl p 6 mutants. We find that upon protonation at lower pH values, the conformational flexibilities in key areas of the wild type protein, i.e., T-cell epitopes and early proteolytic cleavage sites, increase significantly. A decrease of the pH even leads to local unfolding in otherwise stable secondary structure elements, which is a prerequisite for proteolytic cleavage. This effect is even more pronounced in the destabilized mutant, while no unfolding was observed for the stabilized mutant. In summary, we report detailed structural models which rationalize the experimentally observed cleavage pattern during endosomal acidification.
Collapse
|
41
|
Guthmiller JJ, Lan LYL, Fernández-Quintero ML, Han J, Utset HA, Bitar DJ, Hamel NJ, Stovicek O, Li L, Tepora M, Henry C, Neu KE, Dugan HL, Borowska MT, Chen YQ, Liu STH, Stamper CT, Zheng NY, Huang M, Palm AKE, García-Sastre A, Nachbagauer R, Palese P, Coughlan L, Krammer F, Ward AB, Liedl KR, Wilson PC. Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses. Immunity 2020; 53:1230-1244.e5. [PMID: 33096040 PMCID: PMC7772752 DOI: 10.1016/j.immuni.2020.10.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.
Collapse
Affiliation(s)
- Jenna J Guthmiller
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Linda Yu-Ling Lan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Julianna Han
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry A Utset
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Dalia J Bitar
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Natalie J Hamel
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Olivia Stovicek
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Lei Li
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Micah Tepora
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Carole Henry
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Karlynn E Neu
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Haley L Dugan
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Marta T Borowska
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yao-Qing Chen
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Sean T H Liu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Nai-Ying Zheng
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Min Huang
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Anna-Karin E Palm
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Microbiology and Immunology and Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, 6020 Innsbruck, Austria
| | - Patrick C Wilson
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL 60637, USA; Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Fernández-Quintero ML, Kroell KB, Heiss MC, Loeffler JR, Quoika PK, Waibl F, Bujotzek A, Moessner E, Georges G, Liedl KR. Surprisingly Fast Interface and Elbow Angle Dynamics of Antigen-Binding Fragments. Front Mol Biosci 2020; 7:609088. [PMID: 33330636 PMCID: PMC7732698 DOI: 10.3389/fmolb.2020.609088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fab consist of a heavy and light chain and can be subdivided into a variable (V H and V L ) and a constant region (C H 1 and C L ). The variable region contains the complementarity-determining region (CDR), which is formed by six hypervariable loops, shaping the antigen binding site, the paratope. Apart from the CDR loops, both the elbow angle and the relative interdomain orientations of the V H -V L and the C H 1-C L domains influence the shape of the paratope. Thus, characterization of the interface and elbow angle dynamics is essential to antigen specificity. We studied nine antigen-binding fragments (Fab) to investigate the influence of affinity maturation, antibody humanization, and different light-chain types on the interface and elbow angle dynamics. While the CDR loops reveal conformational transitions in the micro-to-millisecond timescale, both the interface and elbow angle dynamics occur on the low nanosecond timescale. Upon affinity maturation, we observe a substantial rigidification of the V H and V L interdomain and elbow-angle flexibility, reflected in a narrower and more distinct distribution. Antibody humanization describes the process of grafting non-human CDR loops onto a representative human framework. As the antibody framework changes upon humanization, we investigated if both the interface and the elbow angle distributions are changed or shifted. The results clearly showed a substantial shift in the relative V H -V L distributions upon antibody humanization, indicating that different frameworks favor distinct interface orientations. Additionally, the interface and elbow angle dynamics of five antibody fragments with different light-chain types are included, because of their strong differences in elbow angles. For these five examples, we clearly see a high variability and flexibility in both interface and elbow angle dynamics, highlighting the fact that Fab interface orientations and elbow angles interconvert between each other in the low nanosecond timescale. Understanding how the relative interdomain orientations and the elbow angle influence antigen specificity, affinity, and stability has broad implications in the field of antibody modeling and engineering.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Katharina B. Kroell
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Martin C. Heiss
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes R. Loeffler
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Patrick K. Quoika
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ekkehard Moessner
- Roche Pharma Research and Early Development, Large Molecular Research, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
43
|
Waibl F, Fernández-Quintero ML, Kamenik AS, Kraml J, Hofer F, Kettenberger H, Georges G, Liedl KR. Conformational Ensembles of Antibodies Determine Their Hydrophobicity. Biophys J 2020; 120:143-157. [PMID: 33220303 PMCID: PMC7820740 DOI: 10.1016/j.bpj.2020.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
A major challenge in the development of antibody biotherapeutics is their tendency to aggregate. One root cause for aggregation is exposure of hydrophobic surface regions to the solvent. Many current techniques predict the relative aggregation propensity of antibodies via precalculated scales for the hydrophobicity or aggregation propensity of single amino acids. However, those scales cannot describe the nonadditive effects of a residue’s surrounding on its hydrophobicity. Therefore, they are inherently limited in their ability to describe the impact of subtle differences in molecular structure on the overall hydrophobicity. Here, we introduce a physics-based approach to describe hydrophobicity in terms of the hydration free energy using grid inhomogeneous solvation theory (GIST). We apply this method to assess the effects of starting structures, conformational sampling, and protonation states on the hydrophobicity of antibodies. Our results reveal that high-quality starting structures, i.e., crystal structures, are crucial for the prediction of hydrophobicity and that conformational sampling can compensate errors introduced by the starting structure. On the other hand, sampling of protonation states only leads to good results when combined with high-quality structures, whereas it can even be detrimental otherwise. We conclude by pointing out that a single static homology model may not be adequate for predicting hydrophobicity.
Collapse
Affiliation(s)
- Franz Waibl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anna S Kamenik
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Johannes Kraml
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofer
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
44
|
Fernández-Quintero ML, Pomarici ND, Math BA, Kroell KB, Waibl F, Bujotzek A, Georges G, Liedl KR. Antibodies exhibit multiple paratope states influencing V H-V L domain orientations. Commun Biol 2020; 3:589. [PMID: 33082531 PMCID: PMC7576833 DOI: 10.1038/s42003-020-01319-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
In the last decades, antibodies have emerged as one of the most important and successful classes of biopharmaceuticals. The highest variability and diversity of an antibody is concentrated on six hypervariable loops, also known as complementarity determining regions (CDRs) shaping the antigen-binding site, the paratope. Whereas it was assumed that certain sequences can only adopt a limited set of backbone conformations, in this study we present a kinetic classification of several paratope states in solution. Using molecular dynamics simulations in combination with experimental structural information we capture the involved conformational transitions between different canonical clusters and additional dominant solution structures occurring in the micro-to-millisecond timescale. Furthermore, we observe a strong correlation of CDR loop movements. Another important aspect when characterizing different paratope states is the relative VH/VL orientation and the influence of the distinct CDR loop states on the VH/VL interface. Conformational rearrangements of the CDR loops do not only have an effect on the relative VH/VL orientations, but also influence in some cases the elbow-angle dynamics and shift the respective distributions. Thus, our results show that antibodies exist as several interconverting paratope states, each contributing to the antibody's properties.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Nancy D Pomarici
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Barbara A Math
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Katharina B Kroell
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria.
| |
Collapse
|
45
|
Gupta M, Ha K, Agarwal R, Quarles LD, Smith JC. Molecular dynamics analysis of the binding of human interleukin-6 with interleukin-6 α-receptor. Proteins 2020; 89:163-173. [PMID: 32881084 DOI: 10.1002/prot.26002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/26/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022]
Abstract
Human interleukin-6 (hIL-6) is a multifunctional cytokine that regulates immune and inflammatory responses in addition to metabolic and regenerative processes and cancer. hIL-6 binding to the IL-6 receptor (IL-6Rα) induces homodimerization and recruitment of the glycoprotein (gp130) to form a hexameric signaling complex. Anti-IL-6 and IL-6R antibodies are clinically approved inhibitors of IL-6 signaling pathway for treating rheumatoid arthritis and Castleman's disease, respectively. There is a potential to develop novel small molecule IL-6 antagonists derived from understanding the structural basis for IL-6/IL-6Rα interactions. Here, we combine homology modeling with extensive molecular dynamics (MD) simulations to examine the association of hIL-6 with IL-6Rα. A comparison with MD of apo hIL-6 reveals that the binding of hIL-6 to IL-6Rα induces structural and dynamic rearrangements in the AB loop region of hIL-6, disrupting intraprotein contacts and increasing the flexibility of residues 48 to 58 of the AB loop. In contrast, due to the involvement of residues 59 to 78 in forming contacts with the receptor, these residues of the AB loop are observed to rigidify in the presence of the receptor. The binary complex is primarily stabilized by two pairs of salt bridges, Arg181 (hIL-6)- Glu182 (IL-6Rα) and Arg184 (hIL-6)- Glu183 (IL-6Rα) as well as hydrophobic and aromatic stacking interactions mediated essentially by Phe residues in both proteins. An interplay of electrostatic, hydrophobic, hydrogen bonding, and aromatic stacking interactions facilitates the formation of the hIL-6/IL-6Rα complex.
Collapse
Affiliation(s)
- Madhulika Gupta
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee, USA
| | - Khanh Ha
- Tickle College of Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Rupesh Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee, USA
| | - Leigh Darryl Quarles
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Lab, Oak Ridge, Tennessee, USA
| |
Collapse
|
46
|
Pomés A, Mueller GA, Chruszcz M. Structural Aspects of the Allergen-Antibody Interaction. Front Immunol 2020; 11:2067. [PMID: 32983155 PMCID: PMC7492603 DOI: 10.3389/fimmu.2020.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
The development of allergic disease involves the production of IgE antibodies upon allergen exposure in a process called sensitization. IgE binds to receptors on the surface of mast cells and basophils, and subsequent allergen exposure leads to cross-linking of IgE antibodies and release of cell mediators that cause allergy symptoms. Although this process is quite well-understood, very little is known about the epitopes on the allergen recognized by IgE, despite the importance of the allergen-antibody interaction for the allergic response to occur. This review discusses efforts to analyze allergen-antibody interactions, from the original epitope mapping studies using linear peptides or recombinant allergen fragments, to more sophisticated technologies, such as X-ray crystallography and nuclear magnetic resonance. These state-of-the-art approaches, combined with site-directed mutagenesis, have led to the identification of conformational IgE epitopes. The first structures of an allergen (egg lysozyme) in complex with Fab fragments from IgG antibodies were determined in the 1980s. Since then, IgG has been used as surrogate for IgE, due to the difficulty of obtaining monoclonal IgE antibodies. Technical developments including phage display libraries have contributed to progress in epitope mapping thanks to the isolation of IgE antibody constructs from combinatorial libraries made from peripheral blood mononuclear cells of allergic donors. Most recently, single B cell antibody sequencing and human hybridomas are new breakthrough technologies for finally obtaining human IgE monoclonal antibodies, ideal for epitope mapping. The information on antigenic determinants will facilitate the design of hypoallergens for immunotherapy and the investigation of the fundamental mechanisms of the IgE response.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
47
|
Conformational diversity facilitates antibody mutation trajectories and discrimination between foreign and self-antigens. Proc Natl Acad Sci U S A 2020; 117:22341-22350. [PMID: 32855302 PMCID: PMC7486785 DOI: 10.1073/pnas.2005102117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Conformational diversity and self-cross-reactivity of antigens have been correlated with evasion from neutralizing antibody responses. We utilized single cell B cell sequencing, biolayer interferometry and X-ray crystallography to trace mutation selection pathways where the antibody response must resolve cross-reactivity between foreign and self-proteins bearing near-identical contact surfaces, but differing in conformational flexibility. Recurring antibody mutation trajectories mediate long-range rearrangements of framework (FW) and complementarity determining regions (CDRs) that increase binding site conformational diversity. These antibody mutations decrease affinity for self-antigen 19-fold and increase foreign affinity 67-fold, to yield a more than 1,250-fold increase in binding discrimination. These results demonstrate how conformational diversity in antigen and antibody does not act as a barrier, as previously suggested, but rather facilitates high affinity and high discrimination between foreign and self.
Collapse
|
48
|
Fernández-Quintero ML, Loeffler JR, Bacher LM, Waibl F, Seidler CA, Liedl KR. Local and Global Rigidification Upon Antibody Affinity Maturation. Front Mol Biosci 2020; 7:182. [PMID: 32850970 PMCID: PMC7426445 DOI: 10.3389/fmolb.2020.00182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
Abstract
During the affinity maturation process the immune system produces antibodies with higher specificity and activity through various rounds of somatic hypermutations in response to an antigen. Elucidating the affinity maturation process is fundamental in understanding immunity and in the development of biotherapeutics. Therefore, we analyzed 10 pairs of antibody fragments differing in their specificity and in distinct stages of affinity maturation using metadynamics in combination with molecular dynamics (MD) simulations. We investigated differences in flexibility of the CDR-H3 loop and global changes in plasticity upon affinity maturation. Among all antibody pairs we observed a substantial rigidification in flexibility and plasticity reflected in a substantial decrease of conformational diversity. To visualize and characterize these findings we used Markov-states models to reconstruct the kinetics of CDR-H3 loop dynamics and for the first time provide a method to define and localize surface plasticity upon affinity maturation.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes R Loeffler
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Lisa M Bacher
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Clarissa A Seidler
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Center for Molecular Biosciences Innsbruck, Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
49
|
Kahler U, Kamenik AS, Waibl F, Kraml J, Liedl KR. Protein-Protein Binding as a Two-Step Mechanism: Preselection of Encounter Poses during the Binding of BPTI and Trypsin. Biophys J 2020; 119:652-666. [PMID: 32697976 PMCID: PMC7399559 DOI: 10.1016/j.bpj.2020.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 11/04/2022] Open
Abstract
Biomolecular recognition between proteins follows complex mechanisms, the understanding of which can substantially advance drug discovery efforts. Here, we track each step of the binding process in atomistic detail with molecular dynamics simulations using trypsin and its inhibitor bovine pancreatic trypsin inhibitor (BPTI) as a model system. We use umbrella sampling to cover a range of unbinding pathways. Starting from these simulations, we subsequently seed classical simulations at different stages of the process and combine them to a Markov state model. We clearly identify three kinetically separated states (an unbound state, an encounter state, and the final complex) and describe the mechanisms that dominate the binding process. From our model, we propose the following sequence of events. The initial formation of the encounter complex is driven by long-range interactions because opposite charges in trypsin and BPTI draw them together. The encounter complex features the prealigned binding partners with binding sites still partially surrounded by solvation shells. Further approaching leads to desolvation and increases the importance of van der Waals interactions. The native binding pose is adopted by maximizing short-range interactions. Thereby side-chain rearrangements ensure optimal shape complementarity. In particular, BPTI’s P1 residue adapts to the S1 pocket and prime site residues reorient to optimize interactions. After the paradigm of conformation selection, binding-competent conformations of BPTI and trypsin are already present in the apo ensembles and their probabilities increase during this proposed two-step association process. This detailed characterization of the molecular forces driving the binding process includes numerous aspects that have been discussed as central to the binding of trypsin and BPTI and protein complex formation in general. In this study, we combine all these aspects into one comprehensive model of protein recognition. We thereby contribute to enhance our general understanding of this fundamental mechanism, which is particularly critical as the development of biopharmaceuticals continuously gains significance.
Collapse
Affiliation(s)
- Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
50
|
Fernández-Quintero ML, Pomarici ND, Loeffler JR, Seidler CA, Liedl KR. T-Cell Receptor CDR3 Loop Conformations in Solution Shift the Relative Vα-Vβ Domain Distributions. Front Immunol 2020; 11:1440. [PMID: 32733478 PMCID: PMC7360859 DOI: 10.3389/fimmu.2020.01440] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell receptors are an important part in the adaptive immune system as they are responsible for detecting foreign proteins presented by the major histocompatibility complex (MHC). The affinity is predominantly determined by structure and sequence of the complementarity determining regions (CDRs), of which the CDR3 loops are responsible for peptide recognition. We present a kinetic classification of T-cell receptor CDR3 loops with different loop lengths into canonical and non-canonical solution structures. Using molecular dynamics simulations, we do not only sample available X-ray structures, but we also observe a substantially broader CDR3 loop ensemble with various distinct kinetic minima in solution. Our results strongly imply, that for given CDR3 loop sequences several canonical structures have to be considered to characterize the conformational diversity of these loops. Our suggested dominant solution structures could extend the repertoire of available canonical clusters by including kinetic minimum structures present in solution. Thus, the CDR3 loops need to be characterized as conformational ensembles in solution. Furthermore, the conformational changes of the CDR3 loops follow the paradigm of conformational selection, because the experimentally determined binding competent state is present within this ensemble of pre-existing conformations without the presence of the antigen. We also identify strong correlations between the CDR3 loops and include combined state descriptions. Additionally, we observe a strong dependency of the CDR3 loop conformations on the relative Vα-Vβ interdomain orientations, revealing that certain CDR3 loop states favor specific interface orientations.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- Antigens/metabolism
- Complementarity Determining Regions/chemistry
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/metabolism
- Crystallography, X-Ray
- Histocompatibility Antigens/metabolism
- Humans
- Molecular Dynamics Simulation
- Peptides/metabolism
- Protein Binding
- Protein Conformation
- Protein Domains/genetics
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Structure-Activity Relationship
- T-Cell Antigen Receptor Specificity
Collapse
Affiliation(s)
| | | | | | | | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|