1
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
2
|
Yuliani D, Morishita F, Imamura T, Ueki T. Vanadium Accumulation and Reduction by Vanadium-Accumulating Bacteria Isolated from the Intestinal Contents of Ciona robusta. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:338-350. [PMID: 38451444 PMCID: PMC11043195 DOI: 10.1007/s10126-024-10300-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.
Collapse
Affiliation(s)
- Dewi Yuliani
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
- Chemistry Department, Faculty of Mathematics and Natural Sciences, State Islamic University of Malang, Malang, 65145, Indonesia
| | - Fumihiro Morishita
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Takuya Imamura
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan
| | - Tatsuya Ueki
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 1-3-1 Kagamiyama, Hiroshima, 739-8526, Japan.
| |
Collapse
|
3
|
Liberti A, Pollastro C, Pinto G, Illiano A, Marino R, Amoresano A, Spagnuolo A, Sordino P. Transcriptional and proteomic analysis of the innate immune response to microbial stimuli in a model invertebrate chordate. Front Immunol 2023; 14:1217077. [PMID: 37600818 PMCID: PMC10433773 DOI: 10.3389/fimmu.2023.1217077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Inflammatory response triggered by innate immunity can act to protect against microorganisms that behave as pathogens, with the aim to restore the homeostatic state between host and beneficial microbes. As a filter-feeder organism, the ascidian Ciona robusta is continuously exposed to external microbes that may be harmful under some conditions. In this work, we used transcriptional and proteomic approaches to investigate the inflammatory response induced by stimuli of bacterial (lipopolysaccharide -LPS- and diacylated lipopeptide - Pam2CSK4) and fungal (zymosan) origin, in Ciona juveniles at stage 4 of metamorphosis. We focused on receptors, co-interactors, transcription factors and cytokines belonging to the TLR and Dectin-1 pathways and on immune factors identified by homology approach (i.e. immunoglobulin (Ig) or C-type lectin domain containing molecules). While LPS did not induce a significant response in juvenile ascidians, Pam2CSK4 and zymosan exposure triggered the activation of specific inflammatory mechanisms. In particular, Pam2CSK4-induced inflammation was characterized by modulation of TLR and Dectin-1 pathway molecules, including receptors, transcription factors, and cytokines, while immune response to zymosan primarily involved C-type lectin receptors, co-interactors, Ig-containing molecules, and cytokines. A targeted proteomic analysis enabled to confirm transcriptional data, also highlighting a temporal delay between transcriptional induction and protein level changes. Finally, a protein-protein interaction network of Ciona immune molecules was rendered to provide a wide visualization and analysis platform of innate immunity. The in vivo inflammatory model described here reveals interconnections of innate immune pathways in specific responses to selected microbial stimuli. It also represents the starting point for studying ontogeny and regulation of inflammatory disorders in different physiological conditions.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carla Pollastro
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Rita Marino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Rome, Italy
| | - Antonietta Spagnuolo
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Sicily Marine Centre, Messina, Italy
| |
Collapse
|
4
|
Marino R, Melillo D, Italiani P, Boraschi D. Environmental stress and nanoplastics' effects on Ciona robusta: regulation of immune/stress-related genes and induction of innate memory in pharynx and gut. Front Immunol 2023; 14:1176982. [PMID: 37313415 PMCID: PMC10258323 DOI: 10.3389/fimmu.2023.1176982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 06/15/2023] Open
Abstract
In addition to circulating haemocytes, the immune system of the solitary ascidian Ciona robusta relies on two organs, the pharynx and the gut, and encompasses a wide array of immune and stress-related genes. How the pharynx and the gut of C. robusta react and adapt to environmental stress was assessed upon short or long exposure to hypoxia/starvation in the absence or in the presence of polystyrene nanoplastics. We show that the immune response to stress is very different between the two organs, suggesting an organ-specific immune adaptation to the environmental changes. Notably, the presence of nanoplastics appears to alter the gene modulation induced by hypoxia/starvation in both organs, resulting in a partial increase in gene up-regulation in the pharynx and a less evident response to stress in the gut. We have also assessed whether the hypoxia/starvation stress could induce innate memory, measured as gene expression in response to a subsequent challenge with the bacterial agent LPS. Exposure to stress one week before challenge induced a substantial change in the response to LPS, with a general decrease of gene expression in the pharynx and a strong increase in the gut. Co-exposure with nanoplastics only partially modulated the stress-induced memory response to LPS, without substantially changing the stress-dependent gene expression profile in either organ. Overall, the presence of nanoplastics in the marine environment seems able to decrease the immune response of C. robusta to stressful conditions, hypothetically implying a reduced capacity to adapt to environmental changes, but only partially affects the stress-dependent induction of innate memory and subsequent responses to infectious challenges.
Collapse
Affiliation(s)
- Rita Marino
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
| | - Paola Italiani
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (CNR, SZN, SIAT), Shenzhen, China
| | - Diana Boraschi
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (CNR, SZN, SIAT), Shenzhen, China
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Liberti A, Natarajan O, Atkinson CGF, Dishaw LJ. Secreted immunoglobulin domain effector molecules of invertebrates and management of gut microbial ecology. Immunogenetics 2022; 74:99-109. [PMID: 34988622 DOI: 10.1007/s00251-021-01237-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/18/2021] [Indexed: 02/01/2023]
Abstract
The origins of a "pass-through" gut in early bilaterians facilitated the exploration of new habitats, motivated the innovation of feeding styles and behaviors, and helped drive the evolution of more complex organisms. The gastrointestinal tract has evolved to consist of a series of interwoven exchanges between nutrients, host immunity, and an often microbe-rich environmental interface. Not surprisingly, animals have expanded their immune repertoires to include soluble effectors that can be secreted into luminal spaces, e.g., in the gut, facilitating interactions with microbes in ways that influence their settlement dynamics, virulence, and their interaction with other microbes. The immunoglobulin (Ig) domain, which is also found in some non-immune molecules, is recognized as one of the most versatile recognition domains lying at the interface of innate and adaptive immunity; among vertebrates, secreted Igs are known to play crucial roles in the management of gut microbial communities. In this mini-review, we will focus on secreted immune effectors possessing Ig-like domains in invertebrates, such as the fibrinogen-related effector proteins first described in the gastropod Biomphalaria glabrata, the Down syndrome cellular adhesion molecule first described in the arthropod, Drosophila melanogaster, and the variable region-containing chitin-binding proteins of the protochordates. We will highlight our current understanding of their function and their potential role, if not yet recognized, in the establishment and maintenance of host-microbial interfaces and argue that these Igs are likely also essential to microbiome management.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ojas Natarajan
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA
| | - Celine Grace F Atkinson
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA.,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA
| | - Larry J Dishaw
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, USA. .,Division of Molecular Genetics, Children's Research Institute, St. Petersburg, FL, USA.
| |
Collapse
|
6
|
Liberti A, Leigh BA, Graham Z, Natarajan O, Dishaw LJ. A Role for Secreted Immune Effectors in Microbial Biofilm Formation Revealed by Simple In Vitro Assays. Methods Mol Biol 2022; 2421:127-140. [PMID: 34870816 DOI: 10.1007/978-1-0716-1944-5_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The formation of biofilms is critical for the successful and stable colonization of mucosal surfaces by microbes, which often build three-dimensional environments by exuding exopolysaccharides and other macromolecules such as proteins, lipids, and even DNA. It is not just bacteria, but fungi such as yeast, that form these adherent interacting communities. Historically, biofilms have been studied in the context of pathogenesis, but only recently it has been recognized that important relationships among members of host-associated microbiomes are maintained within the context of biofilms. Host immune responses impact biofilm formation in various ways; for example, it is likely that formation of stable biofilms by non-pathogens improves barrier defenses by not just filling available niche spaces but also by helping to ward off pathogens directly. Recently, it was found that soluble immune effector molecules such as immunoglobulin A (IgA) in mammals serve essential roles in modulating complex biofilm communities in ways that benefit the host. Additional lines of evidence from other secreted immune effectors, such as the variable region-containing chitin-binding proteins (VCBPs) in protochordates, now suggest that this phenomenon is much more widespread than previously recognized. The activity of these immune molecules also likely serves roles beyond those of simple defense strategies; rather, they may be improving the outcome of symbiotic interactions benefiting the host. Thus, traditional immune assays that are aimed at studying the function of secreted immune effectors, such as agglutination assays, should take into account the possibility that the first observation may not be the last if the microbes under study are not directly killed. Here, we describe a series of simple approaches to characterize biofilm formation when bacteria (or yeast) are cultured in the presence of a secreted immune effector. To model this approach, we use microbes isolated from the gut of Ciona robusta, each grown in the presence or absence of VCBPs. The approaches defined here are amenable to diverse model systems and their microbes.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Brittany A Leigh
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zachary Graham
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
| | - Ojas Natarajan
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA
| | - Larry J Dishaw
- Department of Pediatrics, Morsani College of Medicine, Children's Research Institute, University of South Florida, Saint Petersburg, FL, USA.
| |
Collapse
|
7
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
8
|
Liberti A, Natarajan O, Atkinson CGF, Sordino P, Dishaw LJ. Reflections on the Use of an Invertebrate Chordate Model System for Studies of Gut Microbial Immune Interactions. Front Immunol 2021; 12:642687. [PMID: 33717199 PMCID: PMC7947342 DOI: 10.3389/fimmu.2021.642687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
The functional ecology of the gastrointestinal tract impacts host physiology, and its dysregulation is at the center of various diseases. The immune system, and specifically innate immunity, plays a fundamental role in modulating the interface of host and microbes in the gut. While humans remain a primary focus of research in this field, the use of diverse model systems help inform us of the fundamental principles legislating homeostasis in the gut. Invertebrates, which lack vertebrate-style adaptive immunity, can help define conserved features of innate immunity that shape the gut ecosystem. In this context, we previously proposed the use of a marine invertebrate, the protochordate Ciona robusta, as a novel tractable model system for studies of host-microbiome interactions. Significant progress, reviewed herein, has been made to fulfill that vision. We examine and review discoveries from Ciona that include roles for a secreted immune effector interacting with elements of the microbiota, as well as chitin-rich mucus lining the gut epithelium, the gut-associated microbiome of adults, and the establishment of a large catalog of cultured isolates with which juveniles can be colonized. Also discussed is the establishment of methods to rear the animals germ-free, an essential technology for dissecting the symbiotic interactions at play. As the foundation is now set to extend these studies into the future, broadening our comprehension of how host effectors shape the ecology of these microbial communities in ways that establish and maintain homeostasis will require full utilization of "multi-omics" approaches to merge computational sciences, modeling, and experimental biology in hypothesis-driven investigations.
Collapse
Affiliation(s)
- Assunta Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ojas Natarajan
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Tampa, FL, United States
- Division of Molecular Genetics, Children’s Research Institute, St. Petersburg, FL, United States
| | - Celine Grace F. Atkinson
- Division of Molecular Genetics, Children’s Research Institute, St. Petersburg, FL, United States
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Paolo Sordino
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Larry J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Tampa, FL, United States
- Division of Molecular Genetics, Children’s Research Institute, St. Petersburg, FL, United States
| |
Collapse
|
9
|
Utermann C, Echelmeyer VA, Oppong-Danquah E, Blümel M, Tasdemir D. Diversity, Bioactivity Profiling and Untargeted Metabolomics of the Cultivable Gut Microbiota of Ciona intestinalis. Mar Drugs 2020; 19:6. [PMID: 33374243 PMCID: PMC7824411 DOI: 10.3390/md19010006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
It is widely accepted that the commensal gut microbiota contributes to the health and well-being of its host. The solitary tunicate Ciona intestinalis emerges as a model organism for studying host-microbe interactions taking place in the gut, however, the potential of its gut-associated microbiota for marine biodiscovery remains unexploited. In this study, we set out to investigate the diversity, chemical space, and pharmacological potential of the gut-associated microbiota of C. intestinalis collected from the Baltic and North Seas. In a culture-based approach, we isolated 61 bacterial and 40 fungal strains affiliated to 33 different microbial genera, indicating a rich and diverse gut microbiota dominated by Gammaproteobacteria. In vitro screening of the crude microbial extracts indicated their antibacterial (64% of extracts), anticancer (22%), and/or antifungal (11%) potential. Nine microbial crude extracts were prioritized for in-depth metabolome mining by a bioactivity- and chemical diversity-based selection procedure. UPLC-MS/MS-based metabolomics combining automated (feature-based molecular networking and in silico dereplication) and manual approaches significantly improved the annotation rates. A high chemical diversity was detected where peptides and polyketides were the predominant classes. Many compounds remained unknown, including two putatively novel lipopeptides produced by a Trichoderma sp. strain. This is the first study assessing the chemical and pharmacological profile of the cultivable gut microbiota of C. intestinalis.
Collapse
Affiliation(s)
- Caroline Utermann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (V.A.E.); (E.O.-D.); (M.B.)
| | - Vivien A. Echelmeyer
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (V.A.E.); (E.O.-D.); (M.B.)
| | - Ernest Oppong-Danquah
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (V.A.E.); (E.O.-D.); (M.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (V.A.E.); (E.O.-D.); (M.B.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (V.A.E.); (E.O.-D.); (M.B.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
10
|
Liberti A, Bertocci I, Pollet A, Musco L, Locascio A, Ristoratore F, Spagnuolo A, Sordino P. An indoor study of the combined effect of industrial pollution and turbulence events on the gut environment in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2020; 158:104950. [PMID: 32217300 DOI: 10.1016/j.marenvres.2020.104950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/25/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Natural storms are able to determine reworking of seabed up to considerable depths and favour suspension of sediment-associated chemicals. Yet, a direct link between exposure to resuspended contaminants and the biological effects on marine organisms have to be fully established. We exposed adults of a suspension feeder, the ascidian Ciona robusta, to polluted sediment (e.g., containing mixtures of polycyclic aromatic hydrocarbons and heavy metals) from the industrial area of Bagnoli-Coroglio under two temporal patterns ('aggregated' vs. 'spaced') of turbulence events. Then, we assessed the impact of resuspended pollutants on the ascidian gut environment via four broad categories: oxidative stress, innate immunity, host-microbiota interactions, and epithelium. An early oxidative stress response was seen after a week of exposure to static sediment. Instead, water turbulence had no effect on the antioxidant defence. The first episode of turbulent suspension induced a minimal pro-inflammatory response in the 'spaced' pattern. Mucus overproduction and a complete occlusion of the crypt lumen were found following sediment reworking. This study suggests a protective response of the gut environment in marine invertebrates exposed to environmental extremes, leading to increased susceptibility to disease and to concerns on the combined effects of chronic environmental contamination and acute disturbance events possibly associated with climate change.
Collapse
Affiliation(s)
- Assunta Liberti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - Iacopo Bertocci
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Biology, University of Pisa, CoNISMa, Pisa, Italy
| | | | - Luigi Musco
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|