1
|
Neri P, Nijhof I. Evidence-based mechanisms of synergy with IMiD agent-based combinations in multiple myeloma. Crit Rev Oncol Hematol 2023:104041. [PMID: 37268176 DOI: 10.1016/j.critrevonc.2023.104041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Treatment of multiple myeloma (MM) has seen great advances in recent years, and a key contributor to this change has been the effective use of combination therapies, which have improved both the depth and duration of patient responses. IMiD agents (lenalidomide and pomalidomide) have both tumoricidal and immunostimulatory functions, and due to their multiple mechanisms of action have become the backbone of numerous combination treatments in the newly diagnosed and relapsed/refractory settings. Although IMiD agent-based combination regimens provide improved clinical outcomes for patients with MM, the mechanisms underpinning these combinations are not well understood. In this review we describe the potential mechanisms of synergy leading to the enhanced activity observed when IMiD agents and other drug classes are used in combination through interrogation of the current knowledge surrounding their mechanism of actions.
Collapse
Affiliation(s)
- Paola Neri
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
| | - Inger Nijhof
- Department of Hematology, Amsterdam University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Department of Internal Medicine and Department of Hematology, St. Antonius Hospital Nieuwegein, Koekoekslaan 1, 3435CM, Nieuwegein, the Netherlands
| |
Collapse
|
2
|
Cao X, Jin X, Zhang X, Utsav P, Zhang Y, Guo R, Lu W, Zhao M. Small-Molecule Compounds Boost CAR-T Cell Therapy in Hematological Malignancies. Curr Treat Options Oncol 2023; 24:184-211. [PMID: 36701037 PMCID: PMC9992085 DOI: 10.1007/s11864-023-01049-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
OPINION STATEMENT Although chimeric antigen receptor T cell immunotherapy has been successfully applied in patients with hematological malignancies, several obstacles still need to be overcome, such as high relapse rates and side effects. Overcoming the limitations of CAR-T cell therapy and boosting the efficacy of CAR-T cell therapy are urgent issues that must be addressed. The exploration of small-molecule compounds in combination with CAR-T cell therapies has achieved promising success in pre-clinical and clinical studies in recent years. Protein kinase inhibitors, demethylating drugs, HDAC inhibitors, PI3K inhibitors, immunomodulatory drugs, Akt inhibitors, mTOR inhibitors, and Bcl-2 inhibitors exhibited potential synergy in combination with CAR-T cell therapy. In this review, we will discuss the recent application of these combination therapies for improved outcomes of CAR-T cell therapy.
Collapse
Affiliation(s)
- Xinping Cao
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Xin Jin
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiaomei Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Paudel Utsav
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Yi Zhang
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Ruiting Guo
- First Center Clinic College of Tianjin Medical University, Tianjin, 300192, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, 300192, China.
| |
Collapse
|
3
|
Guo H, Yang J, Wang H, Liu X, Liu Y, Zhou K. Reshaping the tumor microenvironment: The versatility of immunomodulatory drugs in B-cell neoplasms. Front Immunol 2022; 13:1017990. [PMID: 36311747 PMCID: PMC9596992 DOI: 10.3389/fimmu.2022.1017990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) such as thalidomide, lenalidomide and pomalidomide are antitumor compounds that have direct tumoricidal activity and indirect effects mediated by multiple types of immune cells in the tumor microenvironment (TME). IMiDs have shown remarkable therapeutic efficacy in a set of B-cell neoplasms including multiple myeloma, B-cell lymphomas and chronic lymphocytic leukemia. More recently, the advent of immunotherapy has revolutionized the treatment of these B-cell neoplasms. However, the success of immunotherapy is restrained by immunosuppressive signals and dysfunctional immune cells in the TME. Due to the pleiotropic immunobiological properties, IMiDs have shown to generate synergetic effects in preclinical models when combined with monoclonal antibodies, immune checkpoint inhibitors or CAR-T cell therapy, some of which were successfully translated to the clinic and lead to improved responses for both first-line and relapsed/refractory settings. Mechanistically, despite cereblon (CRBN), an E3 ubiquitin ligase, is considered as considered as the major molecular target responsible for the antineoplastic activities of IMiDs, the exact mechanisms of action for IMiDs-based TME re-education remain largely unknown. This review presents an overview of IMiDs in regulation of immune cell function and their utilization in potentiating efficacy of immunotherapies across multiple types of B-cell neoplasms.
Collapse
Affiliation(s)
| | | | | | | | | | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Dong M, Zhang J, Chen Q, He D, Yan H, Zheng G, Han X, He J, Cai Z. High serum IL-17A is associated with bone destruction in newly diagnosed multiple myeloma patients. Front Oncol 2022; 12:936670. [PMID: 36119497 PMCID: PMC9471080 DOI: 10.3389/fonc.2022.936670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/08/2022] [Indexed: 01/10/2023] Open
Abstract
Background Multiple myeloma (MM) is a malignant proliferative disease of the blood system, characterized by the abnormal growth of clonal plasma cells in the bone marrow. The bone marrow microenvironment (BMM) is highly critical in the pathological process of MM. Many studies have shown that serum interleukin-17A (IL-17A) plays a key role in various infectious diseases, autoimmune diseases, and cancers. However, more clinical studies need to be performed to further prove the influence of serum IL-17A levels on multiple myeloma patients. Methods Among a total of 357 participants in our institution’s MM cohort, 175 were eligible for the retrospective study. Multivariate regression models adjusted by potential confounding factors, the violin plots, the generalized additive model and smooth curve fittings, receiver operating characteristic (ROC) curve, and Kaplan–Meier (K-M) curve analysis were applied to the research. Results A total of 175 patients with newly diagnosed MM were enrolled in this study. The multivariate linear regression analysis showed that serum IL-17A level in MM patients correlated with the degree of bone lesions and fracture incidence (fully adjusted model, pbone lesion < 0.0001, pfracture < 0.0001). The violin plot showed that MM patients with higher serum IL-17A levels had more severe bone lesions and higher fracture incidence than those with lower serum IL-17A levels. A total of 171 patients were included in the study of the relationship between serum IL-17A and best overall effect (BOE). We found that serum IL-17A levels were independently related to the best inductive therapeutic efficacy (fully adjusted model, p = 0.037), and the relationship was especially obvious in the light chain group (fully adjusted model, p = 0.009) and IgA group (fully adjusted model, p = 0.0456). It could be deduced from the smooth curve that the higher the serum IL-17A level, the worse the BOE (p = 0.0163). The ROC prediction curve suggested that serum IL-17A could predict the BOE to a certain extent (area under the curve (AUC) = 0.717, p = 0.0327). A total of 148 MM patients were observed in the longitudinal study of the relationship between serum IL-17A and progression-free survival/overall survival (PFS/OS). The K-M curve analysis indicated that serum IL-17A levels in MM patients were not significantly correlated with PFS and OS. However, in the light chain subgroup, MM patients with high serum IL-17A had worse PFS (p = 0.015) and OS (p = 0.0076) compared to those with low serum IL-17A. In the IgA type subgroup, the higher IL-17A level was related to worse OS (p = 0.0061). Conclusion This retrospective study found that higher levels of serum IL-17A were independently correlated with higher severity of bone disease and fracture incidence in newly diagnosed MM patients. High serum IL-17A level was related to poor best overall efficacy in the light chain type. High serum IL-17A was also associated with poor PFS and OS in the light chain type and OS in the IgA type subgroup.
Collapse
Affiliation(s)
- Mengmeng Dong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinna Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qingxiao Chen
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Donghua He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyan Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Zhen Cai, ; Jingsong He,
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- *Correspondence: Zhen Cai, ; Jingsong He,
| |
Collapse
|
5
|
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4787. [PMID: 34638271 PMCID: PMC8507631 DOI: 10.3390/cancers13194787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable disease of malignant plasma cells and an ideal target for modern immune therapy. The unique plasma cell biology maintained in multiple myeloma, coupled with its hematological nature and unique bone marrow microenvironment, provide an opportunity to design specifically targeted immunotherapies that selectively kill transformed cells with limited on-target off-tumor effects. Broadly defined, immune therapy is the utilization of the immune system and immune agents to treat a disease. In the context of multiple myeloma, immune therapy can be subdivided into four main categories: immune modulatory imide drugs, targeted antibodies, adoptive cell transfer therapies, and vaccines. In recent years, advances in all four of these categories have led to improved therapies with enhanced antitumor activity and specificity. In IMiDs, modified chemical structures have been developed that improve drug potency while reducing dose limiting side effects. Targeted antibody therapies have resulted from the development of new selectively expressed targets as well as the development of antibody drug conjugates and bispecific antibodies. Adoptive cell therapies, particularly CAR-T therapies, have been enhanced through improvements in the manufacturing process, as well as through the development of CAR constructs that enhance CAR-T activation and provide protection from a suppressive immune microenvironment. This review will first cover in-class breakthrough therapies for each of these categories, as well as therapies currently utilized in the clinic. Additionally, this review will explore up and coming therapeutics in the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- James Ackley
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
| | - Miguel Armenta Ochoa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Firer MA, Shapira MY, Luboshits G. The Impact of Induction Regimes on Immune Responses in Patients with Multiple Myeloma. Cancers (Basel) 2021; 13:4090. [PMID: 34439244 PMCID: PMC8393868 DOI: 10.3390/cancers13164090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Current standard frontline therapy for newly diagnosed patients with multiple myeloma (NDMM) involves induction therapy, autologous stem cell transplantation (ASCT), and maintenance therapy. Major efforts are underway to understand the biological and the clinical impacts of each stage of the treatment protocols on overall survival statistics. The most routinely used drugs in the pre-ASCT "induction" regime have different mechanisms of action and are employed either as monotherapies or in various combinations. Aside from their direct effects on cancer cell mortality, these drugs are also known to have varying effects on immune cell functionality. The question remains as to how induction therapy impacts post-ASCT immune reconstitution and anti-tumor immune responses. This review provides an update on the known immune effects of melphalan, dexamethasone, lenalidomide, and bortezomib commonly used in the induction phase of MM therapy. By analyzing the actions of each individual drug on the immune system, we suggest it might be possible to leverage their effects to rationally devise more effective induction regimes. Given the genetic heterogeneity between myeloma patients, it may also be possible to identify subgroups of patients for whom particular induction drug combinations would be more appropriate.
Collapse
Affiliation(s)
- Michael A. Firer
- Department Chemical Engineering, Ariel University, Ariel 40700, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| | - Michael Y. Shapira
- The Hematology Institute, Assuta Medical Center, Tel Aviv 6971028, Israel;
| | - Galia Luboshits
- Department Chemical Engineering, Ariel University, Ariel 40700, Israel;
- Ariel Center for Applied Cancer Research, Ariel University, Ariel 40700, Israel
| |
Collapse
|
7
|
D'Souza C, Prince HM, Neeson PJ. Understanding the Role of T-Cells in the Antimyeloma Effect of Immunomodulatory Drugs. Front Immunol 2021; 12:632399. [PMID: 33746969 PMCID: PMC7973099 DOI: 10.3389/fimmu.2021.632399] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Immunomodulatory drugs (IMiDs) are effective treatments for patients with multiple myeloma. IMiDs have pleotropic effects including targeting the myeloma cells directly, and improving the anti-myeloma immune response. In the absence of myeloma cells, lenalidomide and pomalidomide induce CD4+ T cell secretion of IL-2 and indirect activation of Natural Killer (NK) cells. In the context of T cell receptor ligation, IMiDs enhance T cell proliferation, cytokine release and Th1 responses, both in vivo and in vitro. Furthermore, combination treatment of IMiDs and myeloma-targeting monoclonal antibodies eg. daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7), checkpoint inhibitors, or bispecific T cell engagers showed synergistic effects, mainly via enhanced T and NK cell dependent cellular toxicity and T cell proliferation. Conversely, the corticosteroid dexamethasone can impair the immune modulatory effects of IMiDs, indicating that careful choice of myeloma drugs in combination with IMiDs is key for the best anti-myeloma therapeutic efficacy. This review presents an overview of the role for T cells in the overall anti-myeloma effects of immunomodulatory drugs.
Collapse
Affiliation(s)
- Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.,Clinical Hematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|