1
|
Beyze A, Larroque C, Le Quintrec M. The role of antibody glycosylation in autoimmune and alloimmune kidney diseases. Nat Rev Nephrol 2024; 20:672-689. [PMID: 38961307 DOI: 10.1038/s41581-024-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 07/05/2024]
Abstract
Immunoglobulin glycosylation is a pivotal mechanism that drives the diversification of antibody functions. The composition of the IgG glycome is influenced by environmental factors, genetic traits and inflammatory contexts. Differential IgG glycosylation has been shown to intricately modulate IgG effector functions and has a role in the initiation and progression of various diseases. Analysis of IgG glycosylation is therefore a promising tool for predicting disease severity. Several autoimmune and alloimmune disorders, including critical and potentially life-threatening conditions such as systemic lupus erythematosus, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis and antibody-mediated kidney graft rejection, are driven by immunoglobulin. In certain IgG-driven kidney diseases, including primary membranous nephropathy, IgA nephropathy and lupus nephritis, particular glycome characteristics can enhance in situ complement activation and the recruitment of innate immune cells, resulting in more severe kidney damage. Hypofucosylation, hypogalactosylation and hyposialylation are the most common IgG glycosylation traits identified in these diseases. Modulating IgG glycosylation could therefore be a promising therapeutic strategy for regulating the immune mechanisms that underlie IgG-driven kidney diseases and potentially reduce the burden of immunosuppressive drugs in affected patients.
Collapse
Affiliation(s)
- Anaïs Beyze
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| | - Christian Larroque
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France
- University of Montpellier, Montpellier, France
| | - Moglie Le Quintrec
- Institute of Regenerative Medicine and Biotherapy, IRMB U1183, Montpellier, France.
- Department of Nephrology, Dialysis and Transplantation, Montpellier University Hospital, Montpellier, France.
- University of Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Franco-Acevedo A, Pathoulas CL, Murphy PA, Valenzuela NM. The Transplant Bellwether: Endothelial Cells in Antibody-Mediated Rejection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1276-1285. [PMID: 37844279 PMCID: PMC10593495 DOI: 10.4049/jimmunol.2300363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 10/18/2023]
Abstract
Ab-mediated rejection of organ transplants remains a stubborn, frequent problem affecting patient quality of life, graft function, and grant survival, and for which few efficacious therapies currently exist. Although the field has gained considerable knowledge over the last two decades on how anti-HLA Abs cause acute tissue injury and promote inflammation, there has been a gap in linking these effects with the chronic inflammation, vascular remodeling, and persistent alloimmunity that leads to deterioration of graft function over the long term. This review will discuss new data emerging over the last 5 y that provide clues into how ongoing Ab-endothelial cell interactions may shape vascular fate and propagate alloimmunity in organ transplants.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | | | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
3
|
Tambur AR, Bestard O, Campbell P, Chong AS, Barrio MC, Ford ML, Gebel HM, Heidt S, Hickey M, Jackson A, Kosmoliaptsis V, Lefaucheur C, Louis K, Mannon RB, Mengel M, Morris A, Pinelli DF, Reed EF, Schinstock C, Taupin JL, Valenzuela N, Wiebe C, Nickerson P. Sensitization in transplantation: Assessment of Risk 2022 Working Group Meeting Report. Am J Transplant 2023; 23:133-149. [PMID: 36695615 DOI: 10.1016/j.ajt.2022.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 01/13/2023]
Abstract
The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.
Collapse
Affiliation(s)
- Anat R Tambur
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA.
| | - Oriol Bestard
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Patricia Campbell
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Martha Crespo Barrio
- Department of Nephrology, Hospital del Mar & Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | - Howard M Gebel
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Netherlands
| | - Michelle Hickey
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Annette Jackson
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Kevin Louis
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Mengel
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anna Morris
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Pinelli
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Jean-Luc Taupin
- Department of Immunology, Saint Louis Hospital and University Paris-Cité, Paris, France
| | - Nicole Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Abstract
Bharadwaj et al.1 demonstrate that anti-donor HLA antibodies display low levels of Fc fucosylation. This signature was associated with potent provocation of NK cell effector functions and was discriminative for active antibody-mediated rejection among patients with donor specific HLA antibodies.
Collapse
Affiliation(s)
- Nicole M. Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA,Corresponding author
| |
Collapse
|
5
|
Pernin V, Bec N, Beyze A, Bourgeois A, Szwarc I, Champion C, Chauvin A, Rene C, Mourad G, Merville P, Visentin J, Perrochia H, Couzi L, Larroque C, Le Quintrec M. IgG3 donor-specific antibodies with a proinflammatory glycosylation profile may be associated with the risk of antibody-mediated rejection after kidney transplantation. Am J Transplant 2022; 22:865-875. [PMID: 34863025 DOI: 10.1111/ajt.16904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/21/2021] [Accepted: 11/21/2021] [Indexed: 01/25/2023]
Abstract
The pathogenicity of de novo donor-specific antibodies (dnDSA) varies according to their characteristics. While their MFI, complement-fixing ability, and IgG3 subclass are associated with ABMR occurrence and graft loss, they are not fully predictive of outcomes. We investigated the role of the Fc glycosylation of IgG3 dnDSA in ABMR occurrence using mass spectrometry after isolation by single HLA antigen beads. Between 2014 and 2018, we enrolled 54 patients who developed dnDSA (ABMR- n = 24; ABMR+ n = 30) in two French transplant centers. Fucosylation, galactosylation, GlcNAc bisection, and sialylation of IgG3 dnDSA were compared between ABMR+ and ABMR- patients. IgG3 dnDSA from ABMR+ patients exhibited significantly lower sialylation (7.5% vs. 10.5%, p < .001) and higher GlcNAc bisection (20.6% vs. 17.4%, p = .008). Fucosylation and galactosylation were similar in both groups. DSA glycosylation was not correlated with DSA MFI. In a multivariate analysis, low IgG3 sialylation, high IgG3%, time from transplantation to kidney biopsy, and tacrolimus-free regimen were independent predictive factors of ABMR. We conclude that a proinflammatory glycosylation profile of IgG3 dnDSA is associated with a risk of ABMR occurrence. Further studies are needed to confirm the clinical interest of DSA glycosylation and to clarify its role in determining the risk of ABMR and graft survival.
Collapse
Affiliation(s)
- Vincent Pernin
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Nicole Bec
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Anaïs Beyze
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Alexis Bourgeois
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France
| | - Ilan Szwarc
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France
| | - Coralie Champion
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France
| | - Anthony Chauvin
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Céline Rene
- Department of immunology, CHU Montpellier, Montpellier, France
| | - Georges Mourad
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Pierre Merville
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Pellegrin University Hospital, Bordeaux, France.,ImmunoConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Jonathan Visentin
- ImmunoConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France.,Department of Immunology and Immunogenetics, Pellegrin University Hospital, Bordeaux, France
| | - Helene Perrochia
- Department of Pathology, Montpellier University Hospital, Montpellier, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Pellegrin University Hospital, Bordeaux, France.,ImmunoConcEpT, UMR CNRS 5164, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | | | - Moglie Le Quintrec
- Department of Nephrology, Dialysis and Transplantation, Montpellier University hospital, Montpellier, France.,IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
6
|
Hamada S, Dubois V, Koenig A, Thaunat O. Allograft recognition by recipient's natural killer cells: Molecular mechanisms and role in transplant rejection. HLA 2021; 98:191-199. [PMID: 34050618 DOI: 10.1111/tan.14332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022]
Abstract
The current transplant immunology dogma defends that allograft rejection is initiated by recipient's adaptive immune system. In this prevalent model, innate immune cells in general, and natural killer (NK) cells in particular, are merely considered as downstream effectors which participate in the destruction of the graft only upon recruitment by adaptive effectors: alloreactive T cells or donor-specific antibodies (DSA). Challenging this vision, recent data demonstrated that recipients' NK cells are capable of a form of allorecognition because they can sense the absence of self HLA class I molecules on the surface of graft endothelial cells. Missing-self triggers mTORC1-dependent activation of NK cells, which in turn promote the development of graft microvascular inflammation and detrimentally impact graft survival. The fact that some patients develop chronic vascular rejection in absence of DSA or genetically-predicted missing self suggests that other molecular mechanisms could underly NK cell allorecognition. This review provides an overview of these proven and putative molecular mechanisms and discusses future research directions in this emerging field in organ transplant immunology.
Collapse
Affiliation(s)
- Sarah Hamada
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Valérie Dubois
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,HLA Laboratory, French National Blood Service (EFS), Décines-Charpieu, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
7
|
Bestard O, Couzi L, Crespo M, Kessaris N, Thaunat O. Stratifying the humoral risk of candidates to a solid organ transplantation: a proposal of the ENGAGE working group. Transpl Int 2021; 34:1005-1018. [PMID: 33786891 DOI: 10.1111/tri.13874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Detection of circulating antibodies directed against human leukocyte antigen (HLA) molecules, which corresponds to the current definition of 'sensitized patient', has been shown to have a severe impact on both access to transplantation and, if the anti-HLA antibodies are specific to the selected donor, survival of the graft. However, not all donor-specific antibodies (DSA) are equally harmful to the graft and progress in the understanding of humoral memory has led to the conclusion that absence of DSA at transplantation does not rule out the possibility that the patient has a preformed cellular humoral memory against the graft (thereby defining a category of DSA-negative sensitized recipients). Technological progress has led to the generation of new assays that offer unprecedented precision in exploring the different layers (serological and cellular) of alloimmune humoral memory. Based on this recent knowledge, the EuropeaN Guidelines for the mAnagement of Graft rEcipients (ENGAGE) working group to propose an updated definition of sensitization in candidates for solid organ transplantation - one that moves away from the current binary division towards a definition based on homogenous strata with similar humoral risk.
Collapse
Affiliation(s)
- Oriol Bestard
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona, Spain.,Bellvitge Research Institute (IDIBELL), Barcelona, Spain
| | - Lionel Couzi
- Nephrology-Transplantation-Dialysis, CHU Bordeaux, Bordeaux, France.,CNRS-UMR 5164 Immuno ConcEpT, Bordeaux University, Bordeaux, France
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain.,Nephropathies Research Group, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Nicos Kessaris
- Department of Nephrology and Transplantation, Guy's Hospital, London, UK.,King's College London, London, UK
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Lyon, France.,Université Claude-Bernard Lyon I, Lyon, France.,Institut National de la Santé et de la Recherche Médicale U1111, Lyon, France
| |
Collapse
|
8
|
Puliyanda DP, Swinford R, Pizzo H, Garrison J, De Golovine AM, Jordan SC. Donor-derived cell-free DNA (dd-cfDNA) for detection of allograft rejection in pediatric kidney transplants. Pediatr Transplant 2021; 25:e13850. [PMID: 33217125 DOI: 10.1111/petr.13850] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023]
Abstract
In pediatric transplantation, acute rejection is a major contributor of graft failure. Current approaches include kidney biopsy in response to graft dysfunction and/or the emergence of donor-specific HLA antibodies (DSA). However, biopsy is associated with potential complications. Thus, there is a need for non-invasive diagnostics. Detection of donor-derived cell-free DNA (dd-cfDNA, AlloSure) > 1% is associated with rejection in adult kidney transplants. Here, we evaluate the utility of dd-cfDNA for identifying allograft rejection in pediatric patients. Between 10/2017 and 10/2019, 67 patients, who underwent initial testing with dd-cfDNA as part of routine monitoring or in response to clinical suspicion for rejection, were included. Biopsies were performed when dd-cfDNA > 1.0% or where clinical suspicion was high. Demographics, dd-cfDNA, antibody status, and biopsies were collected prospectively. Data were analyzed to determine predictive value of dd-cfDNA for identifying grafts at risk for rejection. 19 of 67 patients had dd-cfDNA testing as part of routine monitoring with a median dd-cfDNA score of 0.37 (IQR: 0.19-1.10). 48 of 67 patients who had clinical suspicion of rejection had median dd-cfDNA score of 0.47 (0.24-2.15). DSA-positive recipients had higher dd-cfDNA scores than those who were negative or had AT1R positivity alone (P = .003). There was no association between dd-cfDNA score and strength of DSA positivity. 7 of 48 recipients had a biopsy with a dd-cfDNA score <1%; two showed evidence of rejection. Neither DSA nor AT1R positivity was statistically associated with biopsy-proven rejection. However, dd-cfDNA >1% was diagnostic of rejection with sensitivity of 86% and specificity of 100% (AUC: 0.996, 0.98-1.00; P = .002). dd-cfDNA represents a non-invasive method for early detection of rejection in pediatric renal transplants. Our study shows dd-cfDNA to be highly predictive of histological rejection and superior to other indicators such as graft dysfunction or antibody positivity alone. Further studies are necessary to refine these initial observations.
Collapse
Affiliation(s)
- Dechu P Puliyanda
- Pediatric Nephrology Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Rita Swinford
- Pediatric Nephrology, UTHealth, University of Texas at Houston, Houston, TX, USA
| | - Helen Pizzo
- Pediatric Nephrology Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan Garrison
- Pediatric Nephrology Cedars Sinai Medical Center, Los Angeles, CA, USA
| | | | - Stanley C Jordan
- Pediatric Nephrology Cedars Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
9
|
Koenig A, Mezaache S, Callemeyn J, Barba T, Mathias V, Sicard A, Charreau B, Rabeyrin M, Dijoud F, Picard C, Meas-Yedid V, Olivo-Marin JC, Morelon E, Naesens M, Dubois V, Thaunat O. Missing Self-Induced Activation of NK Cells Combines with Non-Complement-Fixing Donor-Specific Antibodies to Accelerate Kidney Transplant Loss in Chronic Antibody-Mediated Rejection. J Am Soc Nephrol 2021; 32:479-494. [PMID: 33239394 PMCID: PMC8054908 DOI: 10.1681/asn.2020040433] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 10/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Binding of donor-specific antibodies (DSAs) to kidney allograft endothelial cells that does not activate the classic complement cascade can trigger the recruitment of innate immune effectors, including NK cells. Activated NK cells contribute to microvascular inflammation leading to chronic antibody-mediated rejection (AMR). Recipient NK cells can also trigger antibody-independent microvascular inflammation by sensing the absence of self HLA class I molecules ("missing self") on allograft endothelial cells. This translational study investigated whether the condition of missing self amplifies DSA-dependent NK cell activation to worsen chronic AMR. METHODS AND RESULTS Among 1682 kidney transplant recipients who underwent an allograft biopsy at Lyon University Hospital between 2004 and 2017, 135 fulfilled the diagnostic criteria for AMR and were enrolled in the study. Patients with complement-fixing DSAs identified by a positive C3d binding assay (n=73, 54%) had a higher risk of transplant failure (P=0.002). Among the remaining patients with complement-independent chronic AMR (n=62, 46%), those in whom missing self was identified through donor and recipient genotyping exhibited worse allograft survival (P=0.02). In multivariable analysis, only proteinuria (HR: 7.24; P=0.01) and the presence of missing self (HR: 3.57; P=0.04) were independent predictors for transplant failure following diagnosis of chronic AMR. Cocultures of human NK cells and endothelial cells confirmed that addition of missing self to DSA-induced NK cell activation increased endothelial damage. CONCLUSIONS The assessment of missing self at the time of diagnosis of chronic AMR identifies patients at higher risk for kidney transplant failure.
Collapse
Affiliation(s)
- Alice Koenig
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Sarah Mezaache
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Catholic University (KU) Leuven, University of Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Barba
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Virginie Mathias
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Human Leukocyte Antigen (HLA) Laboratory, French National Blood Service (EFS), Décines-Charpieu, France
| | - Antoine Sicard
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Béatrice Charreau
- Centre de Recherche en Transplantation et Immunologie (CRTI), University Hospital Center (CHU) Nantes, Université de Nantes, National Institute for Health and Medical Research (INSERM), Mixed University Unit (UMR) 1064, Transplantation Urology Nephrology Institute (ITUN), Nantes, France
| | - Maud Rabeyrin
- Department of Pathology, Hospices Civils de Lyon, Bron, France
| | | | - Cécile Picard
- Department of Pathology, Hospices Civils de Lyon, Bron, France
| | | | | | - Emmanuel Morelon
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Catholic University (KU) Leuven, University of Leuven, Leuven, Belgium,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Valérie Dubois
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Human Leukocyte Antigen (HLA) Laboratory, French National Blood Service (EFS), Décines-Charpieu, France
| | - Olivier Thaunat
- International Center of Infectiology research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| |
Collapse
|
10
|
Cobb BA. The history of IgG glycosylation and where we are now. Glycobiology 2020; 30:202-213. [PMID: 31504525 DOI: 10.1093/glycob/cwz065] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
IgG glycosylation is currently at the forefront of both immunology and glycobiology, likely due in part to the widespread and growing use of antibodies as drugs. For over four decades, it has been recognized that the conserved N-linked glycan on asparagine 297 found within the second Ig domain of the heavy chain (CH2) that helps to comprise Fc region of IgG plays a special role in IgG structure and function. Changes in galactosylation, fucosylation and sialylation are now well-established factors, which drive differential IgG function, ranging from inhibitory/anti-inflammatory to activating complement and promoting antibody-dependent cellular cytotoxicity. Thus, if we are to truly understand how to design and deploy antibody-based drugs with maximal efficacy and evaluate proper vaccine responses from a protective and functional perspective, a deep understanding of IgG glycosylation is essential. This article is intended to provide a comprehensive review of the IgG glycosylation field and the impact glycans have on IgG function, beginning with the earliest findings over 40 years ago, in order to provide a robust foundation for moving forward.
Collapse
Affiliation(s)
- Brian A Cobb
- Department of Pathology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Tambur AR, Campbell P, Chong AS, Feng S, Ford ML, Gebel H, Gill RG, Kelsoe G, Kosmoliaptsis V, Mannon RB, Mengel M, Reed EF, Valenzuela NM, Wiebe C, Dijke IE, Sullivan HC, Nickerson P. Sensitization in transplantation: Assessment of risk (STAR) 2019 Working Group Meeting Report. Am J Transplant 2020; 20:2652-2668. [PMID: 32342639 PMCID: PMC7586936 DOI: 10.1111/ajt.15937] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 01/25/2023]
Abstract
The purpose of the STAR 2019 Working Group was to build on findings from the initial STAR report to further clarify the expectations, limitations, perceptions, and utility of alloimmune assays that are currently in use or in development for risk assessment in the setting of organ transplantation. The goal was to determine the precision and clinical feasibility/utility of such assays in evaluating both memory and primary alloimmune risks. The process included a critical review of biologically driven, state-of-the-art, clinical diagnostics literature by experts in the field and an open public forum in a face-to-face meeting to promote broader engagement of the American Society of Transplantation and American Society of Histocompatibility and Immunogenetics membership. This report summarizes the literature review and the workshop discussions. Specifically, it highlights (1) available assays to evaluate the attributes of HLA antibodies and their utility both as clinical diagnostics and as research tools to evaluate the effector mechanisms driving rejection; (2) potential assays to assess the presence of alloimmune T and B cell memory; and (3) progress in the development of HLA molecular mismatch computational scores as a potential prognostic biomarker for primary alloimmunity and its application in research trial design.
Collapse
Affiliation(s)
- Anat R. Tambur
- Department of SurgeryComprehensive Transplant CenterNorthwestern UniversityChicagoIllinoisUSA
| | - Patricia Campbell
- Department of Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada
| | - Anita S. Chong
- Section of TransplantationDepartment of SurgeryThe University of ChicagoChicagoIllinoisUSA
| | - Sandy Feng
- Department of SurgeryUCSF Medical CenterSan FranciscoCaliforniaUSA
| | - Mandy L. Ford
- Department of Surgery and Emory Transplant CenterEmory UniversityAtlantaGeorgiaUSA
| | - Howard Gebel
- Department of PathologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Ronald G. Gill
- Department of ImmunologyUniversity of ColoradoDenverColoradoUSA
| | - Garnett Kelsoe
- Department of ImmunologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | | | - Roslyn B. Mannon
- Department of MedicineDivision of NephrologyUniversity of Alabama School of MedicineBirminghamAlabamaUSA
| | - Michael Mengel
- Department of Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada
| | - Elaine F. Reed
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Nicole M. Valenzuela
- Department of Pathology and Laboratory MedicineDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Chris Wiebe
- Department of MedicineUniversity of ManitobaWinnipegManitobaCanada
| | - I. Esme Dijke
- Department of Laboratory Medicine & PathologyUniversity of AlbertaEdmontonCanada
| | - Harold C. Sullivan
- Department of PathologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - Peter Nickerson
- Department of MedicineUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|