1
|
Leroy V, Manual Kollareth DJ, Tu Z, Valisno JAC, Woolet-Stockton M, Saha B, Emtiazjoo AM, Rackauskas M, Moldawer LL, Efron PA, Cai G, Atkinson C, Upchurch GR, Sharma AK. MerTK-dependent efferocytosis by monocytic-MDSCs mediates resolution of ischemia/reperfusion injury after lung transplant. JCI Insight 2024; 9:e179876. [PMID: 39172530 PMCID: PMC11466183 DOI: 10.1172/jci.insight.179876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Lung transplantation (LTx) outcomes are impeded by ischemia/reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of receptor Mer tyrosine kinase (MerTK) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from patients after LTx were analyzed. Murine lung hilar ligation and allogeneic orthotopic LTx models of IRI were used with BALB/c (WT), Cebpb-/- (MDSC-deficient), Mertk-/-, or MerTK-cleavage-resistant mice. A significant downregulation in MerTK-related efferocytosis genes in M-MDSC populations of patients with CLAD was observed compared with healthy individuals. In the murine IRI model, a significant increase in M-MDSCs, MerTK expression, and efferocytosis and attenuation of lung dysfunction was observed in WT mice during injury resolution that was absent in Cebpb-/- and Mertk-/- mice. Adoptive transfer of M-MDSCs in Cebpb-/- mice significantly attenuated lung dysfunction and inflammation. Additionally, in a murine orthotopic LTx model, increases in M-MDSCs were associated with resolution of lung IRI in the transplant recipients. In vitro studies demonstrated the ability of M-MDSCs to efferocytose apoptotic neutrophils in a MerTK-dependent manner. Our results suggest that MerTK-dependent efferocytosis by M-MDSCs can substantially contribute to the resolution of post-LTx IRI.
Collapse
Affiliation(s)
- Victoria Leroy
- Department of Surgery
- Department of Pharmacology and Therapeutics
| | | | - Zhenxiao Tu
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | - Biplab Saha
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Amir M. Emtiazjoo
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | | | | | - Guoshuai Cai
- Department of Surgery
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Carl Atkinson
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | | | - Ashish K. Sharma
- Department of Surgery
- Department of Pharmacology and Therapeutics
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
DeBerge M, Schroth S, Du F, Yeap XY, Wang JJ, Zhang ZJ, Ansari MJ, Scott EA, Thorp EB. Hypoxia inducible factor 2α promotes tolerogenic macrophage development during cardiac transplantation through transcriptional regulation of colony stimulating factor 1 receptor. Proc Natl Acad Sci U S A 2024; 121:e2319623121. [PMID: 38889142 PMCID: PMC11214057 DOI: 10.1073/pnas.2319623121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center, Houston, TX77030
| | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Xin Yi Yeap
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Mohammed Javeed Ansari
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
3
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Shi ZY, Yang C, Lu LY, Lin CX, Liang S, Li G, Zhou HM, Zheng JM. Inhibition of hexokinase 2 with 3-BrPA promotes MDSCs differentiation and immunosuppressive function. Cell Immunol 2023; 385:104688. [PMID: 36774675 DOI: 10.1016/j.cellimm.2023.104688] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
The adoptive transfer of ex vivo generated myeloid-derived suppressor cells (MDSCs) may be a promising therapeutic strategy for preventing allograft rejection after solid organ transplantation. Currently, the precise role of immune-metabolic pathways in the differentiation and function of MDSCs is not fully understood. Hexokinase 2 (HK2) is an isoform of hexokinase and is a key enzyme involved in the increased aerobic glycolysis of different immune cells during their activation and function. Here, we demonstrate that the addition of HK2 inhibitor 3-Bromopyruvic acid (3-BrPA) into traditional MDSCs induction system in vitro significantly promoted MDSCs production and enhanced their immunosuppressive function. Treatment with 3-BrPA increased the expression of MDSC-related immunosuppressive molecules, such as iNOS, Arg1, and CXCR2. Moreover, the adoptive transfer of 3-BrPA-treated MDSCs significantly prolonged the survival time of mouse heart allografts. This study provides a novel strategy to solve the problems of harvesting enough autologous cells for MDSC production from sick patients, and producing functionally enhanced MDSCs for preventing graft rejection and inducing tolerance.
Collapse
Affiliation(s)
- Zhan-Yue Shi
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Yang
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, China
| | - Liu-Yi Lu
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Can-Xiang Lin
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shi Liang
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Gen Li
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Min Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun-Meng Zheng
- Department of Cardiothoracic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Zhu S, Lalani AI, Jin J, Sant’Angelo D, Covey LR, Liu K, Young HA, Ostrand-Rosenberg S, Xie P. The adaptor protein TRAF3 is an immune checkpoint that inhibits myeloid-derived suppressor cell expansion. Front Immunol 2023; 14:1167924. [PMID: 37207205 PMCID: PMC10189059 DOI: 10.3389/fimmu.2023.1167924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are aberrantly expanded in cancer patients and under other pathological conditions. These cells orchestrate the immunosuppressive and inflammatory network to facilitate cancer metastasis and mediate patient resistance to therapies, and thus are recognized as a prime therapeutic target of human cancers. Here we report the identification of the adaptor protein TRAF3 as a novel immune checkpoint that critically restrains MDSC expansion. We found that myeloid cell-specific Traf3-deficient (M-Traf3 -/-) mice exhibited MDSC hyperexpansion during chronic inflammation. Interestingly, MDSC hyperexpansion in M-Traf3 -/- mice led to accelerated growth and metastasis of transplanted tumors associated with an altered phenotype of T cells and NK cells. Using mixed bone marrow chimeras, we demonstrated that TRAF3 inhibited MDSC expansion via both cell-intrinsic and cell-extrinsic mechanisms. Furthermore, we elucidated a GM-CSF-STAT3-TRAF3-PTP1B signaling axis in MDSCs and a novel TLR4-TRAF3-CCL22-CCR4-G-CSF axis acting in inflammatory macrophages and monocytes that coordinately control MDSC expansion during chronic inflammation. Taken together, our findings provide novel insights into the complex regulatory mechanisms of MDSC expansion and open up unique perspectives for the design of new therapeutic strategies that aim to target MDSCs in cancer patients.
Collapse
Affiliation(s)
- Sining Zhu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Almin I. Lalani
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Graduate Program in Cellular and Molecular Pharmacology, Rutgers University, Piscataway, NJ, United States
| | - Juan Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Department of Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Derek Sant’Angelo
- Child Health Institute of New Jersey, Rutgers University, New Brunswick, NJ, United States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Lori R. Covey
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA, United States
| | - Howard A. Young
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences, The University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, United States
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
- *Correspondence: Ping Xie,
| |
Collapse
|
6
|
Kouyoumdjian A, Tchervenkov J, Paraskevas S. TFNR2 in Ischemia-Reperfusion Injury, Rejection, and Tolerance in Transplantation. Front Immunol 2022; 13:903913. [PMID: 35874723 PMCID: PMC9300818 DOI: 10.3389/fimmu.2022.903913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Tumor necrosis factor receptor 2 (TNFR2) has been shown to play a crucial role in CD4+ T regulatory cells (CD4+Tregs) expansion and suppressive function. Increasing evidence has also demonstrated its role in a variety of immune regulatory cell subtypes such as CD8+ T regulatory cells (CD8+ Tregs), B regulatory cells (Bregs), and myeloid-derived suppressor cells (MDSCs). In solid organ transplantation, regulatory immune cells have been associated with decreased ischemia-reperfusion injury (IRI), improved graft survival, and improved overall outcomes. However, despite TNFR2 being studied in the context of autoimmune diseases, cancer, and hematopoietic stem cell transplantation, there remains paucity of data in the context of solid organ transplantation and islet cell transplantation. Interestingly, TNFR2 signaling has found a clinical application in islet transplantation which could guide its wider use. This article reviews the current literature on TNFR2 expression in immune modulatory cells as well as IRI, cell, and solid organ transplantation. Our results highlighted the positive impact of TNFR2 signaling especially in kidney and islet transplantation. However, further investigation of TNFR2 in all types of solid organ transplantation are required as well as dedicated studies on its therapeutic use during induction therapy or treatment of rejection.
Collapse
Affiliation(s)
- Araz Kouyoumdjian
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- *Correspondence: Araz Kouyoumdjian,
| | - Jean Tchervenkov
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Steven Paraskevas
- Division of Experimental Surgery, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Schroeter A, Roesel MJ, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity. Front Immunol 2022; 13:917972. [PMID: 35874716 PMCID: PMC9296838 DOI: 10.3389/fimmu.2022.917972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with potent immunoregulatory functions that have been shown to be involved in a variety of immune-related diseases including infections, autoimmune disorders, and cancer. In organ transplantation, MDSC promote tolerance by modifying adaptive immune responses. With aging, however, substantial changes occur that affect immune functions and impact alloimmunity. Since the vast majority of transplant patients are elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we provide a comprehensive update on the effects of aging on MDSC and discuss potential consequences on alloimmunity.
Collapse
Affiliation(s)
- Andreas Schroeter
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian J. Roesel
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Tomohisa Matsunaga
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yao Xiao
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Dong P, Chen L, Wu H, Huo J, Jiang Z, Shao Y, Ren X, Huang J, Li X, Wang M, Nie N, Zhang J, Jin P, Zheng Y, Ge M. Impaired immunosuppressive role of myeloid-derived suppressor cells in acquired aplastic anemia. Haematologica 2022; 107:2834-2845. [PMID: 35734923 PMCID: PMC9713570 DOI: 10.3324/haematol.2021.280292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a group of heterogeneous immature myeloid cells and display immunosuppressive function. In this study, MDSC populations were evaluated in acquired aplastic anemia (AA) (n=65) in which aberrant immune mechanisms contributed to bone marrow destruction. Our data demonstrate that both the proportion and immunosuppressive function of MDSC are impaired in AA patients. Decreased percentage of MDSC, especially monocytic MDSC, in the blood of AA patients (n=15) is positively correlated with the frequency of T-regulatory cells, bone marrow level of WT1 and decreased plasma level of arginase-1. RNA sequencing analyses reveal that multiple pathways including DNA damage, interleukin 4, apoptosis, and Jak kinase singnal transducer and activator of transcription are upregulated, whereas transcription, IL-6, IL-18, glycolysis, transforming growth factor and reactive oxygen species are downregulated in MDSC of AA (n=4), compared with that of healthy donors (n=3). These data suggest that AA MDSC are defective. Administration of rapamycin significantly increases the absolute number of MDSC and levels of intracellular enzymes, including arginase-1 and inducible nitric-oxide synthase. Moreover, rapamycin inhibits MDSC from differentiating into mature myeloid cells. These findings reveal that impaired MDSC are involved in the immunopathogenesis of AA. Pharmacologically targeting of MDSC by rapamycin might provide a promising therapeutic strategy for AA.
Collapse
Affiliation(s)
- Peiyuan Dong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin,Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*PD and LC contributed equally as co-first authors
| | - Lingyun Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin,*PD and LC contributed equally as co-first authors
| | - Hongfei Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Jiali Huo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingqi Shao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Xiang Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Jinbo Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Xingxin Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Neng Nie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Jing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Peng Jin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin,M.Ge
| |
Collapse
|
9
|
Iglesias-Escudero M, Segundo DS, Merino-Fernandez D, Mora-Cuesta VM, Lamadrid P, Alonso-Peña M, Raso S, Iturbe D, Fernandez-Rozas S, Cifrian J, López-Hoyos M. Myeloid-Derived Suppressor Cells Are Increased in Lung Transplant Recipients and Regulated by Immunosuppressive Therapy. Front Immunol 2022; 12:788851. [PMID: 35185863 PMCID: PMC8848105 DOI: 10.3389/fimmu.2021.788851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022] Open
Abstract
Lung transplantation remains as a primary treatment for end-stage lung diseases. Although remarkable improvement has been achieved due to the immunosuppressive protocols, long-term survival for lung transplant recipients (LTR) is still limited. In the last few decades, an increasing interest has grown in the study of dysregulation of immune mechanisms underlying allograft failure. In this regard, myeloid-derived suppressor cells (MDSCs) could play an important role in the promotion of graft tolerance due to their immune regulatory function. Here, we describe for the first time circulating subsets MDSCs from LTR at several time points and we evaluate the relationship of MDSCs with sort-term lung transplant outcomes. Although no effect of MDSCs subsets on short-term clinical events was observed, our results determine that Mo-MDSCs frequencies are increased after acute cellular rejection (ACR), suggesting a possible role for Mo-MDSCs in the development of chronic lung allograft dysfunction (CLAD). Therefore, whether MDSCs subsets play a role as biomarkers of chronic rejection remains unknown and requires further investigations. Also, the effects of the different immunosuppressive treatments on these subpopulations remain under research and further studies are needed to establish to what extend MDSCs immune modulation could be responsible for allograft acceptance.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain.,Immunology Department, Universitary Hospital Germans Trias i Pujol, Badalona, Spain
| | - David San Segundo
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain.,Immunology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | - Victor M Mora-Cuesta
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Patricia Lamadrid
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain
| | - Marta Alonso-Peña
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain
| | - Sandra Raso
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain
| | - David Iturbe
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Sonia Fernandez-Rozas
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Jose Cifrian
- Pneumology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Marcos López-Hoyos
- Transplant and Autoimmunity group, Research Institute-IDIVAL, Santander, Spain.,Immunology Department, Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain.,Molecular Biology Department, Universidad Cantabria, Santander, Spain
| |
Collapse
|
10
|
Sheida F, Razi S, Keshavarz-Fathi M, Rezaei N. The role of myeloid-derived suppressor cells in lung cancer and targeted immunotherapies. Expert Rev Anticancer Ther 2021; 22:65-81. [PMID: 34821533 DOI: 10.1080/14737140.2022.2011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Lung cancer is the deadliest cancer in both sexes combined globally due to significant delays in diagnosis and poor survival. Despite advances in the treatment of lung cancer, the overall outcomes remain poor and traditional chemotherapy fails to provide long-term benefits for many patients. Therefore, new treatment strategies are needed to increase overall survival. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive cells taking part in lung cancer, as has been described in other types of tumors. MDSCs immunosuppressive activity is mediated by arginases (ARG-1 and ARG-2), nitric oxide (NO), reactive oxygen species (ROS), peroxynitrite, PD-1/PD-L1 axis, and different cytokines. MDSCs can be a target for lung cancer immunotherapy by inducing their differentiation into mature myeloid cells, elimination, attenuation of their function, and inhibition of their accumulation. AREAS COVERED In this review, the immunosuppressive function of MDSCs, their role in lung cancer, and strategies to target them, which could result in increased efficacy of immunotherapy in patients with lung cancer, are discussed. EXPERT OPINION Identification of important mechanisms and upstream pathways involved in MDSCs functions paves the way for further preclinical and clinical lung cancer research, which could lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fateme Sheida
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
11
|
van Wigcheren GF, Roelofs D, Figdor CG, Flórez-Grau G. Three distinct tolerogenic CD14 + myeloid cell types to actively manage autoimmune disease: Opportunities and challenges. J Autoimmun 2021; 120:102645. [PMID: 33901801 DOI: 10.1016/j.jaut.2021.102645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Current treatment for patients with autoimmune disorders including rheumatoid arthritis, multiple sclerosis and type 1 diabetes, often consists of long-term drug regimens that broadly dampen immune responses. These non-specific treatments are frequently associated with severe side effects creating an urgent need for safer and more effective therapy to promote peripheral tolerance in autoimmune diseases. Cell-based immunotherapy may offer an encouraging alternative, where tolerogenic CD14+ myeloid cells are infused to inhibit autoreactive effector cells. In this review, we compared in depth three promising tolerogenic CD14+ candidates for the treatment of autoimmune disease: 1) tolerogenic dendritic cells, 2) monocytic myeloid-derived suppressor cells and 3) CD14+ type 2 conventional dendritic cells. TolDC-based therapy has entered clinical testing whereas evidence from the latter two cell types m-MDSCs and CD14+ cDC2s is predominantly coming from cancer immunology research. These three cell types have distinct cellular properties and immunosuppressive mechanisms offering unique opportunities to be explored. However, these cells differ in stage of development towards immunotherapy each facing additional hurdles. Therefore, we speculate on the potential benefits and risks of these cell types as novel cell-based immunotherapies to control autoimmune disease in patients.
Collapse
Affiliation(s)
- Glenn F van Wigcheren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Oncode Institute, the Netherlands
| | - Daphne Roelofs
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Oncode Institute, the Netherlands.
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Early Posttransplant Mobilization of Monocytic Myeloid-derived Suppressor Cell Correlates With Increase in Soluble Immunosuppressive Factors and Predicts Cancer in Kidney Recipients. Transplantation 2021; 104:2599-2608. [PMID: 32068661 DOI: 10.1097/tp.0000000000003179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) increase in patients with cancer and are associated with poor prognosis; however, their role in transplantation is not yet understood. Here we aimed to study the MDSC effects on the evolution of kidney transplant recipients (KTRs). METHODS A cohort of 229 KTRs was prospectively analyzed. Two myeloid cells subsets. CD11bCD33CD14CD15HLA-DR (monocytic MDSC [M-MDSC]) and CD11bCD33CD14CD15HLA-DR (monocytes), were defined by flow cytometry. The suppressive capacity of myeloid cells was tested in cocultures with autologous lymphocytes. Suppressive soluble factors, cytokines, anti-HLA antibodies, and total antioxidant capacity were quantified in plasma. RESULTS Pretransplant, M-MDSC, and monocytes were similar in KTRs and healthy volunteers. M-MDSCs increased immediately posttransplantation and suppressed CD4 and CD8 T cells proliferation. M-MDSCs remained high for 1 y posttransplantation. Higher M-MDSC counts at day 14 posttransplant were observed in patients who subsequently developed cancer, and KTRs with higher M-MDSC at day 14 had significantly lower malignancy-free survival. Day 14 M-MDSC >179.2 per microliter conferred 6.98 times (95% confidence interval, 1.28-37.69) more risk to develop cancer, independently from age, gender, and immunosuppression. Early posttransplant M-MDSCs were lower in patients with enhanced alloimmune response as represented by anti-HLA sensitization. M-MDSC counts correlated with higher circulatory suppressive factors arginase-1 and interleukin-10, and lower total antioxidant capacity. CONCLUSIONS Early posttransplant mobilization of M-MDSCs predicts cancer and adds risk as an independent factor. M-MDSC may favor an immunosuppressive environment that promotes tumoral development.
Collapse
|
13
|
Zhang J, Hodges A, Chen SH, Pan PY. Myeloid-derived suppressor cells as cellular immunotherapy in transplantation and autoimmune diseases. Cell Immunol 2021; 362:104300. [PMID: 33582607 DOI: 10.1016/j.cellimm.2021.104300] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which have been characterized for their immunosuppressive capacity through multiple mechanisms. These cells have been extensively studied in the field of tumor immunity. Emerging evidence has highlighted its essential role in maintaining immune tolerance in transplantation and autoimmunity. Because of their robust immune inhibitory activities, there has been growing interest in MDSC-based cellular therapy. Various pre-clinical studies have demonstrated that the adoptive transfer of MDCS represented a promising therapeutic strategy for immune-related disorders. In this review, we summarize relevant studies of MDSC-based cell therapy in transplantation and autoimmune diseases and discuss the challenges and future directions for clinical application of MDSC-based cell therapy.
Collapse
Affiliation(s)
- Jilu Zhang
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States.
| | - Alan Hodges
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States
| | - Shu-Hsia Chen
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States
| | - Ping-Ying Pan
- Center for Immunotherapy Research, Cancer Center of Excellence, Houston Methodist Research Institute, Houston, TX, United States; Texas A&M College of Medicine, Bryan, TX, United States.
| |
Collapse
|
14
|
Ren Y, Dong X, Zhao H, Feng J, Chen B, Zhou Y, Peng Y, Zhang L, Zhou Q, Li Y, Wu M, He Y. Myeloid-derived suppressor cells improve corneal graft survival through suppressing angiogenesis and lymphangiogenesis. Am J Transplant 2021; 21:552-566. [PMID: 32892499 DOI: 10.1111/ajt.16291] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 01/25/2023]
Abstract
Myeloid-derived suppressor cells (MDSC) are one of the major negative regulators of immune responses during many pathological conditions such as cancer and transplantation. Emerging evidence indicates that MDSC also contribute to tumor progression through their pro-angiogenic activity in addition to immunosuppressive function. However, virtually nothing is known about the role of MDSC in the regulation of neovascularization after transplantation. Here we showed that antibody-mediated depletion of MDSC in mice led to robust growth of blood and lymphatic neovessels and rapid allograft rejection after corneal penetrating keratoplasty. In contrast, adoptive transfer of ex vivo generated MDSC from cytokine-treated bone marrow cells (evMDSC) suppressed neovascularization and prolonged corneal allograft survival in an inducible nitric oxide synthase (iNOS)-dependent manner. Mechanistically, compared to naïve MDSC control, evMDSC have increased expression of an anti-angiogenic factor thrombospondin 1 (Tsp-1) and decreased expression of two critical pro-angiogenic factors, vascular endothelial growth factor A (VEGF-A), and VEGF-C. These findings demonstrate MDSC as a critical anti-angiogenic regulator during transplantation. Our study also indicates that evMDSC are a valuable candidate agent for development of novel cell therapy to improve allograft survival after transplantation.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Han Zhao
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Jianing Feng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yingqian Peng
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Qinghua Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yunping Li
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Mengbo Wu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| |
Collapse
|
15
|
Research Highlights. Transplantation 2020. [DOI: 10.1097/tp.0000000000003499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Fernández AR, Sánchez-Tarjuelo R, Cravedi P, Ochando J, López-Hoyos M. Review: Ischemia Reperfusion Injury-A Translational Perspective in Organ Transplantation. Int J Mol Sci 2020; 21:ijms21228549. [PMID: 33202744 PMCID: PMC7696417 DOI: 10.3390/ijms21228549] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Thanks to the development of new, more potent and selective immunosuppressive drugs together with advances in surgical techniques, organ transplantation has emerged from an experimental surgery over fifty years ago to being the treatment of choice for many end-stage organ diseases, with over 139,000 organ transplants performed worldwide in 2019. Inherent to the transplantation procedure is the fact that the donor organ is subjected to blood flow cessation and ischemia during harvesting, which is followed by preservation and reperfusion of the organ once transplanted into the recipient. Consequently, ischemia/reperfusion induces a significant injury to the graft with activation of the immune response in the recipient and deleterious effect on the graft. The purpose of this review is to discuss and shed new light on the pathways involved in ischemia/reperfusion injury (IRI) that act at different stages during the donation process, surgery, and immediate post-transplant period. Here, we present strategies that combine various treatments targeted at different mechanistic pathways during several time points to prevent graft loss secondary to the inflammation caused by IRI.
Collapse
Affiliation(s)
- André Renaldo Fernández
- Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain;
| | - Rodrigo Sánchez-Tarjuelo
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.S.-T.); (J.O.)
- Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Paolo Cravedi
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (R.S.-T.); (J.O.)
- Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Majadahonda (Madrid), Spain
| | - Marcos López-Hoyos
- Immunology, Universitary Hospital Marqués de Valdecilla- Research Institute IDIVAL Santander, 390008 Santander, Spain;
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-942-292759
| |
Collapse
|
17
|
Targeting Myeloid-Derived Suppressor Cells in Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12092626. [PMID: 32942545 PMCID: PMC7564060 DOI: 10.3390/cancers12092626] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Myeloid-Derived Suppressor Cells (MDSCs) have been regarded as the main promoters of cancer development in recent years. They can protect tumor cells from being eliminated by neutralizing the anti-tumor response mediated by T cells, macrophages and dendritic cells (DCs). Therefore, different treatment methods targeting MDSCs, including chemotherapy, radiotherapy and immunotherapy, have been developed and proven to effectively inhibit tumor expansion. Herein, we summarize the immunosuppressive role of MDSCs in the tumor microenvironment and some effective treatments targeting MDSCs, and discuss the differences between different therapies. Abstract Myeloid-derived suppressor cells (MDSCs), which are activated under pathological conditions, are a group of heterogeneous immature myeloid cells. MDSCs have potent capacities to support tumor growth via inhibition of the antitumoral immune response and/or the induction of immunosuppressive cells. In addition, multiple studies have demonstrated that MDSCs provide potential therapeutic targets for the elimination of immunosuppressive functions and the inhibition of tumor growth. The combination of targeting MDSCs and other therapeutic approaches has also demonstrated powerful antitumor effects. In this review, we summarize the characteristics of MDSCs in the tumor microenvironment (TME) and current strategies of cancer treatment by targeting MDSCs.
Collapse
|
18
|
Yaseen MM, Abuharfeil NM, Darmani H, Daoud A. Recent advances in myeloid-derived suppressor cell biology. Front Med 2020; 15:232-251. [PMID: 32876877 DOI: 10.1007/s11684-020-0797-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Applied Biology, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ammar Daoud
- Department of Internal Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
19
|
Iglesias-Escudero M, Sansegundo-Arribas D, Riquelme P, Merino-Fernández D, Guiral-Foz S, Pérez C, Valero R, Ruiz JC, Rodrigo E, Lamadrid-Perojo P, Hutchinson JA, Ochando J, López-Hoyos M. Myeloid-Derived Suppressor Cells in Kidney Transplant Recipients and the Effect of Maintenance Immunotherapy. Front Immunol 2020; 11:643. [PMID: 32425928 PMCID: PMC7203496 DOI: 10.3389/fimmu.2020.00643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) represent a heterogeneous group of myeloid regulatory cells that were originally described in cancer. Several studies in animal models point to MDSC as important players in the induction of allograft tolerance due to their immune modulatory function. Most of the published studies have been performed in animal models, and the data addressing MDSCs in human organ transplantation are scarce. We evaluated the phenotype and function of different MDSCs subsets in 38 kidney transplant recipients (KTRs) at different time points. Our data indicate that monocytic MDSCs (Mo-MDSC) increase in KTR at 6 and 12 months posttransplantation. On the contrary, the percentages of polymorphonuclear MDSC (PMN-MDSC) and early-stage MDSC (e-MDSC) are not significantly increased. We evaluated the immunosuppressive activity of Mo-MDSC in KTR and confirmed their ability to increase regulatory T cells (Treg) in vitro. Interestingly, when we compared the ability of Mo-MDSC to suppress T cell proliferation, we observed that tacrolimus, but not rapamycin-treated KTR, was able to inhibit CD4+ T cell proliferation in vitro. This indicates that, although mTOR inhibitors are widely regarded as supportive of regulatory responses, rapamycin may impair Mo-MDSC function, and suggests that the choice of immunosuppressive therapy may determine the tolerogenic pathway and participating immune cells that promote organ transplant acceptance in KTR.
Collapse
Affiliation(s)
- María Iglesias-Escudero
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain
| | - David Sansegundo-Arribas
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain.,Department of Immunology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Paloma Riquelme
- Section of Experimental Surgery, Department of Surgery, University Hospital of Regensburg, Regensburg, Germany
| | - David Merino-Fernández
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain
| | - Sandra Guiral-Foz
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain.,Department of Immunology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Carmen Pérez
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain
| | - Rosalia Valero
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain.,Department of Nephrology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Juan Carlos Ruiz
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain.,Department of Nephrology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Emilio Rodrigo
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain.,Department of Nephrology, University Hospital Marqués de Valdecilla, Santander, Spain
| | - Patricia Lamadrid-Perojo
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain
| | - James A Hutchinson
- Section of Experimental Surgery, Department of Surgery, University Hospital of Regensburg, Regensburg, Germany
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Immunología de Trasplantes, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marcos López-Hoyos
- Transplantation and Autoimmunity Group, Marqués de Valdecilla Health Research Institute (IDIVAL) Santander, Spain.,Department of Immunology, University Hospital Marqués de Valdecilla, Santander, Spain
| |
Collapse
|
20
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
Trovato R, Canè S, Petrova V, Sartoris S, Ugel S, De Sanctis F. The Engagement Between MDSCs and Metastases: Partners in Crime. Front Oncol 2020; 10:165. [PMID: 32133298 PMCID: PMC7040035 DOI: 10.3389/fonc.2020.00165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Tumor metastases represent the major cause of cancer-related mortality, confirming the urgent need to identify key molecular pathways and cell-associated networks during the early phases of the metastatic process to develop new strategies to either prevent or control distal cancer spread. Several data revealed the ability of cancer cells to establish a favorable microenvironment, before their arrival in distant organs, by manipulating the cell composition and function of the new host tissue where cancer cells can survive and outgrow. This predetermined environment is termed “pre-metastatic niche” (pMN). pMN development requires that tumor-derived soluble factors, like cytokines, growth-factors and extracellular vesicles, genetically and epigenetically re-program not only resident cells (i.e., fibroblasts) but also non-resident cells such as bone marrow-derived cells. Indeed, by promoting an “emergency” myelopoiesis, cancer cells switch the steady state production of blood cells toward the generation of pro-tumor circulating myeloid cells defined as myeloid-derived suppressor cells (MDSCs) able to sustain tumor growth and dissemination. MDSCs are a heterogeneous subset of myeloid cells with immunosuppressive properties that sustain metastatic process. In this review, we discuss current understandings of how MDSCs shape and promote metastatic dissemination acting in each fundamental steps of cancer progression from primary tumor to metastatic disease.
Collapse
Affiliation(s)
- Rosalinda Trovato
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefania Canè
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Silvia Sartoris
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Zeng S, Xiao Z, Wang Q, Guo Y, He Y, Zhu Q, Zou Y. Strategies to achieve immune tolerance in allogeneic solid organ transplantation. Transpl Immunol 2020; 58:101250. [DOI: 10.1016/j.trim.2019.101250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
|
23
|
Yu S, Su C, Luo X. Impact of infection on transplantation tolerance. Immunol Rev 2019; 292:243-263. [PMID: 31538351 PMCID: PMC6961566 DOI: 10.1111/imr.12803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Allograft tolerance is the ultimate goal of organ transplantation. Current strategies for tolerance induction mainly focus on inhibiting alloreactive T cells while promoting regulatory immune cells. Pathogenic infections may have direct impact on both effector and regulatory cell populations, therefore can alter host susceptibility to transplantation tolerance induction as well as impair the quality and stability of tolerance once induced. In this review, we will discuss existing data demonstrating the effect of infections on transplantation tolerance, with particular emphasis on the role of the stage of infection (acute, chronic, or latent) and the stage of tolerance (induction or maintenance) in this infection-tolerance interaction. While the deleterious effect of acute infection on tolerance is mainly driven by proinflammatory cytokines induced shortly after the infection, chronic infection may generate exhausted T cells that could in fact facilitate transplantation tolerance. In addition to pathogenic infections, commensal intestinal microbiota also has numerous significant immunomodulatory effects that can shape the host alloimmunity following transplantation. A comprehensive understanding of these mechanisms is crucial for the development of therapeutic strategies for robustly inducing and stably maintaining transplantation tolerance while preserving host anti-pathogen immunity in clinically relevant scenarios.
Collapse
Affiliation(s)
- Shuangjin Yu
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Division of Organ transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chang Su
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, United States
- Duke Transplant Center, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|