1
|
Isernhagen L, Galuska CE, Vernunft A, Galuska SP. Structural Characterization and Abundance of Sialylated Milk Oligosaccharides in Holstein Cows during Early Lactation. Foods 2024; 13:2484. [PMID: 39200411 PMCID: PMC11353935 DOI: 10.3390/foods13162484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Among other bioactive molecules, milk contains high amounts of sialylated milk oligosaccharides (MOs) that influence numerous processes in the offspring. For instance, sialylated MOs inhibit the invasion of pathogens and positively influence the gut microbiome to support the optimal development of the offspring. For these reasons, sialylated MOs are also used in infant formula as well as food supplements and are potential therapeutic substances for humans and animals. Because of the high interest in sialylated bovine MOs (bMOs), we used several analytical approaches, such as gas and liquid chromatography in combination with mass spectrometry, to investigate in detail the profile of sialylated bMOs in the milk of Holstein Friesian cows during early lactation. Most of the 40 MOs identified in this study were sialylated, and a rapid decrease in all detected sialylated bMOs took place during the first day of lactation. Remarkably, we observed a high variance within the sialylation level during the first two days after calving. Therefore, our results suggest that the content of sialylated MOs might be an additional quality marker for the bioactivity of colostrum and transitional milk to ensure its optimized application for the production of milk replacer and food supplements.
Collapse
Affiliation(s)
| | | | | | - Sebastian P. Galuska
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (L.I.); (A.V.)
| |
Collapse
|
2
|
Thind MK, Uhlig HH, Glogauer M, Palaniyar N, Bourdon C, Gwela A, Lancioni CL, Berkley JA, Bandsma RHJ, Farooqui A. A metabolic perspective of the neutrophil life cycle: new avenues in immunometabolism. Front Immunol 2024; 14:1334205. [PMID: 38259490 PMCID: PMC10800387 DOI: 10.3389/fimmu.2023.1334205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Neutrophils are the most abundant innate immune cells. Multiple mechanisms allow them to engage a wide range of metabolic pathways for biosynthesis and bioenergetics for mediating biological processes such as development in the bone marrow and antimicrobial activity such as ROS production and NET formation, inflammation and tissue repair. We first discuss recent work on neutrophil development and functions and the metabolic processes to regulate granulopoiesis, neutrophil migration and trafficking as well as effector functions. We then discuss metabolic syndromes with impaired neutrophil functions that are influenced by genetic and environmental factors of nutrient availability and usage. Here, we particularly focus on the role of specific macronutrients, such as glucose, fatty acids, and protein, as well as micronutrients such as vitamin B3, in regulating neutrophil biology and how this regulation impacts host health. A special section of this review primarily discusses that the ways nutrient deficiencies could impact neutrophil biology and increase infection susceptibility. We emphasize biochemical approaches to explore neutrophil metabolism in relation to development and functions. Lastly, we discuss opportunities and challenges to neutrophil-centered therapeutic approaches in immune-driven diseases and highlight unanswered questions to guide future discoveries.
Collapse
Affiliation(s)
- Mehakpreet K Thind
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Department of Dental Oncology and Maxillofacial Prosthetics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Celine Bourdon
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
| | - Agnes Gwela
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Christina L Lancioni
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - James A Berkley
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Kenya Medical Research Institute (KEMRI)/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert H J Bandsma
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Division of Gastroenterology, Hepatology, and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Amber Farooqui
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Childhood Acute Illness & Nutrition Network (CHAIN), Nairobi, Kenya
- Omega Laboratories Inc, Mississauga, ON, Canada
| |
Collapse
|
3
|
Mizaeva T, Alieva K, Zulkarneev E, Kurpe S, Isakova K, Matrosova S, Borvinskaya E, Sukhovskaya I. Antibacterial Activity of Rainbow Trout Plasma: In Vitro Assays and Proteomic Analysis. Animals (Basel) 2023; 13:3565. [PMID: 38003182 PMCID: PMC10668809 DOI: 10.3390/ani13223565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The objective of this study was to investigate the bactericidal activity of blood plasma from cultured rainbow trout obtained from two different fish farms. Plasma from trout naturally infected with the bacterial pathogen Flavobacterium psychrophilum was found to inhibit the growth of Aeromonas hydrophila in vitro. Incubation of A. hydrophila in bacteriostatic trout plasma resulted in agglutination and growth retardation, without causing massive damage to the cell membrane. The proteome of the plasma with high antimicrobial activity revealed an abundance of high-density apolipoproteins, some isoforms of immunoglobulins, complement components C1q and C4, coagulation factors, lectins, periostin, and hemoglobin. Analysis of trout proteins retained on A. hydrophila cells revealed the presence of fish immunoglobulins, lectins, and complement components on bacteria whose growth was inhibited, although the native membrane attack complex of immunised trout plasma did not assemble effectively, resulting in a weak bactericidal effect. Furthermore, this study examined the bacterial response to trout plasma and suggested that the protein synthesis pathway was the target of antimicrobial proteins from fish blood. Taken together, these findings illustrate the advantages of the affinity approach for understanding the role of plasma proteins in host defence against pathogens.
Collapse
Affiliation(s)
- Toita Mizaeva
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (T.M.); (K.A.)
| | - Kalimat Alieva
- G. N. Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia; (T.M.); (K.A.)
| | - Eldar Zulkarneev
- Plague Control Center, Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, 119121 Moscow, Russia;
| | - Stanislav Kurpe
- Institute of Biochemistry after H.Buniatyan National Academy of Sciences of the Republic of Armenia, Yerevan 0014, Armenia
| | - Kseniya Isakova
- Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences, 185000 Petrozavodsk, Republic of Karelia, Russia;
| | - Svetlana Matrosova
- Institute of Biology, Ecology and Agricultural Technologies of the Petrozavodsk State University, 185000 Petrozavodsk, Republic of Karelia, Russia;
| | | | - Irina Sukhovskaya
- Institute of Biology, Ecology and Agricultural Technologies of the Petrozavodsk State University, 185000 Petrozavodsk, Republic of Karelia, Russia;
- Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences, 185000 Petrozavodsk, Republic of Karelia, Russia
| |
Collapse
|
4
|
Humpfle L, Hachem NE, Simon P, Weinhold B, Galuska SP, Middendorff R. Knockout of the polysialyltransferases ST8SiaII and ST8SiaIV leads to a dilatation of rete testis during postnatal development. Front Physiol 2023; 14:1240296. [PMID: 37520830 PMCID: PMC10382229 DOI: 10.3389/fphys.2023.1240296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Polysialic acid (polySia) is a carbohydrate polymer that modulates several cellular processes, such as migration, proliferation and differentiation processes. In the brain, its essential impact during postnatal development is well known. However, in most other polySia positive organs, only its localization has been described so far. For instance, in the murine epididymis, smooth muscle cells of the epididymal duct are polysialylated during the first 2 weeks of postnatal development. To understand the role of polySia during the development of the epididymis, the consequences of its loss were investigated in postnatal polySia knockout mice. As expected, no polysialylation was visible in the absence of the polysialyltransferases ST8SiaII and ST8SiaIV. Interestingly, cGMP-dependent protein kinase I (PGK1), which is essentially involved in smooth muscle cell relaxation, was not detectable in peritubular smooth muscle cells when tissue sections of polySia knockout mice were analyzed by immunohistochemistry. In contrast to this signaling molecule, the structural proteins smooth muscle actin (SMA) and calponin were expressed. As shown before, in the duct system of the testis, even the expression of these structural proteins was impaired due to the loss of polySia. We now found that the rete testis, connecting the duct system of the testis and epididymis, was extensively dilated. The obtained data suggest that less differentiated smooth muscle cells of the testis and epididymis result in disturbed contractility and thus, fluid transport within the duct system visible in the enlarged rete testis.
Collapse
Affiliation(s)
- Luisa Humpfle
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Nadim E. Hachem
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Peter Simon
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| | - Birgit Weinhold
- Institute of Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | | | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Medical Faculty, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
5
|
Chun YY, Tan KS, Yu L, Pang M, Wong MHM, Nakamoto R, Chua WZ, Huee-Ping Wong A, Lew ZZR, Ong HH, Chow VT, Tran T, Yun Wang D, Sham LT. Influence of glycan structure on the colonization of Streptococcus pneumoniae on human respiratory epithelial cells. Proc Natl Acad Sci U S A 2023; 120:e2213584120. [PMID: 36943879 PMCID: PMC10068763 DOI: 10.1073/pnas.2213584120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/10/2023] [Indexed: 03/23/2023] Open
Abstract
Virtually all living cells are encased in glycans. They perform key cellular functions such as immunomodulation and cell-cell recognition. Yet, how their composition and configuration affect their functions remains enigmatic. Here, we constructed isogenic capsule-switch mutants harboring 84 types of capsular polysaccharides (CPSs) in Streptococcus pneumoniae. This collection enables us to systematically measure the affinity of structurally related CPSs to primary human nasal and bronchial epithelial cells. Contrary to the paradigm, the surface charge does not appreciably affect epithelial cell binding. Factors that affect adhesion to respiratory cells include the number of rhamnose residues and the presence of human-like glycomotifs in CPS. Besides, pneumococcal colonization stimulated the production of interleukin 6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and monocyte chemoattractantprotein-1 (MCP-1) in nasal epithelial cells, which also appears to be dependent on the serotype. Together, our results reveal glycomotifs of surface polysaccharides that are likely to be important for colonization and survival in the human airway.
Collapse
Affiliation(s)
- Ye-Yu Chun
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Kai Sen Tan
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117597
| | - Lisa Yu
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- College of Art and Sciences, Cornell University, Ithaca, NY14853
| | - Michelle Pang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Ming Hui Millie Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Rei Nakamoto
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Wan-Zhen Chua
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Amanda Huee-Ping Wong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - Zhe Zhang Ryan Lew
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Hsiao Hui Ong
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Vincent T. Chow
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Thai Tran
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117593
| | - De Yun Wang
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| | - Lok-To Sham
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117545
| |
Collapse
|
6
|
Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows. BIOLOGY 2022; 12:biology12010005. [PMID: 36671698 PMCID: PMC9854834 DOI: 10.3390/biology12010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, N-acetylneuraminic acid (Neu5Ac), can be attached as monosialyl-residues or as polymers. To investigate the sialylation processes during lactation of German Holstein cows, we analyzed udder tissue in addition to milk at different time points of lactation. The analysis of the milk samples revealed that both the levels of Neu5Ac and its polymer, polysialic acid (polySia), rapidly decreased during the first three days of lactation, and a high interindividual variance was observed. In mature milk, however, the sialylation status remains relatively constant. The results indicate that mammary gland epithelial cells are one source for milk polySia, since immunohistochemistry of udder tissue exhibited strong polySia staining in these cells. Furthermore, both polysialyltransferases, ST8SiaII and ST8SiaIV, are expressed. Based on known functions of monosialyl residues and polySia, we discuss the potential impact of these biomolecules and the consequences of the heterogeneous sialylation status of milk in relation to udder health and offspring health.
Collapse
|
7
|
Brazil JC, Parkos CA. Finding the sweet spot: glycosylation mediated regulation of intestinal inflammation. Mucosal Immunol 2022; 15:211-222. [PMID: 34782709 PMCID: PMC8591159 DOI: 10.1038/s41385-021-00466-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 02/04/2023]
Abstract
Glycans are essential cellular components that facilitate a range of critical functions important for tissue development and mucosal homeostasis. Furthermore, specific alterations in glycosylation represent important diagnostic hallmarks of cancer that contribute to tumor cell dissociation, invasion, and metastasis. However, much less is known about how glycosylation contributes to the pathobiology of inflammatory mucosal diseases. Here we will review how epithelial and immune cell glycosylation regulates gut homeostasis and how inflammation-driven changes in glycosylation contribute to intestinal pathobiology.
Collapse
Affiliation(s)
- Jennifer C. Brazil
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Charles A. Parkos
- grid.214458.e0000000086837370Department of Pathology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
8
|
Efrimescu CI, Buggy PM, Buggy DJ. Neutrophil Extracellular Trapping Role in Cancer, Metastases, and Cancer-Related Thrombosis: a Narrative Review of the Current Evidence Base. Curr Oncol Rep 2021; 23:118. [PMID: 34342735 PMCID: PMC8330188 DOI: 10.1007/s11912-021-01103-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
Purpose of Review Neutrophil extracellular trap (NET) formation is a newly discovered, reactive oxygen species-dependent regulated process, whereby neutrophils degranulate and extrude genetic material, after engulfing various infectious or neoplastic antigens, culminating in a measurable serologic footprint. Recent research has highlighted the involvement of NETs in cancer and cancer-related pathologies. We review the role of NET formation in cancer biology, prognosis and potential therapeutic modulators. Recent Findings Elevated NET levels are associated with cancer metastasis and may be modified by some anaesthetic-analgesic techniques during tumour resection surgery. It promotes tumour cell migration, angiogenesis and hypercoagulability. Although there are potential anti-NET formation therapeutics available, their role has not been formally assessed in cancer patients. Summary Limited available evidence suggests an association between elevated NET expression and cancer metastasis, but its validity as a prognostic indicator for cancer-related outcomes is inconclusive. Further observational and interventional studies are warranted to comprehend the potential prognostic and therapeutic role of NETs in cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s11912-021-01103-0.
Collapse
Affiliation(s)
- Catalin I Efrimescu
- Department of Anaesthesiology & Perioperative Medicine, Mater Misericordiae University Hospital Eccles St, Dublin, 7 D07 R2WY, Ireland.
| | | | - Donal J Buggy
- Department of Anaesthesiology & Perioperative Medicine, Mater Misericordiae University Hospital Eccles St, Dublin, 7 D07 R2WY, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Department of Outcomes Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
9
|
Delaveris C, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Blish CA, Bertozzi CR. Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. ACS CENTRAL SCIENCE 2021; 7:650-657. [PMID: 34056095 PMCID: PMC8009098 DOI: 10.1021/acscentsci.0c01669] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 05/02/2023]
Abstract
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-CoV-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate signaling of the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.
Collapse
Affiliation(s)
- Corleone
S. Delaveris
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Aaron J. Wilk
- Stanford
Medical Scientist Training Program, Stanford
University, Stanford, California 94305, United States
- Stanford
Immunology Program, Stanford University, Stanford, California 94305, United States
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nicholas M. Riley
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jessica C. Stark
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Samuel S. Yang
- Department
of Emergency Medicine, Stanford University, Stanford, California 94305, United States
| | - Angela J. Rogers
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Thanmayi Ranganath
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
| | - Kari C. Nadeau
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
- Sean
N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, California 94305, United States
| | | | - Catherine A. Blish
- Department
of Medicine, Stanford University, Stanford, California 94305, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
| | - Carolyn R. Bertozzi
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- ChEM-H, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford, California 94305, United States
| |
Collapse
|
10
|
Zlatina K, Galuska SP. The N-glycans of lactoferrin: more than just a sweet decoration. Biochem Cell Biol 2021; 99:117-127. [DOI: 10.1139/bcb-2020-0106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nearly all extracellular proteins undergo post-translational modification with sugar chains during their transit through the endoplasmic reticulum and the Golgi apparatus. These “sweet” modifications not only influence the activity of its carrier protein, but they themselves often have bioactivity, independent of the carrier function. Lactoferrin belongs to the group of glycoproteins and is modified with several different N-glycans. This minireview summarizes several studies dealing with the diverse glycosylation patterns of lactoferrin from different origins, and the potential impact of these post-translational modifications on the functionality of lactoferrin. A special emphasis is placed on the differences between human and bovine lactoferrin, because the latter form is often selected for the development of novel therapeutic approaches in humans. For this reason, the potential impact of the bovine-specific glycosylation patterns on the observed heterogeneous effects of lactoferrin in humans is discussed within this minireview.
Collapse
Affiliation(s)
- Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
11
|
Delaveris CS, Wilk AJ, Riley NM, Stark JC, Yang SS, Rogers AJ, Ranganath T, Nadeau KC, Blish CA, Bertozzi CR. Synthetic Siglec-9 Agonists Inhibit Neutrophil Activation Associated with COVID-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:13378148. [PMID: 33469569 PMCID: PMC7814829 DOI: 10.26434/chemrxiv.13378148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 12/17/2020] [Indexed: 12/23/2022]
Abstract
Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-Cov-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19. .
Collapse
Affiliation(s)
- Corleone S Delaveris
- Department of Chemistry, Stanford University, Stanford CA, 94305
- ChEM-H, Stanford University, Stanford, CA 94305
| | - Aaron J Wilk
- Stanford Medical Scientist Training Program, Stanford, CA 94305
- Stanford Immunology Program, Stanford University, Stanford, CA 94305
- Department of Medicine, Stanford University, Stanford, CA 94305
| | - Nicholas M Riley
- Department of Chemistry, Stanford University, Stanford CA, 94305
| | - Jessica C Stark
- Department of Chemistry, Stanford University, Stanford CA, 94305
| | - Samuel S Yang
- Department of Emergency Medicine, Stanford University, Stanford, CA 94305
| | - Angela J Rogers
- Department of Medicine, Stanford University, Stanford, CA 94305
| | | | - Kari C Nadeau
- Department of Medicine, Stanford University, Stanford, CA 94305
- Sean N. Parker Center for Allergy and Asthma Research, Stanford, CA, 94305
| | - Catherine A Blish
- Department of Medicine, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford CA, 94305
- ChEM-H, Stanford University, Stanford, CA 94305
- Howard Hughes Medical Institute, Stanford, CA 94305
| |
Collapse
|
12
|
Batra V, Dagar K, Nayak S, Kumaresan A, Kumar R, Datta TK. A Higher Abundance of O-Linked Glycans Confers a Selective Advantage to High Fertile Buffalo Spermatozoa for Immune-Evasion From Neutrophils. Front Immunol 2020; 11:1928. [PMID: 32983120 PMCID: PMC7483552 DOI: 10.3389/fimmu.2020.01928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
The glycans on the plasma membrane of cells manifest as the glycocalyx, which serves as an information-rich frontier that is directly in contact with its immediate milieu. The glycoconjugates (GCs) that adorn most of the mammalian cells are also abundant in gametes, especially the spermatozoa where they perform unique reproduction-specific functions e.g., inter-cellular recognition and communication. This study aimed to implicate the sperm glycosylation pattern as one of the factors responsible for low conception rates observed in buffalo bulls. We hypothesized that a differential abundance of glycans exists on the spermatozoa from bulls of contrasting fertilizing abilities endowing them with differential immune evasion abilities. Therefore, we investigated the role of glycan abundance in the phagocytosis and NETosis rates exhibited by female neutrophils (PMNs) upon exposure to such spermatozoa. Our results indicated that the spermatozoa from high fertile (HF) bulls possessed a higher abundance of O-linked glycans e.g., galactosyl (β-1,3)N-acetylgalactosamine and N-linked glycans like [GlcNAc]1-3, N-acetylglucosamine than the low fertile (LF) bull spermatozoa. This differential glycomic endowment appeared to affect the spermiophagy and NETosis rates exhibited by the female neutrophil cells (PMNs). The mean percentage of phagocytizing PMNs was significantly different (P < 0.0001) for HF and LF bulls, 28.44 and 59.59%, respectively. Furthermore, any introduced perturbations in the inherent sperm glycan arrangements promoted phagocytosis by PMNs. For example, after in vitro capacitation the mean phagocytosis rate (MPR) rate in spermatozoa from HF bulls significantly increased to 66.49% (P < 0.01). Likewise, the MPR increased to 70.63% (p < 0.01) after O-glycosidase & α2-3,6,8,9 Neuraminidase A treatment of spermatozoa from HF bulls. Moreover, the percentage of PMNs forming neutrophil extracellular traps (NETs) was significantly higher, 41.47% when exposed to spermatozoa from LF bulls vis-à-vis the spermatozoa from HF bulls, 15.46% (P < 0.0001). This is a pioneer report specifically demonstrating the role of O-linked glycans in the immune responses mounted against spermatozoa. Nevertheless, further studies are warranted to provide the measures to diagnose the sub-fertile phenotype thus preventing the losses incurred by incorrect selection of morphologically normal sperm in the AI/IVF reproduction techniques.
Collapse
Affiliation(s)
- Vipul Batra
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Komal Dagar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Samiksha Nayak
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Arumugam Kumaresan
- Theriogenelogy Laboratory, SRS of National Dairy Research Institute, Bengaluru, India
| | - Rakesh Kumar
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Tirtha K Datta
- Animal Genomics Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
13
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
14
|
Nourreddine FZ, Oussedik-Oumehdi H, Laraba-Djebari F. Myotoxicity induced by Cerastes cerastes venom: Beneficial effect of heparin in skeletal muscle tissue regeneration. Acta Trop 2020; 202:105274. [PMID: 31738878 DOI: 10.1016/j.actatropica.2019.105274] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 01/03/2023]
Abstract
Myonecrosis is a relevant tissue damage induced by snakes of Viperidae family often leading to permanent tissue and function loss and even amputation. The aim of this study was to evaluate the effect of heparin on skeletal muscle tissue regeneration after Cerastes cerastes envenomation. Mice received either the venom (1 LD50) by i.m. route, or the venom followed, by heparin administration by i.v. route at 15 min and 4 h. Obtained results showed that Cerastes cerastes venom induced deep tissue structure alterations, characterized mainly by edema, hemorrhage, myonecrosis and inflammation. Myotoxicity was correlated with increased CK levels in sera, concomitant with their decrease in muscle tissue homogenates. Muscle wet weight was restored within 2 weeks after heparin treatment and 28 days in the envenomed group. Heparin treatment significantly decreased MPO activity, suggesting an anti-inflammatory effect. NO, HGF, VEGF and G-CSF levels were increased after heparin administration. These mitogenic factors constitute potent stimuli for satellite and endothelial cells improving, thus, muscle regeneration. This study showed that muscle tissue recovery was significantly enhanced after heparin treatment. Heparin use seems to be a promising therapeutic approach after viper envenomation.
Collapse
Affiliation(s)
- Fatima Zohra Nourreddine
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP 32, El-Alia, Bab Ezzouar,16111, Algiers, Algeria.
| |
Collapse
|
15
|
Kühnle A, Galuska CE, Zlatina K, Galuska SP. The Bovine Antimicrobial Peptide Lactoferricin Interacts with Polysialic Acid without Loss of Its Antimicrobial Activity against Escherichia coli. Animals (Basel) 2019; 10:E1. [PMID: 31861263 PMCID: PMC7022438 DOI: 10.3390/ani10010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 01/28/2023] Open
Abstract
The lactoferrin-derived peptide lactoferricin (LFcin) belongs to the family of antimicrobial peptides, and its bovine form has already been successfully applied to counteract enterohemorrhagic Escherichia coli (EHEC) infection. Recently, it was described that LFcin interacts with the sugar polymer polysialic acid (polySia) and that the binding of lactoferrin to polySia is mediated by LFcin, included in the N-terminal domain of lactoferrin. For this reason, the impact of polySia on the antimicrobial activity of bovine LFcin was investigated. Initially, the interaction of LFcin was characterized in more detail by native agarose gel electrophoresis, demonstrating that a chain length of 10 sialic acid residues was necessary to bind LFcin, whereas approximately twice-as-long chains were needed to detect binding of lactoferrin. Remarkably, the binding of polySia showed, independently of the chain length, no impact on the antimicrobial effects of LFcin. Thus, LFcin binds polySia without loss of its protective activity as an antimicrobial peptide.
Collapse
Affiliation(s)
- Andrea Kühnle
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | - Christina E. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (A.K.); (C.E.G.); (K.Z.)
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstr. 24, 35392 Giessen, Germany
| |
Collapse
|
16
|
Bornhöfft KF, Rebl A, Gallagher ME, Viergutz T, Zlatina K, Reid C, Galuska SP. Sialylated Cervical Mucins Inhibit the Activation of Neutrophils to Form Neutrophil Extracellular Traps in Bovine in vitro Model. Front Immunol 2019; 10:2478. [PMID: 31781090 PMCID: PMC6851059 DOI: 10.3389/fimmu.2019.02478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
In order to combat invading pathogens neutrophils can release neutrophil extracellular traps (NETs). However, since NETs can also damage endogenous cells, several control mechanisms for the formation of NETs must work effectively. For instance, neutrophil activation is silenced within blood circulation by the binding of sialylated glycoconjugates to sialic acid binding immunoglobulin-like lectins (Siglecs) on neutrophils. As neutrophils are recruited within the female reproductive tract, after mating, a comparable mechanism may also take place within the bovine cervix to prevent an exaggerated NET formation and thus, infertility. We examined, if the highly glycosylated mucins, which are the major functional fraction of biomolecules in mucus, represent a potential regulator of NET formation. The qPCR data revealed that in polymorphonuclear neutrophils (PMNs) inhibitory Siglecs are the most frequently expressed Siglecs and might be a potential target of sialylated glycans to modulate the activation of PMNs. Remarkably, the addition of bovine cervical mucins significantly inhibited the formation of NET, which had been induced in response to lipopolysaccharides (LPS) or a combination of phorbol myristate acetate (PMA) and ionomycin. The inhibitory effects were independent of the stage of estrous cycle (estrus, luteal, and follicular mucins). PMNs retained their segmented nuclei and membrane perforation was prevented. However, the inhibitory effects were diminished, when sialic acids were released under acidic conditions. Comparable results were achieved, when sialic acids were targeted by neuraminidase digestion, indicating a sialic acid dependent inhibition of NET release. Thus, bovine cervical mucins have an anti-inflammatory capability to modulate NET formation and might be further immunomodulatory biomolecules that support fertility.
Collapse
Affiliation(s)
- Kim F. Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Medicine, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | | | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kristina Zlatina
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Colm Reid
- UCD Veterinary Sciences Centre, Dublin, Ireland
| | - Sebastian P. Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Medicine, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|