1
|
Ullah Khan F, Khongorzul P, Gris D, Amrani A. Stat5b/Ezh2 axis governs high PD-L1 expressing tolerogenic dendritic cell subset in autoimmune diabetes. Int Immunopharmacol 2024; 133:112166. [PMID: 38678673 DOI: 10.1016/j.intimp.2024.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.
Collapse
Affiliation(s)
- Farhan Ullah Khan
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Puregmaa Khongorzul
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Denis Gris
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Abdelaziz Amrani
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, 3001, 12th Avenue North, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Stinson WA, Miner CA, Zhao FR, Lundgren AJ, Poddar S, Miner JJ. The IFN-γ receptor promotes immune dysregulation and disease in STING gain-of-function mice. JCI Insight 2022; 7:155250. [PMID: 36073546 PMCID: PMC9536275 DOI: 10.1172/jci.insight.155250] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell–dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ–induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
Collapse
Affiliation(s)
- W Alexander Stinson
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Cathrine A Miner
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fang R Zhao
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Annena Jane Lundgren
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Subhajit Poddar
- Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J Miner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA.,Department of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Kuttke M, Hromadová D, Yildirim C, Brunner JS, Vogel A, Paar H, Peters S, Weber M, Hofmann M, Kerndl M, Kieler M, Datler H, Musiejovsky L, Salzmann M, Lang M, Soukup K, Halfmann A, Sharif O, Schabbauer G. PI3K Signaling in Dendritic Cells Aggravates DSS-Induced Colitis. Front Immunol 2022; 13:695576. [PMID: 35514976 PMCID: PMC9063450 DOI: 10.3389/fimmu.2022.695576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant innate immune responses to the gut microbiota are causally involved in the pathogenesis of inflammatory bowel diseases (IBD). The exact triggers and main signaling pathways activating innate immune cells and how they modulate adaptive immunity in IBD is still not completely understood. Here, we report that the PI3K/PTEN signaling pathway in dendritic cells enhances IL-6 production in a model of DSS-induced colitis. This results in exacerbated Th1 cell responses and increased mortality in DC-specific PTEN knockout (PTENΔDC) animals. Depletion of the gut microbiota using antibiotics as well as blocking IL-6R signaling rescued mortality in PTENΔDC mice, whereas adoptive transfer of Flt3L-derived PTEN-/- DCs into WT recipients exacerbated DSS-induced colitis and increased mortality. Taken together, we show that the PI3K signaling pathway in dendritic cells contributes to disease pathology by promoting IL-6 mediated Th1 responses.
Collapse
Affiliation(s)
- Mario Kuttke
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Dominika Hromadová
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ceren Yildirim
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Julia S. Brunner
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannah Paar
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sophie Peters
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maria Weber
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Martina Kerndl
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hannes Datler
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Laszlo Musiejovsky
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michaela Lang
- Department of Gastroenterology and Hepatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Klara Soukup
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Angela Halfmann
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Omar Sharif
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Keller HR, Kim HK, Jo Y, Gress RE, Hong C, Park JH. The Abundance and Availability of Cytokine Receptor IL-2Rβ (CD122) Constrain the Lymphopenia-Induced Homeostatic Proliferation of Naive CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:3227-3235. [PMID: 32393513 DOI: 10.4049/jimmunol.1901276] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
Lymphopenia-induced homeostatic proliferation (LIP) is a critical mechanism for restoring T cell immunity upon lymphodepleting insults or infections. LIP is primarily driven by homeostatic cytokines, such as IL-7 and IL-15, but not all T cells respond with the same efficiency to homeostatic proliferative cues. Although CD8 T cells vigorously proliferate under lymphopenic conditions, naive CD4 T cells are substantially impaired in their response to homeostatic cytokines, and they fail to fully expand. In this study, we show that the availability of IL-2Rβ (CD122), which is a receptor subunit shared by IL-2 and IL-15, affects both the cytokine responsiveness and the LIP of naive CD4 T cells in the mouse. The enumeration of surface IL-2Rβ molecules on murine naive CD4 and naive CD8 T cells revealed a 5-fold difference in IL-2Rβ abundance. Notably, it was the limited availability of IL-2Rβ that impaired CD4 T cell responsiveness to IL-15 and suppressed their LIP. As such, forced IL-2Rβ expression on CD4 T cells by transgenesis bestowed IL-15 responsiveness onto naive CD4 T cells, which thus acquired the ability to undergo robust LIP. Collectively, these results identify IL-2Rβ availability as a new regulatory mechanism to control cytokine responsiveness and the homeostatic proliferation of murine CD4 T cells.
Collapse
Affiliation(s)
- Hilary R Keller
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.,Department of Surgery, Guthrie Robert Packer Hospital, Sayre, PA 18840
| | - Hye Kyung Kim
- Experimental and Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Yuna Jo
- Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Ronald E Gress
- Experimental and Transplantation Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Changwan Hong
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; .,Department of Anatomy, Pusan National University School of Medicine, Yangsan 50612, South Korea
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
5
|
Zhou Y, Li C, Shi G, Xu X, Luo X, Zhang Y, Fu J, Chen L, Zeng A. Dendritic cell-based vaccine targeting aspartate-β-hydroxylas represents a promising therapeutic strategy for HCC. Immunotherapy 2019; 11:1399-1407. [PMID: 31608722 DOI: 10.2217/imt-2019-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Dendritic cells (DCs)-mediated immunotherapy has been considered as a promising antitumor method. Aspartate-β-hydroxylase (AAH) is a potential immunotherapeutic target for hepatocellular carcinoma (HCC). Materials & methods: C57BL/6 mice were immunized by AAH-DCs vaccine constructed ex vivo. Killing tumor cells effect of active T cells induced by AAH-DCs vaccine on HCC cells were measured in vitro and vivo. The underlying mechanism was preliminarily investigated. Results: T cells response when activated by AAH-DCs vaccine showed a significant inhibition effect on HCC cells in vitro and in tumor-bearing mice models when compared with controls. Additionally, compared with the control group, increased expressions of Caspase8, Caspase 3 and Bax, and declined expression of Bcl-2 were observed in AAH-DCs vaccine group. Conclusion: AAH-DCs vaccine could stimulate T cell responses against HCC, which was possibly achieved via pro-apoptosis mechanism.
Collapse
Affiliation(s)
- Yujiao Zhou
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chengmin Li
- Department of Gastroenterology,The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guo Shi
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolei Xu
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xue Luo
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanling Zhang
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingjie Fu
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Limin Chen
- Toronto General Research Institute, University of Toronto, Toronto, ON, M2J4A6, Canada
| | - Aizhong Zeng
- Department of Infectious Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|