1
|
Zhang Y, Xu H, Han X, Yu Q, Zheng L, Xiao H. PMAIP1-mediated glucose metabolism and its impact on the tumor microenvironment in breast cancer: Integration of multi-omics analysis and experimental validation. Transl Oncol 2024; 52:102267. [PMID: 39740516 DOI: 10.1016/j.tranon.2024.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Glucose metabolism in breast cancer has a potential effect on tumor progression and is related to the immune microenvironment. Thus, this study aimed to develop a glucose metabolism-tumor microenvironment score to provide new perspectives on breast cancer treatment. METHOD Data were acquired from the Gene Expression Omnibus and UCSC Xena databases, and glucose-metabolism-related genes were acquired from the Gene Set Enrichment Analysis database. Genes with significant prognostic value were identified, and immune infiltration analysis was conducted, and a prognostic model was constructed based on the results of these analyses. The results were validated by in vitro experiments with MCF-7 and MCF-10A cell lines, including expression validation, functional experiments, and bulk sequencing. Single-cell analysis was also conducted to explore the role of specific cell clusters in breast cancer, and Bayes deconvolution was used to further investigate the associations between cell clusters and tumor phenotypes of breast cancer. RESULTS Four significant prognostic genes (PMAIP1, PGK1, SIRT7, and SORBS1) were identified, and, through immune infiltration analysis, a combined prognostic model based on glucose metabolism and immune infiltration was established. The model was used to classify clinical subtypes of breast cancer, and PMAIP1 was identified as a potential critical gene related to glucose metabolism in breast cancer. Single-cell analysis and Bayes deconvolution jointly confirmed the protective role of the PMAIP1+ luminal cell cluster.
Collapse
Affiliation(s)
- Yidong Zhang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; School of Pharmacy, Queen's University of Belfast, Belfast, Northern Ireland, United Kingdom
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xuedan Han
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China
| | - Qiyi Yu
- Mellon College of Science, Carnage Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, China.
| | - Hua Xiao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Terhaar H, Jiminez V, Grant E, Collins C, Khass M, Yusuf N. Immune Repertoires in Various Dermatologic and Autoimmune Diseases. Genes (Basel) 2024; 15:1591. [PMID: 39766858 PMCID: PMC11675122 DOI: 10.3390/genes15121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
The immune repertoire (IR) is a term that defines the combined unique genetic rearrangements of antigen receptors expressed by B and T lymphocytes. The IR determines the ability of the immune system to identify and respond to foreign antigens while preserving tolerance to host antigens. When immune tolerance is disrupted, development of autoimmune diseases can occur due to the attack of self-antigens. Recent technical advances in immune profiling allowed identification of common patterns and shared antigen-binding sequences unique to diverse array of diseases. However, there is no current literature to date evaluates IR findings in autoimmune and skin inflammatory conditions. In this review, we provide an overview of the past and current research findings of IR in various autoimmune and dermatologic conditions. Enriching our understanding of IRs in these conditions is critical for understanding the pathophysiology behind autoimmune skin disease onset and progression. Furthermore, understanding B-cell and T-cell IR will help devise therapeutic treatments in the hopes of restoring immune tolerance and preventing disease onset and progression.
Collapse
Affiliation(s)
- Hanna Terhaar
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victoria Jiminez
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily Grant
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camden Collins
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mohamed Khass
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Endodontics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nabiha Yusuf
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
4
|
Khilji SK, Op 't Hoog C, Warschkau D, Lühle J, Goerdeler F, Freitag A, Seeberger PH, Moscovitz O. Smaller size packs a stronger punch - Recent advances in small antibody fragments targeting tumour-associated carbohydrate antigens. Theranostics 2023; 13:3041-3063. [PMID: 37284439 PMCID: PMC10240822 DOI: 10.7150/thno.80901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Attached to proteins, lipids, or forming long, complex chains, glycans represent the most versatile post-translational modification in nature and surround all human cells. Unique glycan structures are monitored by the immune system and differentiate self from non-self and healthy from malignant cells. Aberrant glycosylations, termed tumour-associated carbohydrate antigens (TACAs), are a hallmark of cancer and are correlated with all aspects of cancer biology. Therefore, TACAs represent attractive targets for monoclonal antibodies for cancer diagnosis and therapy. However, due to the thick and dense glycocalyx as well as the tumour micro-environment, conventional antibodies often suffer from restricted access and limited effectiveness in vivo. To overcome this issue, many small antibody fragments have come forth, showing similar affinity with better efficiency than their full-length counterparts. Here we review small antibody fragments against specific glycans on tumour cells and highlight their advantages over conventional antibodies.
Collapse
Affiliation(s)
- Sana Khan Khilji
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Charlotte Op 't Hoog
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Graduate School of Life Sciences, Utrecht University, 3584 CH Utrecht, Netherlands
| | - David Warschkau
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jost Lühle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Anika Freitag
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
5
|
Zhou C, Wang L, Hu W, Tang L, Zhang P, Gao Y, Du J, Li Y, Wang Y. CDC25C is a prognostic biomarker and correlated with mitochondrial homeostasis in pancreatic adenocarcinoma. Bioengineered 2022; 13:13089-13107. [PMID: 35615982 PMCID: PMC9275923 DOI: 10.1080/21655979.2022.2078940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive tract malignant tumor with an extremely poor prognosis. The survival and prognosis may significantly improve if it is diagnosed early. Therefore, identifying biomarkers for early diagnosis is still considered a great clinical challenge in PAAD. Cell Division Cycle 25C (CDC25C), a cardinal cell cycle regulatory protein, directly mediates the G2/M phase and is intimately implicated in tumor development. In the current study, we aim to explore the possible functions of CDC25C and determine the potential role of CDC25C in the early diagnosis and prognosis of PAAD. Expression analysis indicated that CDC25C was overexpressed in PAAD . In addition, survival analysis revealed a strong correlation between the enhanced expression of CDC25C and poor survival in PAAD. Furthermore, pathway analysis showed that CDC25C is related to TP53 signaling pathways, glutathione metabolism, and glycolysis. Mechanically, our in vitro experiments verified that CDC25C was capable of promoting cell viability and proliferation. CDC25C inhibition increases the accumulation of ROS, inhibits mitochondrial respiration, suppresses glycolysis metabolism and reduces GSH levels. To summarize, CDC25C may be involved in energy metabolism by maintaining mitochondrial homeostasis. Our results suggested that CDC25C is a potential biological marker and promising therapeutic target of PAAD.
Collapse
Affiliation(s)
- Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Lusheng Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Rodgers CB, Mustard CJ, McLean RT, Hutchison S, Pritchard AL. A B-cell or a key player? The different roles of B-cells and antibodies in melanoma. Pigment Cell Melanoma Res 2022; 35:303-319. [PMID: 35218154 PMCID: PMC9314792 DOI: 10.1111/pcmr.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The B‐cell system plays an important role in the melanoma immune response; however, consensus has yet to be reached in many facets. Here, we comprehensively review human studies only, due to fundamental differences in the humoral response with animal models. Tumour‐infiltrating B‐cells are associated with contradictory prognostic values, reflecting a lack of agreement between studies on cell subset classification and differences in the markers used, particularly the common use of a single marker not differentiating multiple subsets. Tertiary lymphoid structures (TLS) organise T‐cells and B‐cells within tumours to generate a local anti‐tumour response and TLS presence associates with improved survival in response to immune checkpoint blockade, in late‐stage disease. Autoantibody production is increased in melanoma patients and has been proposed as biomarkers for diagnosis, prognosis and treatment/toxicity response; however, no consistent targets are yet identified. The function of antibodies in an anti‐tumour response is determined by its isotype and subclass; IgG4 is immune‐suppressive and robustly correlate with poor patient survival in melanoma. We conclude that the current B‐cell literature needs careful interpretation based on the methods used and that we need a consensus of markers to define B‐cells and associated lymphoid organs. Furthermore, future studies need to not only examine antibody targets, but also isotypes when considering functional roles.
Collapse
Affiliation(s)
- Chloe B Rodgers
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Colette J Mustard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Ryan T McLean
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Sharon Hutchison
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Antonia L Pritchard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|