1
|
Kajana X, Caridi G, Bruschi M, Spinelli S, Lugani F, Ghiggeri GM, La Porta E, Mortari G, Verrina EE, Angeletti A, Bigatti C. The Crosstalk Between NETs and the Complement Cascade: An Overview in Nephrological Autoimmune Disease. Int J Mol Sci 2025; 26:2789. [PMID: 40141431 PMCID: PMC11943363 DOI: 10.3390/ijms26062789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
The complement cascade and Neutrophil Extracellular Traps (NETs) represent fundamental tools in protecting the host from foreign pathogens. Complement components and relative fragments, classically assigned to the innate immunity, represent a key link with the humoral immune response. NETs are a crucial component of the innate immune response, consisting of chromatin release from activated neutrophils. These web-like structures facilitate pathogen entrapment and elimination through proteolytic degradation and antimicrobial effectors. Previous findings suggested complement components and NETs have a significant role in the pathogenesis of several diseases characterized by inflammation, such as autoimmune and infectious diseases. However, the crosstalk between NETs and the complement cascade has only recently been investigated, and several aspects still need to be fully clarified. Recent evidence seems to suggest a bidirectional link between the complement cascade and NETosis. We here present the interaction between complement components and NETs in specific autoimmune diseases that mostly affect the kidney, such as systemic lupus erythematosus, Antineutrophilic Cytoplasmic Antibody (ANCA)-associated vasculitis and antiphospholipid syndrome. The mechanisms reported here may represent specific targets for the development of possible therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Angeletti
- Nephrology, Dialysis and Transplantation Unit, IRCCS Istituto Giannina Gaslini, 16145 Genoa, Italy; (X.K.); (G.C.); (M.B.); (S.S.); (F.L.); (G.M.G.); (E.L.P.); (G.M.); (E.E.V.); (C.B.)
| | | |
Collapse
|
2
|
Ono M, Toyomoto M, Yamauchi M, Hagiwara M. Platelets accelerate lipid peroxidation and induce pathogenic neutrophil extracellular trap release. Cell Chem Biol 2024; 31:2085-2095.e4. [PMID: 39631397 DOI: 10.1016/j.chembiol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 08/02/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Neutrophil extracellular traps (NETs), an important host defense mechanism, are assembled after the release of decondensed chromatin and other nuclear components by a process termed NETosis. However, excessive NET release destroys surrounding tissues, leading to conditions such as sepsis where platelets are implicated in the pathogenic switch of NETosis. Here, we show that platelets trigger iron accumulation and promote lipid peroxide production in neutrophils co-stimulated with lipopolysaccharide and platelets in vitro, resulting in the induction of NETosis. We also screened for compounds that inhibit lipid peroxidation, identified 8-methyl-N-geranyl-6-nonamide (capsaicin), and assessed its potential in suppressing platelet-mediated pathogenic NETosis. Capsaicin inhibited lipopolysaccharide/platelet-induced cellular lipid peroxidation and suppressed NETosis in vitro. Furthermore, capsaicin attenuated NETosis in a mouse model of lipopolysaccharide-induced lung inflammation. Our findings provide an original therapeutic strategy to target lipid peroxidation and pave the way for drug development for a wide range of NETosis-related diseases.
Collapse
Affiliation(s)
- Madoka Ono
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masayasu Toyomoto
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; Department of Drug Discovery for Lung Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery for Intractable Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Momono Yamauchi
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Main EN, Huang JC, Bowlin GL. Methyl Syringate: A Primary Driving Factor in Manuka Honeys Ability to Ameliorate Neutrophil Intracellular ROS Activity and NETosis. FRONT BIOSCI-LANDMRK 2024; 29:255. [PMID: 39082351 DOI: 10.31083/j.fbl2907255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Neutrophils use both the production of reactive oxygen species (ROS) and a specialized process called NETosis to defend the body from material deemed foreign. While these neutrophil behaviors are critical in preventing infection, a dysregulated response can lead to tissue damage and fibrosis at host-biomaterial interfaces. It was hypothesized that applying the flavonoids found in Manuka honey: chrysin, pinocembrin, and pinobanksin, and the phenolic compound methyl syringate to neutrophils exhibiting pro-inflammatory behavior will reduce ROS activity and prevent NETosis in primary human neutrophils. METHODS Using primary human neutrophils isolated from donor (n = 5) peripheral blood, concentrations between 1 nM and 10 µM of each flavonoid, 10 µM and 2 mM of methyl syringate, 0.1% v/v and 10% v/v Manuka honey, and combinations of both 1 nM-10 µM of each flavonoid and 10 µM-2 mM of methyl syringate were assayed for reductions in NETosis using Sytox orange extracellular DNA staining and reduction in intracellular ROS activity via standard dichloro-dihydro-fluorescein diacetate (DCFH-DA) oxidation assay. RESULTS Compared to positive control levels, individual flavonoids showed moderate effect sizes. Higher concentrations of flavonoids, especially in combination, stimulated ROS activity by up to 105%. Whole Manuka honey reduced neutrophil extracellular trap (NET) levels by up to 91% but only reduced ROS activity by 36%. However, methyl syringate reduced NET levels by up to 68% and ROS activity by 66%. CONCLUSIONS Methyl syringate and whole Manuka honey are potent inhibitors of neutrophil intracellular ROS activity and NET formation. Methyl syringate potentially drives the anti-inflammatory capabilities of Manuka honey demonstrated by previous studies.
Collapse
Affiliation(s)
- Evan N Main
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - James C Huang
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
4
|
Angeletti A, Volpi S, Bruschi M, Lugani F, Vaglio A, Prunotto M, Gattorno M, Schena F, Verrina E, Ravelli A, Ghiggeri GM. Neutrophil Extracellular Traps-DNase Balance and Autoimmunity. Cells 2021; 10:cells10102667. [PMID: 34685647 PMCID: PMC8534732 DOI: 10.3390/cells10102667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are macromolecular structures programmed to trap circulating bacteria and viruses. The accumulation of NETs in the circulation correlates with the formation of anti-double-stranded (ds) DNA antibodies and is considered a causative factor for systemic lupus erythematosus (SLE). The digestion of DNA by DNase1 and DNases1L3 is the rate- limiting factor for NET accumulation. Mutations occurring in one of these two DNase genes determine anti-DNA formation and are associated with severe Lupus-like syndromes and lupus nephritis (LN). A second mechanism that may lead to DNase functional impairment is the presence of circulating DNase inhibitors in patients with low DNase activity, or the generation of anti-DNase antibodies. This phenomenon has been described in a relevant number of patients with SLE and may represent an important mechanism determining autoimmunity flares. On the basis of the reviewed studies, it is tempting to suppose that the blockade or selective depletion of anti-DNase autoantibodies could represent a potential novel therapeutic approach to prevent or halt SLE and LN. In general, strategies aimed at reducing NET formation might have a similar impact on the progression of SLE and LN.
Collapse
Affiliation(s)
- Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno Infantili, University of Genoa, 16132 Genoa, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Francesca Lugani
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, 50121 Firenze, Italy;
| | - Marco Prunotto
- Institute of Pharmaceutical Sciences of Western Switzerland, School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland;
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
- Clinics of Pediatrics and Rheumatology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Francesca Schena
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
| | - Angelo Ravelli
- Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (S.V.); (M.G.); (F.S.); (A.R.)
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (A.A.); (E.V.)
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, GenoaLargo Gaslini, 16148 Genoa, Italy; (M.B.); (F.L.)
- Correspondence:
| |
Collapse
|
5
|
Bertelli R, Schena F, Antonini F, Reverberi D, Signa S, Pedemonte N, Consolaro A, Gattorno M, Negrini S, Pupo F, Volpi S, Ghiggeri GM. Neutrophil Extracellular Traps in Systemic Lupus Erythematosus Stimulate IgG2 Production From B Lymphocytes. Front Med (Lausanne) 2021; 8:635436. [PMID: 33912575 PMCID: PMC8072216 DOI: 10.3389/fmed.2021.635436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Circulating autoantibodies of IgG2 isotype predominate in Systemic Lupus Erythematosus (SLE) and concur to the development of the renal lesions characteristic of Lupus Nephritis (LN). Anti-dsDNA and anti-histones IgG2, together with anti-podocyte proteins (i.e., α-enolase) are the major autoantibodies in serum and renal glomeruli of LN patients. The mechanisms underlying autoantibody formation and isotype switching in SLE and LN are unknown. A major issue is how DNA/histones are externalized from cell nucleus, driving the autoimmune response. Neutrophil Extracellular Traps (NETs) have been recently identified as crucial players in this context, representing the main source of DNA and nucleosome proteins. A second key point is what regulates IgG2 isotype switching: in mouse models, T-bet transcription factor has been described as essential for IgG2a class switch. We hypothesized that, in SLE, NET formation is the key mechanism responsible for externalization of autoantigens (i.e., dsDNA, histones 2,3, and α-enolase) and that T-bet is upregulated by NETs, driving, in this way, immunoglobulin class switch recombination (CSR), with production of IgG2 autoantibodies. The data here presented show that NETs, purified from SLE patients, stimulate ex vivo IgG2 isotype class switch possibly through the induction of T-bet. Of note, we observed a prominent effect of NETs on the release of soluble IgG2 in SLE patients', but not in healthy donors' B cells. Our results add important knowledge on the mechanisms of IgG2 class switch in SLE and contribute to further elucidate the role of NETs in LN pathogenesis.
Collapse
Affiliation(s)
- Roberta Bertelli
- Laboratory of Molecular Nephrology, Division of Nephrology and Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Laboratory of Human Genetics, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Schena
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Francesca Antonini
- Core Facilities Flow Cytometry and Cell Imaging Lab, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Daniele Reverberi
- Molecular Pathology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Sara Signa
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics and Maternal and Children's Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicoletta Pedemonte
- Complex Operative Unit (UOC) of Medical Genetics, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Alessandro Consolaro
- Pediatric Rheumatology Clinic, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Marco Gattorno
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Francesca Pupo
- Department of Internal Medicine, Clinical Immunology and Translational Medicine Unit, Policlinico San Martino, University of Genoa, Genoa, Italy
| | - Stefano Volpi
- Centre for Autoinflammatory Diseases and Immunodeficiencies, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophtalmology, Genetics and Maternal and Children's Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Division of Nephrology and Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
- Division of Nephrology, Dialysis, Transplantation, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
6
|
Bruschi M, Moroni G, Sinico RA, Franceschini F, Fredi M, Vaglio A, Cavagna L, Petretto A, Pratesi F, Migliorini P, Manfredi A, Ramirez GA, Esposito P, Negrini S, Trezzi B, Emmi G, Santoro D, Scolari F, Volpi S, Mosca M, Tincani A, Candiano G, Prunotto M, Verrina E, Angeletti A, Ravelli A, Ghiggeri GM. Neutrophil Extracellular Traps in the Autoimmunity Context. Front Med (Lausanne) 2021; 8:614829. [PMID: 33829021 PMCID: PMC8019736 DOI: 10.3389/fmed.2021.614829] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
The formation of neutrophil extracellular traps (NETs) is a strategy utilized by neutrophils for capturing infective agents. Extracellular traps consist in a physical net made of DNA and intracellular proteins externalized from neutrophils, where bacteria and viruses are entrapped and killed by proteolysis. A complex series of events contributes to achieving NET formation: signaling from infectious triggers comes first, followed by decondensation of chromatin and extrusion of the nucleosome components (DNA, histones) from the nucleus and, after cell membrane breakdown, outside the cell. NETs are composed of either DNA or nucleosome proteins and hundreds of cytoplasm proteins, a part of which undergo post-translational modification during the steps leading to NETs. There is a thin balance between the production and the removal of circulating NETs from blood where digestion of DNA by circulating DNases 1 and IL3 has a critical role. A delay in NET removal may have consequences for autoimmunity. Recent studies have shown that circulating NET levels are increased in systemic lupus erythematosus (SLE) for a functional block of NET removal mediated by anti-DNase antibodies or, in rare cases, by DNase IL3 mutations. In SLE, the persistence in circulation of NETs signifies elevated concentrations of either free DNA/nucleosome components and oxidized proteins that, in some cases, are recognized as non-self and presented to B-cells by Toll-like receptor 9 (TLR9). In this way, it is activated as an immunologic response, leading to the formation of IgG2 auto-antibody. Monitoring serum NET levels represents a potential new way to herald the development of renal lesions and has clinical implications. Modulating the balance between NET formation and removal is one of the objectives of basic research that are aimed to design new drugs for SLE. Clinical Trial Registration Number: The Zeus study was registered at https://clinicaltrials.gov (study number: NCT02403115).
Collapse
Affiliation(s)
- Maurizio Bruschi
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gabriella Moroni
- Division of Nephrology and Dialysis Fondazione IRCCS Ca' Granda Ospedale Maggiore, Milan, Italy
| | | | - Franco Franceschini
- Rheumatology and Clinical Immunology, ASST Spedali Civili and Università of Brescia, Brescia, Italy
| | - Micaela Fredi
- Rheumatology and Clinical Immunology, ASST Spedali Civili and Università of Brescia, Brescia, Italy
| | - Augusto Vaglio
- Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”, University of Firenze, and Nephrology and Dialysis Unit, Meyer Children's Hospital, Florence, Italy
| | - Lorenzo Cavagna
- Division of Rheumatology, University and IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Andrea Petretto
- Core Facilities-Proteomics Laboratory, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Internal Medicine, University of Pisa, Pisa, Italy
| | - Angelo Manfredi
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giuseppe A. Ramirez
- Unit of Internal Medicine and Immunology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pasquale Esposito
- Division of Nephrology, University of Genoa and Policlinico San Martino, Genoa, Italy
| | - Simone Negrini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Barbara Trezzi
- Department of Medicine and Surgery, University of Milan, Bicocca, Italy
| | - Giacomo Emmi
- Lupus Clinic Department of Biomedicine, University of Florence, University Hospital Careggi, Florence, Italy
| | - Domenico Santoro
- Nephrology and Dialysis Unit, University of Messina and G. Martino Hospital, Messina, Italy
| | - Francesco Scolari
- Division of Nephrology and Dialysis, University of Brescia and Ospedale di Montichiari, Brescia, Italy
| | - Stefano Volpi
- Division of Paediatric Rheumatology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Mosca
- Rheumatologu Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology, ASST Spedali Civili and Università of Brescia, Brescia, Italy
| | - Giovanni Candiano
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marco Prunotto
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Enrico Verrina
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angelo Ravelli
- Division of Paediatric Rheumatology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gian Marco Ghiggeri
- Laboratory of Molecular Nephrology, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Division of Nephrology, Dialysis and Transplantation, Scientific Institute for Research and Health Care, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- *Correspondence: Gian Marco Ghiggeri
| |
Collapse
|
7
|
Arneth B, Arneth R. Neutrophil Extracellular Traps (NETs) and Vasculitis. Int J Med Sci 2021; 18:1532-1540. [PMID: 33746569 PMCID: PMC7976562 DOI: 10.7150/ijms.53728] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/08/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Neutrophil extracellular traps (NETs) have been implicated in host immune responses. Attempts have been made to examine how NETs affect the pathogenesis of complications such as autoimmune and vascular disorders. Aim: This study aimed to explore the relationship between NETs and vasculitis. Material and Methods: The current study entailed the searching of PsycINFO, PubMed, Web of Science, and CINAHL for articles related to the research topic. The search terms and phrases included "vasculitis," "NETs," "neutrophil extracellular traps," "NETosis," and "pathogenesis." The search was limited to articles published between 2009 and 2019. Results: Researchers have shown that NETs contribute to the pathogenesis of vasculitis through different mechanisms and processes, including renal failure and vascular damage. The protective effects of NETs have also been highlighted. Discussion: Overall, some scholars have shown the effectiveness of using DNase I and the PAD4 inhibitor Cl-amidine to treat vasculitis by restricting NET formation. However, observations have been noted in only animal experimental models. Conclusion: Neutrophil hyperactivity and its role in vasculitis are not yet fully understood. More studies aiming to determine the accurate function of NETs in vasculitis pathogenesis, particularly in humans, should be undertaken. Intensive research on NETs and vasculitis can increase the knowledge of medical practitioners and contribute to the development of new treatment methods to enhance patient outcomes in the future.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Germany
| | - Rebekka Arneth
- Clinic of Nephrology, Internal Medicine, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
8
|
Kalyanaraman B. Do free radical NETwork and oxidative stress disparities in African Americans enhance their vulnerability to SARS-CoV-2 infection and COVID-19 severity? Redox Biol 2020; 37:101721. [PMID: 32961440 PMCID: PMC7490257 DOI: 10.1016/j.redox.2020.101721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
This review focuses on the hypothetical mechanisms for enhanced vulnerability of African Americans to SARS-CoV-2 infection, COVID-19 severity, and increased deaths. A disproportionately higher number of African Americans are afflicted with autoimmune and inflammatory diseases (e.g., diabetes, hypertension, obesity), and SARS-CoV-2 has helped expose these health disparities. Several factors including socioeconomic status, inferior health care, and work circumstances contribute to these disparities. Identifying potential inflammatory biomarkers and decreasing basal levels in high-risk individuals with comorbidities through preventive measures is critical. Immune cells, particularly neutrophils, protect us against pathogens (bacteria, fungi, and viruses) through increased generation of free radicals or oxidants and neutrophil extracellular traps (NETs) that ensnare pathogens, killing them extracellularly. However, continued generation of NETs coupled with the lack of prompt removal pose danger to host cells. NET levels are increased during pro-inflammatory diseases. COVID-19 patients exhibit elevated NET levels, depending upon disease severity. Conceivably, high-risk individuals with elevated basal NET levels would exhibit hyper-inflammation when infected with SARS-CoV-2, amplifying disease severity and deaths. Drugs inhibiting oxidant formation and vitamin supplements decreased NET formation in mice models of inflammation. Thus, it is conceivable that preventive treatments lowering NET levels and inflammation in high-risk individuals could mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Free Radical Research Center, Center for Disease Prevention Research, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
9
|
Emerging role of NET inhibitors in cardiovascular diseases. Hypertens Res 2020; 43:1459-1461. [PMID: 32733104 DOI: 10.1038/s41440-020-0527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/05/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
|
10
|
Kaur T, Dumoga S, Koul V, Singh N. Modulating neutrophil extracellular traps for wound healing. Biomater Sci 2020; 8:3212-3223. [PMID: 32374321 DOI: 10.1039/d0bm00355g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A diabetic microenvironment primes neutrophils for NETosis, a process of formation of neutrophil extracellular traps (NETs) that further degrades the neutrophils and makes them unavailable for the early-stage inflammatory processes. Mechanistically, simple modification of arginine residues of histones to citrulline by peptidylarginine deiminase (PAD4) enzyme is considered to be a prerequisite for NETosis. In fact, under diabetic conditions, an increase in PAD4-mediated NET formation is considered as one of the reasons for impaired wound healing. Therefore, in the present work, an alginate-GelMa (generally recognized as safe category by FDA, USA) based hydrogel scaffold containing a tripeptide (Thr-Asp-F-amidine) that inhibits PAD4 is developed, based on the hypothesis that inhibiting PAD4 enzyme might offer a way to enhance wound healing under diabetic conditions. The scaffolds are thoroughly characterized for their physicochemical and biological properties. Furthermore, neutrophil-scaffold interactions in terms of NETosis ability and release of other related biomarkers are studied. The wound healing ability is evaluated by a cell migration assay. In vivo wound healing efficacy of the developed scaffolds is demonstrated using a diabetic rat model. The results suggest a reduction in NETosis in the presence of a PAD4 inhibitor. Thus, the study demonstrates a novel scaffold system to deliver the PAD4 inhibitor that can be used to modulate NETosis and improve wound healing.
Collapse
Affiliation(s)
- Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | | | | | | |
Collapse
|
11
|
Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2019; 36:145-164. [PMID: 31820165 DOI: 10.1007/s10565-019-09496-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Like the organism they constitute, the cells also die in different ways. The death can be predetermined, programmed, and cleanly executed, as in the case of apoptosis, or it can be traumatic, inflammatory, and sudden as many types of necrosis exemplify. Nevertheless, there are a number of cell deaths-some of them bearing a resemblance to apoptosis and/or necrosis, and many, distinct from each-that serve a multitude of roles in either supporting or disrupting the homoeostasis. Apoptosis is coordinated by death ligands, caspases, b-cell lymphoma-2 (Bcl-2) family proteins, and their downstream effectors. Events that can lead to apoptosis include mitotic catastrophe and anoikis. Necrosis, although it has been considered an abrupt and uncoordinated cell death, has many molecular events associated with it. There are cell death mechanisms that share some standard features with necrosis. These include methuosis, necroptosis, NETosis, pyronecrosis, and pyroptosis. Autophagy, generally a catabolic pathway that operates to ensure cell survival, can also kill the cell through mechanisms such as autosis. Other cell-death mechanisms include entosis, ferroptosis, lysosome-dependent cell death, and parthanatos.
Collapse
Affiliation(s)
- J Grace Nirmala
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai, 400098, India.
| |
Collapse
|