1
|
Spencer J, Jain S. Could tolerance to DNA be broken in the gut in systemic lupus erythematosus? Immunol Lett 2024; 270:106937. [PMID: 39490628 DOI: 10.1016/j.imlet.2024.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The bacteria in the human colon outnumber the total number of nucleated cells in the human body by approximately 10:1. The DNA that the bacteria contain is enriched around 20-fold in immune stimulatory CpG motifs compared to the DNA of host cells. In addition, this DNA can have alternative more immunogeneic DNA structures and it may be presented to the immune system alongside other proinflammatory bacterial innate ligands such as LPS. To ensure that this immunostimulatory combination is not pathogenic, the luminal boundary of host tissues in the human gastrointestinal tract is protected by cells secreting bactericides together with the secreted enzyme DNASE1L3 that can break down bacterial DNA. Cells with RNA encoding DNASE1L3 are particularly abundant in the gut-associated lymphoid tissue where bacteria are specifically sampled into the body, alongside B cells noted for their T independent function. Importantly, individuals with loss of function mutations in DNASE1L3 develop anti-DNA antibodies and lupus symptoms. In this review, we explore the possibility that a perfect storm might break tolerance to DNA: when bacterial DNA from microbiota that is not digested by DNASE1L3 directly encounters B cells that are not necessarily restricted by T cell dependence.
Collapse
Affiliation(s)
- Jo Spencer
- School of Immunology and Microbial Sciences, King's College London; London, UK.
| | - Sahil Jain
- School of Immunology and Microbial Sciences, King's College London; London, UK; Louise Coote Lupus Unit, Guy's and St Thomas' NHS Foundation Trust; London, UK
| |
Collapse
|
2
|
Liu Y, Li M, Zhang H, Yin Z, Wang X. Clinical significance of serum soluble scavenger receptor CD163 in patients with lupus nephritis. Lupus 2024; 33:1279-1288. [PMID: 39172599 DOI: 10.1177/09612033241276033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
BACKGROUND The soluble CD163 (sCD163) was elevated in systemic lupus erythematosus (SLE) patients. PURPOSE To study whether serum sCD163 could be used to predict the occurrence and prognosis of lupus nephritis (LN). RESEARCH DESIGN The recruited patients were classified into different groups according to standard identification criteria. STUDY SAMPLE The patients with LN. DATA COLLECTION AND ANALYSIS 11 indices were analyzed and compared in SLE and LN patients. Furthermore, the level of serum sCD163 was detected using an enzyme-linked immunosorbent assay. Meanwhile, the receiver operating characteristic analysis was performed to evaluate the prediction effect of sCD163. Additionally, spearman correlation analysis of serum sCD163 with indices was conducted. RESULTS There were six positive indices and one negative risk factor correlated to LN. sCD163 was elevated in LN patients and could be used to diagnose LN. Importantly, sCD163 was increased in LN patients with a heavy SLE disease activity index. Finally, it was revealed that the level of sCD163 was higher in the LN patients with no response than that with complete or partial response, which also could predict the prognosis of LN. CONCLUSIONS Serum sCD163 was elevated in LN patients than in SLE patients, which could be used to predict the occurrence and prognosis of LN.
Collapse
Affiliation(s)
- Yanjie Liu
- Department of Nephrology, Zibo Central Hospital, Zibo, China
| | - Meiyan Li
- Department of Nephrology, Zibo Central Hospital, Zibo, China
| | - Huamei Zhang
- Department of Nephrology, Zibo Central Hospital, Zibo, China
| | - Zhe Yin
- Cardiac Intensive Care Unit, Zibo Central Hospital, Zibo, China
| | - Xiaoli Wang
- Department of Rheumatology, Zibo Central Hospital, Zibo, China
| |
Collapse
|
3
|
Ding Y, Zhou Y, Zhao J, Wu C, Zhang S, Jiang N, Qian J, Zhang L, Li J, Xu D, Leng X, Wang Q, Tian X, Li M, Zeng X. The additional role of anti-nucleosome antibodies in the prediction of renal damage in systemic lupus erythematosus based on CSTAR (XXV). Lupus 2024; 33:986-997. [PMID: 38853349 DOI: 10.1177/09612033241260231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
OBJECTIVES The predominant determinant of an unfavorable prognosis among Systemic Lupus Erythematosus (SLE) patients resides in the irreversible organ damage. This prospective cohort study aimed to identify the additional value of anti-nucleosome antibodies on organ damage accumulation in SLE patients. METHODS Based on the Chinese SLE Treatment and Research group (CSTAR) registry, demographic characteristics, autoantibodies profiles, and clinical manifestations were collected at baseline. Follow-up data were collected by reviewing clinical records. RESULTS Of 2481 SLE patients with full follow-up data, 663 (26.7%) were anti-nucleosome antibodies positive and 1668 (68.0%) were anti-dsDNA antibodies positive. 764 (30.8%) patients developed new organ damage during a mean follow-up of 4.31 ± 2.60 years. At baseline, patients with positive anti-nucleosome antibodies have a higher rate of lupus nephritis (50.7% vs 36.2%, p < .001). According to the multivariable Cox regression analysis, both anti-nucleosome (HR = 1.30, 95% CI, 1.09-1.54, p < .001) and anti-dsDNA antibodies (HR=1.68, 95% CI, 1.38-2.05, p < .001) were associated with organ damage accumulation. Anti-nucleosome (HR = 2.51, 95% CI, 1.81-3.46, p < .001) and anti-dsDNA antibodies (HR = 1.69, 95% CI, 1.39-2.06, p < .001) were independent predictors for renal damage. Furthermore, the combination of the two antibodies can provide more accurate information about renal damage in overall SLE patients (HR = 3.19, 95% CI, 2.49-4.10, p < .001) and patients with lupus nephritis at baseline (HR = 2.86, 95% CI, 2.29-3.57, p < .001). CONCLUSION Besides anti-dsDNA antibodies, anti-nucleosome antibodies can also provide information about organ damage accrual during follow-up. The ability of co-positivity of anti-nucleosome and anti-dsDNA antibodies in predicting renal damage may lead to additional benefits in the follow-up of these patients.
Collapse
Affiliation(s)
- Yufang Ding
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yangzhong Zhou
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shangzhu Zhang
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Nan Jiang
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Junyan Qian
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Li Zhang
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jing Li
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaomei Leng
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xinping Tian
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College & Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Alee I, Chantawichitwong P, Leelahavanichkul A, Paludan SR, Pisitkun T, Pisitkun P. The STING inhibitor (ISD-017) reduces glomerulonephritis in 129.B6.Fcgr2b-deficient mice. Sci Rep 2024; 14:11020. [PMID: 38745067 PMCID: PMC11094069 DOI: 10.1038/s41598-024-61597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
The absence of stimulator of interferon genes (STING) in 129.B6.Fcgr2b-deficient mice rescue lupus phenotypes. The administration of a STING inhibitor (ISD017) into the young 129.B6.Fcgr2b-deficient mice prevents lupus nephritis development. This study mainly aimed to evaluate the effects of STING inhibition (ISD107) on established SLE in mice to prove that ISD017 could be a good therapeutic drug to reverse the already set-up autoimmunity and kidney impairment. Twenty-four-week-old Fcgr2b-deficient mice were treated with cyclophosphamide (25 mg/kg, intraperitoneal, once per week), ISD017 (10 mg/kg, intraperitoneal, three times per week), or control vehicle for 8 weeks, and were analyzed for phenotypes. Both ISD017 and cyclophosphamide treatment increased long-term survival and reduced the severity of glomerulonephritis in Fcgr2b-deficient mice. While cyclophosphamide reduced activated B cells (B220+GL-7+), ISD017 decreased activated T cells (CD4+CD69+) and neutrophils (Ly6c+Ly6g+) in Fcgr2b-deficient mice. In addition, ISD017 reduced IL-1β and interferon-inducible genes. In summary, ISD017 treatment in symptomatic 129.B6.Fcgr2b-deficient mice reduced the severity of glomerulonephritis and increased long-term survival. ISD017 worked comparably to cyclophosphamide for treating lupus nephritis in 129.B6.Fcgr2b-deficient mice. ISD017 reduced activated T cells and neutrophils, while cyclophosphamide targeted activated B cells. These results suggested that STING inhibitors can potentially be a new therapeutic drug for treating lupus.
Collapse
Affiliation(s)
- Isara Alee
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Sciences Program, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Papasara Chantawichitwong
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Graduated Program in Molecular Medicine, Faculty of Science, Mahidol University, Salaya, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
6
|
Chen Y, Lu M, Lin M, Gao Q. Network pharmacology and molecular docking to elucidate the common mechanism of hydroxychloroquine treatment in lupus nephritis and IgA nephropathy. Lupus 2024; 33:347-356. [PMID: 38285068 DOI: 10.1177/09612033241230377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
OBJECTIVE Hydroxychloroquine (HCQ), characterized by a broad effect on immune regulation, has been widely used in the treatment of autoimmune glomerulonephritis such as lupus nephritis (LN) and immunoglobulin A nephropathy (IgAN). The current research investigates whether HCQ plays a role in the treatment of LN and IgAN through common mechanisms since the pathogenesis of both LN and IgAN is closely related to immune complex deposition, complement activation, and ultimately inflammation. METHODS Seventy-two common targets were obtained related to the common mechanism of HCQ treatment of LN and IgAN. Targets associated with LN and IgAN were collected based on DisGeNET, GeneCards, and OMIM databases. Possible HCQ targets were obtained from the PubChem database and PharmMapper databases. The overlapping targets of HCQ ingredients, IgAN, and LN were discovered via the Venn 2.1.0 online platform. Through the DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Cytoscape (v3.9.1) was used to build a protein-protein interaction (PPI) network. Molecular docking was performed by using AutoDockTools 1.5.6 software and PyMol software to match the binding activity between HCQ and the 10 core targets. RESULTS The results showed that core targets (including MMP 2, PPARG, IL-2, MAPK14, MMP 9, and SRC), three signaling pathways (including the PI3K-Akt, AGE-RAGE, and MAPK), and cell differentiation (including Th1, Th2, and Th17) might be related to the body's immunity and inflammation. These results suggested that HCQ might act on targets and pathways involved in inflammation and immune regulation to exert a common effect on the treatment of LN and IgAN. CONCLUSIONS The current study provided new evidence for the protective mechanism and clinical utility of HCQ against LN and IgAN.
Collapse
Affiliation(s)
- Yixuan Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Meiqi Lu
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mengshu Lin
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Qing Gao
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Department of Nephrology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
7
|
Eschbach J, Wagner A, Beahr C, Bekel A, Korganow AS, Quartier A, Peter JC, Eftekhari P. Drug upgrade: A complete methodology from old drug to new chemical entities using Nematic Protein Organization Technique. Drug Dev Res 2024; 85:e22151. [PMID: 38349254 DOI: 10.1002/ddr.22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/27/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Drug repurposing is used to propose new therapeutic perspectives. Here, we introduce "Drug Upgrade", that is, characterizing the mode of action of an old drug to generate new chemical entities and new therapeutics. We proposed a novel methodology covering target identification to pharmacology validation. As an old drug, we chose hydroxychloroquine (HCQ) for its well-documented clinical efficacy in lupus and its side effect, retinal toxicity. Using the Nematic Protein Organization Technique (NPOT®) followed by liquid chromatography-tandem mass spectrometry analyses, we identified myeloperoxidase (MPO) and alpha-crystallin β chain (CRYAB) as primary and secondary targets to HCQ from lupus patients' peripheral blood mononuclear cells (PBMCs) and isolated human retinas. Surface plasmon resonance (SPR) and enzymatic assays confirmed the interaction of HCQ with MPO and CRYAB. We synthesized INS-072 a novel analog of HCQ that increased affinity for MPO and decreased binding to CRYAB compared to HCQ. INS-072 delayed cutaneous eruption significantly compared to HCQ in the murine MRL/lpr model of spontaneous lupus and prevents immune complex vasculitis in mice. In addition, long-term HCQ treatment caused retinal toxicity in mice, unlike INS-072. Our study illustrates a method of drug development, where new applications or improvements can be explored by fully characterizing the drug's mode of action.
Collapse
Affiliation(s)
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
- Strasbourg Drug Discovery and Development Institute (IMS), Strasbourg, France
| | - Corinne Beahr
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, Illkirch-Graffenstaden, France
| | - Akkiz Bekel
- Inoviem Scientific, Illkirch-Graffenstaden, France
| | - Anne-Sophie Korganow
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, University Hospital and INSERM UMR 1109, Strasbourg, France
| | | | | | | |
Collapse
|
8
|
Aringer M, Finzel S, Voll RE. [Immunopathogenesis of systemic lupus erythematosus]. Z Rheumatol 2024; 83:68-76. [PMID: 35551439 PMCID: PMC10847069 DOI: 10.1007/s00393-022-01214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/28/2022]
Abstract
Insights into the immunopathogenesis of systemic lupus erythematosus (SLE) help to understand the complex disease patterns and to develop new treatment strategies. The disease manifestations essentially result from autoantibodies, immune complexes and cytokines. Particularly the propensity towards developing various autoantibodies is central to the disease itself; autoantibody specificities lead to highly variable organ manifestations. This review article delineates the clinically relevant state of knowledge on SLE pathogenesis, with the goal to establish a model useful for clinical practice, which also helps to classify the novel therapeutic approaches.
Collapse
Affiliation(s)
- Martin Aringer
- Rheumatologie, Medizinische Klinik III und UniversitätsCentrum für Autoimmun- und Rheumatische Erkrankungen (UCARE), Universitätsklinikum und Medizinische Fakultät Carl Gustav Carus, TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Stephanie Finzel
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| | - Reinhard E Voll
- Klinik für Rheumatologie und Klinische Immunologie & Centrum für chronische Immundefizienz, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
9
|
Rekvig OP. The greatest contribution to medical science is the transformation from studying symptoms to studying their causes-the unrelenting legacy of Robert Koch and Louis Pasteur-and a causality perspective to approach a definition of SLE. Front Immunol 2024; 15:1346619. [PMID: 38361929 PMCID: PMC10867267 DOI: 10.3389/fimmu.2024.1346619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
The basic initiative related to this study is derived from the fact that systemic lupus erythematosus (SLE) is a unique and fertile system science subject. We are, however, still far from understanding its nature. It may be fair to indicate that we are spending more time and resources on studying the complexity of classified SLE than studying the validity of classification criteria. This study represents a theoretical analysis of current instinctual SLE classification criteria based on "the causality principle." The discussion has its basis on the radical scientific traditions introduced by Robert Koch and Louis Pasteur. They announced significant changes in our thinking of disease etiology through the implementation of the modern version of "the causality principle." They influenced all aspects of today's medical concepts and research: the transformation of medical science from studies of symptoms to study their causes, relevant for monosymptomatic diseases as for syndromes. Their studies focused on bacteria as causes of infectious diseases and on how the immune system adapts to control and prevent contagious spreading. This is the most significant paradigm shift in the modern history of medicine and resulted in radical changes in our view of the immune system. They described acquired post-infection immunity and active immunization by antigen-specific vaccines. The paradigm "transformation" has a great theoretical impact also on current studies of autoimmune diseases like SLE: symptoms and their cause(s). In this study, the evolution of SLE classification and diagnostic criteria is discussed from "the causality principle" perspective, and if contemporary SLE classification criteria are as useful as believed today for SLE research. This skepticism is based on the fact that classification criteria are not selected based on cogent causal strategies. The SLE classification criteria do not harmonize with Koch's and Pasteur's causality principle paradigms and not with Witebsky's Koch-derived postulates for autoimmune and infectious diseases. It is not established whether the classification criteria can separate SLE as a "one disease entity" from "SLE-like non-SLE disorders"-the latter in terms of SLE imitations. This is discussed here in terms of weight, rank, and impact of the classification criteria: Do they all originate from "one basic causal etiology"? Probably not.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section for Autoimmunity, Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Rekvig OP. SLE classification criteria: Is "The causality principle" integrated and operative - and do the molecular and genetical network, on which criteria depend on, support the definition of SLE as "a one disease entity" - A theoretical discussion. Autoimmun Rev 2023; 22:103470. [PMID: 37884202 DOI: 10.1016/j.autrev.2023.103470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Molecular and cellular aspects of the autoimmune pathophysiology in SLE is linked to the "The causality principle". SLE Classification Criteria identify per definition disease measures (here: synonymous with classification criteria), but not diagnostic criteria within a classical framework. These two mostly theoretical criteria collections represent a salient conflict between phenomenology and the causality principle - between disease measures and molecular interactions that promote such measures, in other words their cause(s). Essentially, each criterion evolves from immunogenic and inflammatory signals - some are interconnected, some are not. Disparate signals instigated by disparate causes. These may promote clinically heterogenous SLE cohorts with respect to organ affection, autoimmunity, and disease course. There is today no concise measures or arguments that settle whether SLE cohorts evolve from one decisive etiological factor (homogenous cohorts), or if disparate patho-biological factors promote SLE (heterogenous cohorts). Current SLE cohorts are not ideal substrates to serve as study objects if the research aims are to describe etiology, and molecular interactions that cause - and link - primary and secondary pathophysiological events together - events that account for early and progressive SLE. We have to develop SLE criteria allowing us to identify definable categories of SLE in order to describe etiology, pathophysiology and diagnostic criteria of delimitated SLE versions. In this regard, the causality principle is central to define dominant etiologies of individual SLE categories, and subsequent and consequent down-stream diagnostic disease measures. In this sense, we may whether we like it or not identify different SLE categories like "genuine SLE" and "SLE-like non-SLE" syndromes. Many aspects of this problem are thoroughly discussed in this study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
11
|
Gatto M, Depascale R, Stefanski AL, Schrezenmeier E, Dörner T. Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2023; 37:101864. [PMID: 37625930 DOI: 10.1016/j.berh.2023.101864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Improved characterization of relevant pathogenic pathways in systemic lupus erythematosus (SLE) has been further delineated over the last decades. This led to the development of targeted treatments including belimumab and anifrolumab, which recently became available in clinics. Therapeutic targets in SLE encompass interferon (IFN) signaling, B-T costimulation including immune checkpoints, and increasing modalities of B lineage targeting, such as chimeric antigen receptor (CAR) T cells directed against CD19 or sequential anti-B cell targeting. Patient profiling based on characterization of underlying molecular abnormalities, often performed through comprehensive omics analyses, has recently been shown to better predict patients' treatment responses and also holds promise to unravel key molecular mechanisms driving SLE. SLE carries two key signatures, namely the IFN and B lineage/plasma cell signatures. Recent advances in SLE treatments clearly indicate that targeting innate and adaptive immunity is successful in such a complex autoimmune disease. Although those signatures may interact at the molecular level and provide the basis for the first selective treatments in SLE, it remains to be clarified whether these distinct treatments show different treatment responses among certain patient subsets. In fact, notwithstanding the remarkable amount of novel clues for innovative SLE treatment, harmonization of big data within tailored treatment strategies will be instrumental to better understand and treat this challenging autoimmune disorder. This review will provide an overview of recent improvements in SLE pathogenesis, related insights by analyses of big data and machine learning as well as technical improvements in conducting clinical trials with the ultimate goal that translational research results in improved patient outcomes.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Roberto Depascale
- Unit of Rheumatology, Department of Medicine, University of Padova, Padova, Italy
| | - Ana Luisa Stefanski
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany
| | - Eva Schrezenmeier
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Dörner
- Deutsches Rheumaforschungszentrum Berlin, a Leibniz Institute, Berlin, Germany; Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Rojo R, Calvo Alén J, Prada Á, Valor S, Roy G, López-Hoyos M, Cervera R, Sánchez Mateos P, Jurado Roger A. Recommendations for the use of anti-dsDNA autoantibodies in the diagnosis and follow-up of systemic lupus erythematosus - A proposal from an expert panel. Autoimmun Rev 2023; 22:103479. [PMID: 37967782 DOI: 10.1016/j.autrev.2023.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Anti-dsDNA autoantibodies are listed as one of the classification criteria for systemic lupus erythematosus (SLE) and are relatively effective indicators for monitoring disease activity and treatment response. Therefore, clinicians rely on them to diagnose and adjust medication and treatment strategies for SLE patients. However, the use of anti-dsDNA antibodies is not free from controversy. Part of this controversy stems from the fact that anti-dsDNA antibodies are found in several disorders, besides SLE. In addition to this, anti-dsDNA antibodies are a heterogeneous group of antibodies, and their determination still lacks proper standardization. Moreover, anti-dsDNA testing specificity and diagnostic performance change depending on the population under study. These and other issues result in inconsistency and encumber the clinical use of anti-dsDNA antibodies. A panel of medical laboratory and clinical experts on SLE discussed such issues based on their clinical experience in a first meeting, establishing a series of recommendations. The proceedings of this first meeting, plus an exhaustive review of the literature, were used to compose a paper draft. The panel subsequently discussed and refined this draft in a second meeting, the result of which is this paper. This document is relevant to clinical laboratories as it guides to improving diagnosis and monitoring of SLE. Simultaneously, it will help laboratories compile more informative reports, not limited to a mere number. It is also relevant to clinical doctors who wish to better understand laboratory methods so that they can do a more efficient, better-aimed laboratory test ordering.
Collapse
Affiliation(s)
- Ricardo Rojo
- Specialist Consultant at the Immunology Department of the University Hospital of A Coruña, Spain
| | - Jaime Calvo Alén
- Head of the Rheumatology Department at the Araba University Hospital, Vitoria, Spain
| | - Álvaro Prada
- Head of Section at the Immunology Laboratory of the University Hospital of Donostia, Spain
| | | | - Garbiñe Roy
- Head of the Autoimmunity Section at the Immunology Department of the Ramón y Cajal University Hospital, Madrid, Spain
| | - Marcos López-Hoyos
- Head of the Immunology Department at the Marqués de Valdecilla-IDIVAL University Hospital, Santander. Full Professor, Molecular Biology Department at the University of Cantabria, Santander, Spain.
| | - Ricard Cervera
- Head of the Department of Autoimmune Diseases, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Paloma Sánchez Mateos
- Full Professor at the Complutense University, and Specialist Consultant at the Immunology Department of the Gregorio Marañón General University Hospital, Madrid, Spain
| | - Aurora Jurado Roger
- Head of Section at the Immunology and Allergology Department of the Reina Sofía University Hospital, Córdoba, Spain
| |
Collapse
|
13
|
Li Y, Zhang S, Liu J, Zhang Y, Zhang N, Cheng Q, Zhang H, Wu X. The pentraxin family in autoimmune disease. Clin Chim Acta 2023; 551:117592. [PMID: 37832905 DOI: 10.1016/j.cca.2023.117592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The pentraxins represent a family of multifunctional proteins composed of long and short pentamers. The latter includes serum amyloid P component (SAP) and C-reactive protein (CRP) whereas the former includes neuronal PTX1 and PTX2 (NPTX1 and NPTX2, respectively), PTX3 and PTX4. These serve as a bridge between adaptive immunity and innate immunity and a link between inflammation and immunity. Similarities and differences between long and short pentamers are examined and their roles in autoimmune disease are discussed. Increased CRP and PTX3 could indicate the activity of rheumatoid arthritis, systemic lupus erythematosus or other autoimmune diseases. Mechanistically, CRP and PTX3 may predict target organ injury, regulate bone metabolic immunity and maintain homeostasis as well as participate in vascular endothelial remodeling. Interestingly, PTX3 is pleiotropic, being involved in inflammation and tissue repair. Given the therapeutic potential of PTX3 and CRP, targeting these factors to exert a beneficial effect is the focus of research efforts. Unfortunately, studies on NPTX1, NPTX2, PTX4 and SAP are scarce and more research is clearly needed to elaborate their potential roles in autoimmune disease.
Collapse
Affiliation(s)
- Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shouzan Zhang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, PR China
| | - Jingqi Liu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, PR China.
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China.
| | - Xiaochuan Wu
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
14
|
Smith C, du Toit R, Ollewagen T. Potential of bone morphogenetic protein-7 in treatment of lupus nephritis: addressing the hurdles to implementation. Inflammopharmacology 2023; 31:2161-2172. [PMID: 37626268 PMCID: PMC10518293 DOI: 10.1007/s10787-023-01321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Up to 50% of systemic lupus erythematosus (SLE) patients world-wide develop lupus nephritis (LN). In low to middle income countries and in particular in sub-Saharan Africa, where SLE is prevalent with a more aggressive course, LN and end stage renal disease is a major cause of mortality. While developed countries have the funding to invest in SLE and LN research, patients of African descent are often underrepresented in clinical trials. Thus, the complex influence of ethnicity and genetic background on outcome of LN and SLE as a whole, is not fully understood. Several pathophysiological mechanisms including major role players driving LN have been identified. A large body of literature suggest that prevention of fibrosis-which contributes to chronicity of LN-may significantly improve long-term prognosis. Bone morphogenetic protein-7 (BMP-7) was first identified as a therapeutic option in this context decades ago and evidence of its benefit in various conditions, including LN, is ever-increasing. Despite these facts, BMP-7 is not being implemented as therapy in the context of renal disease. With this review, we briefly summarise current understanding of LN pathology and discuss the evidence in support of therapeutic potential of BMP-7 in this context. Lastly, we address the obstacles that need to be overcome, before BMP-7 may become available as LN treatment.
Collapse
Affiliation(s)
- Carine Smith
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.
| | - Riette du Toit
- Division Rheumatology, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| | - Tracey Ollewagen
- Experimental Medicine Research Group, Department Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
15
|
Chan SCW, Wang YF, Yap DYH, Chan TM, Lau YL, Lee PPW, Lai WM, Ying SKY, Tse NKC, Leung AMH, Mok CC, Lee KL, Li TWL, Tsang HHL, Yeung WWY, Ho CTK, Wong RWS, Yang W, Lau CS, Li PH. Risk and Factors associated with disease manifestations in systemic lupus erythematosus - lupus nephritis (RIFLE-LN): a ten-year risk prediction strategy derived from a cohort of 1652 patients. Front Immunol 2023; 14:1200732. [PMID: 37398664 PMCID: PMC10311203 DOI: 10.3389/fimmu.2023.1200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Objectives Lupus nephritis (LN) remains one of the most severe manifestations in patients with systemic lupus erythematosus (SLE). Onset and overall LN risk among SLE patients remains considerably difficult to predict. Utilizing a territory-wide longitudinal cohort of over 10 years serial follow-up data, we developed and validated a risk stratification strategy to predict LN risk among Chinese SLE patients - Risk and Factors associated with disease manifestations in systemic Lupus Erythematosus - Lupus Nephritis (RIFLE-LN). Methods Demographic and longitudinal data including autoantibody profiles, clinical manifestations, major organ involvement, LN biopsy results and outcomes were documented. Association analysis was performed to identify factors associated with LN. Regression modelling was used to develop a prediction model for 10-year risk of LN and thereafter validated. Results A total of 1652 patients were recruited: 1382 patients were assigned for training and validation of the RIFLE-LN model; while 270 were assigned for testing. The median follow-up duration was 21 years. In the training and validation cohort, 845 (61%) of SLE patients developed LN. Cox regression and log rank test showed significant positive association between male sex, age of SLE onset and anti-dsDNA positivity. These factors were thereafter used to develop RIFLE-LN. The algorithm was tested in 270 independent patients and showed good performance (AUC = 0·70). Conclusion By using male sex, anti-dsDNA positivity, age of SLE onset and SLE duration; RIFLE-LN can predict LN among Chinese SLE patients with good performance. We advocate its potential utility in guiding clinical management and disease monitoring. Further validation studies in independent cohorts are required.
Collapse
Affiliation(s)
- Shirley C. W. Chan
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yong-Fei Wang
- Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Life and Health Sciences, School of Medicine and Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Desmond Y. H. Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Tak Mao Chan
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Lung Lau
- Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pamela P. W. Lee
- Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wai Ming Lai
- Department of Paediatrics & Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Shirley K. Y. Ying
- Department of Medicine & Geriatrics, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | - Niko K. C. Tse
- Department of Paediatrics & Adolescent Medicine, Princess Margaret Hospital, Hong Kong, Hong Kong SAR, China
| | | | - Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong, Hong Kong SAR, China
| | - Ka Lai Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong SAR, China
| | - Teresa W. L. Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Helen H. L. Tsang
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Winnie W. Y. Yeung
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Carmen T. K. Ho
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Raymond W. S. Wong
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wanling Yang
- Department of Paediatrics & Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chak Sing Lau
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Philip H. Li
- Division of Rheumatology & Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
He Y, Tian W, Zhang M, Qiu H, Li H, Shi X, Song S, Wen C, Chen J. Jieduquyuziyin prescription alleviates SLE complicated by atherosclerosis via promoting cholesterol efflux and suppressing TLR9/MyD88 activation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116283. [PMID: 36898449 DOI: 10.1016/j.jep.2023.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieduquyuziyin prescription (JP), as a traditional Chinese medicine formula, is extensively applied to treat systemic lupus erythematosus (SLE). Its prescription is based on clinical practice and an evidence-based application of traditional medicines. It is approved by use in Chinese hospitals as a clinical prescription that can be directly used. AIM OF THE STUDY The study aims to elucidate JP's efficacy on lupus-like disease combined with atherosclerosis and to explore its mechanism. MATERIALS AND METHODS To conduct in vivo experiments, we established a model of lupus-like disease with atherosclerosis in ApoE-/- mice fed a high-fat diet and injected intraperitoneally with pristane. In addition, oxidized low-density lipoprotein (ox-LDL) and a TLR9 agonist (CpG-ODN2395) were utilized to examine the mechanism of JP on SLE combined with AS in RAW264.7 macrophages in vitro. RESULTS Results indicated that JP reduced hair loss and levels of the spleen index, maintained stable body weight, alleviated kidney damage in mice, and reduced the expression levels of urinary protein, autoantibodies, and inflammatory factors in serum. Furthermore, JP is effective at alleviating the lupus-like symptoms observed in mice. In mice, JP inhibited aortic plaque deposition, stimulated lipid metabolism, and increased the expression of genes that regulate cholesterol efflux, including ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette subfamily G member 1 (ABCG1), scavenger receptor class B type I (SR-BI), and peroxisome proliferator-activated receptor γ (PPAR-γ). In vivo, JP inhibited the expression of the Toll-like receptor 9 (TLR9)-induced signaling pathway, which links TLR9/MyD88/NF-kB to the expression of subsequent inflammatory factors. Furthermore, JP inhibited the expression of TLR9 and MyD88 in vitro. In addition, the JP treatment effectively reduced foam cell formation in RAW264.7 macrophages by increasing the expression of ABCA1/G1, PPAR-γ and SR-BI. CONCLUSIONS JP played a therapeutic role in ApoE-/- mice with pristane-induced lupus-like diseases and AS, possibly through inhibition of TLR9/MyD88 signaling and promotion of cholesterol efflux.
Collapse
Affiliation(s)
- Yuanfang He
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Weiyu Tian
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Miao Zhang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Haonan Qiu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Haichang Li
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Xiaowei Shi
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Siyue Song
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China.
| | - Juan Chen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, China.
| |
Collapse
|
17
|
Liu L, Zhang L, Li M. Application of herbal traditional Chinese medicine in the treatment of lupus nephritis. Front Pharmacol 2022; 13:981063. [PMID: 36506523 PMCID: PMC9729561 DOI: 10.3389/fphar.2022.981063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Lupus nephritis (LN) is a secondary renal disease caused by systemic lupus erythematosus affecting the kidneys. It is one of the main causes of end-stage renal disease and a serious risk factor for early mortality and disability of systemic lupus erythematosus patients. Existing LN treatment is mainly based on hormones, cytotoxic drugs, and biological agents. Nevertheless, the prognosis of LN patients remains poor because of frequent recurrence and exacerbation of adverse drug reactions. Hence, LN is still the most important cause of end-stage renal disease. In recent years, traditional Chinese medicine (TCM) has attracted increasing attention because of encouraging evidence that it alleviates LN and the well-described mechanisms underlying renal injury. TCM has therapeutic benefits for treating LN patients. This review article elucidates TCM preparations, TCM monomers, and herbal or natural extraction for LN treatment to provide effective supplementary evidence for promoting the development of TCM treatment for LN and reference for future research and clinical practice.
Collapse
|
18
|
Chen Y, Tian B. IFN-γ promotes the development of systemic lupus erythematosus through the IFNGR1/2-PSTAT1-TBX21 signaling axis. Am J Transl Res 2022; 14:6874-6888. [PMID: 36398225 PMCID: PMC9641460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a chronic disease that causes inflammation in cartilage and the lining of blood vessels. Emerging evidence implicates IFN-γ as a major effector molecule in SLE during both active and stable stages. Here, we investigated the effects of IFN-γ on cytokines that play an autoimmune disease-promoting role and Th1-versus-Th2 and B cell dualism in SLE patients and mouse models of SLE. METHODS The levels of pro-inflammatory factors CXCL11, IFN-γ, IL-1β and IL-4, and immune complexes IgG, anti-dsDNA and anti-RNP were assessed through enzyme-linked immunosorbent assays (ELISA). Flow cytometry was performed to measure Th1, Th2 and B cell counts and IFNGR1, IFNGR2, pSTAT1 and TBX21 expression. The pathology of renal tissue from mouse SLE models was investigated through Hematoxylin eosin (H&E) staining. The levels of IgG, anti-dsDNA and anti-RNP were determined through immunofluorescence (IF) assays. RESULTS Skin damage was observed in SLE patients in both active and stable stages. ELISA analysis showed that SLE patients displayed higher levels of pro-inflammatory factors (CXCL11, IFN-γ, IL-1β and IL-4) and immune complexes (IgG, anti-dsDNA and anti-RNP). The percentage of Th1 and B cells was increased in blood samples from SLE patients with skin lesions (SL) or lupus nephritis (LN). The percentage of Th2 cells among the groups were comparable. Higher levels of IFNGR1, IFNGR2, pSTAT1 and TBX21 were observed in Th1 but not Th2 cells. In SLE mouse models, H&E staining revealed fewer immune complexes in glomerular endothelial cells and decreased hyaline thrombus in the capillary lumen following treatment with anti-IFN-γ antibodies or following IFNGR1 or STAT1 silencing. CONCLUSION IFN-γ contributes to the pathogenesis of SLE through the IFNGR1/2-pSTAT1-TBX21 axis and regulates inflammation and immune complex formation in SLE mice.
Collapse
Affiliation(s)
- Ying Chen
- Department of Nephrology, First Affiliated Hospital of China Medical UniversityShenyang 100012, Liaoning, China
| | - Bailing Tian
- Department of Rheumatology and Immunology, First Affiliated Hospital of China Medical UniversityShenyang 100012, Liaoning, China
| |
Collapse
|
19
|
Asif S, Khan A, Zahoor S, Lashari N, Haroon M, Khanum A. Correlation Between Quantitative Anti-dsDNA Levels with Severity of Proteinuria in Systemic Lupus Erythematosus Patients. REUMATOLOGIA CLINICA 2022; 18:464-468. [PMID: 36210140 DOI: 10.1016/j.reumae.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/24/2021] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To evaluate the correlation of quantitative anti-dsDNA level with proteinuria levels in patients with lupus nephritis in a tertiary care hospital. STUDY DESIGN In this prospective cross-sectional study, 76 patients of newly diagnosed SLE coming to Fatima Memorial Hospital were included in the study period between January 2020 to June 2020. Demographic data such as age, gender, lupus manifestations such as serositis, arthritis, mucocutaneous disease, and neuropsychiatric manifestations were recorded. Quantitative anti-dsDNA was measured by enzyme-linked immunosorbent assay and proteinuria was estimated by 24h urinary protein collection. Data was analyzed by SPSS 23. Association between categorical variables was assessed using chi-square test. For comparison of categorical independent and continuous dependent variable t-test or Mann-Whitney U test was applied. RESULTS The median age of the cohort was 29 (with inter quartile range - IQR - of 13) years. The female gender comprised of 68 (89.4%) of the cohort population. The median anti-dsDNA level was 54.9 (183.6 IQR) IU, and baseline proteinuria of the cohort was 520mg/dL (1.49 IQR). There was a significant association of anti-dsDNA level with systemic features such as arthritis (p=<0.01), serositis (p=<0.01) and, Raynaud's phenomenon (p=<0.01). NPSLE and mucocutaneous features did not show statistically significant association (p=0.91 and 0.14 respectively). Baseline anti-dsDNA showed a statistically significant correlation with baseline proteinuria levels (p=<0.01). CONCLUSION Quantitative anti-dsDNA is directly correlated with nephritis measured as proteinuria, and can be detected even before organ involvement. Hence, it can determine disease course and guide early treatment.
Collapse
Affiliation(s)
- Sadia Asif
- Department of Rheumatology, Fatima Memorial Hospital, Lahore, Pakistan; Department of Internal Medicine, KEMU, Mayo Hospital, Lahore, Pakistan
| | - Asadullah Khan
- Department of Rheumatology, Fatima Memorial Hospital, Lahore, Pakistan; Department of Internal Medicine, KEMU, Mayo Hospital, Lahore, Pakistan
| | - Sarmad Zahoor
- Department of Rheumatology, Fatima Memorial Hospital, Lahore, Pakistan; Department of Internal Medicine, KEMU, Mayo Hospital, Lahore, Pakistan.
| | - Naveed Lashari
- Department of Rheumatology, Fatima Memorial Hospital, Lahore, Pakistan; Department of Internal Medicine, KEMU, Mayo Hospital, Lahore, Pakistan
| | - Muhammad Haroon
- Department of Rheumatology, Fatima Memorial Hospital, Lahore, Pakistan; Department of Internal Medicine, KEMU, Mayo Hospital, Lahore, Pakistan
| | - Afshan Khanum
- Department of Rheumatology, Fatima Memorial Hospital, Lahore, Pakistan; Department of Internal Medicine, KEMU, Mayo Hospital, Lahore, Pakistan
| |
Collapse
|
20
|
Rekvig OP. SLE classification criteria: Science-based icons or algorithmic distractions – an intellectually demanding dilemma. Front Immunol 2022; 13:1011591. [PMID: 36248792 PMCID: PMC9555175 DOI: 10.3389/fimmu.2022.1011591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
It is, so to say, not a prerogative authority assigned to SLE classification criteria that allow them to declare something definitively important about SLE. This is particularly true as criteria-based classification processes overrule the highly needed evolution of concise diagnostic criteria. It is classification criteria that allocate SLE patients into cohorts intended to describe the nature of their disease. Therefore, all major SLE classification criteria since the 1971 preliminary criteria usurp the role of diagnostic criteria. Today´s practice silently accept that the SLE classification process “diagnose” SLE patients despite the fact that classification criteria are not accepted as diagnostic criteria! This is a central paradox in contemporary SLE research strategies. Contemporary SLE cohorts are designed to investigate SLE´s etiological features. However, each cohort that is categorized by classification criteria has one central inherent problem. From theoretical and practical arguments, they embody multiple distinct clinical phenotypes. This raises the critical and principal question if phenotypically heterogenic SLE cohorts are useful to identify basic SLE-specific etiology(ies) and disease process(es). In times to come, we must prioritize development of firm diagnostic criteria for SLE, as the classification criteria have not contributed to reduce the enigmatic character of the syndrome. No radical improvements are visible in the horizon that may lead to concise investigations of SLE in well-defined homogenous SLE cohorts. We must develop new strategies where studies of phenotypically standardized cohorts of SLE must be central elements. Problems related to contemporary SLE classification criteria are contemplated, analyzed, and critically discussed in this study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- *Correspondence: Ole Petter Rekvig,
| |
Collapse
|
21
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
22
|
Lou H, Ling GS, Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J Autoimmun 2022; 132:102861. [PMID: 35872103 DOI: 10.1016/j.jaut.2022.102861] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple organ inflammatory damage and wide spectrum of autoantibodies. The autoantibodies, especially anti-dsDNA and anti-Sm autoantibodies are highly specific to SLE, and participate in the immune complex formation and inflammatory damage on multiple end-organs such as kidney, skin, and central nervous system (CNS). However, the underlying mechanisms of autoantibody-induced tissue damage and systemic inflammation are still not fully understood. Single cell analysis of autoreactive B cells and monoclonal antibody screening from patients with active SLE has improved our understanding on the origin of autoreactive B cells and the antigen targets of the pathogenic autoantibodies. B cell depletion therapies have been widely studied in the clinics, but the development of more specific therapies against the pathogenic B cell subset and autoantibodies with improved efficacy and safety still remain a big challenge. A more comprehensive autoantibody profiling combined with functional characterization of autoantibodies in diseases development will shed new insights on the etiology and pathogenesis of SLE and guide a specific treatment to individual SLE patients.
Collapse
Affiliation(s)
- Hantao Lou
- Ludwig Institute of Cancer Research, University of Oxford, Oxford, OX3 7DR, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| | - Guang Sheng Ling
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xuetao Cao
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Nankai-Oxford International Advanced Institute, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
23
|
Li X, Liu J, Zhao Y, Xu N, Lv E, Ci C, Li X. 1,25-dihydroxyvitamin D3 ameliorates lupus nephritis through inhibiting the NF-κB and MAPK signalling pathways in MRL/lpr mice. BMC Nephrol 2022; 23:243. [PMID: 35804318 PMCID: PMC9264719 DOI: 10.1186/s12882-022-02870-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus (SLE). However, the aetiology and pathogenesis of LN remain unknown. 1,25-dihydroxyvitamin D3 [1,25-(OH)2-VitD3] is the active form of vitamin D, and it has been shown to perform important functions in inflammatory and immune-related diseases. In this study, we investigated the time-dependent effects of 1,25-dihydroxyvitamin D3 and explored the underlying mechanism in MRL/lpr mice, a well-studied animal model of LN. Methods Beginning at 8 weeks of age, 24-h urine samples were collected weekly to measure the levels of protein in the urine. We treated female MRL/lpr mice with 1,25-dihydroxyvitamin D3 (4 μg/kg) or 1% DMSO by intraperitoneal injection twice weekly for 3 weeks beginning at the age of 11 weeks. The mice were separately sacrificed, and serum and kidney samples were collected at the ages of 14, 16, 18, and 20 weeks to measure creatinine (Cr) levels, blood urea nitrogen (BUN) levels, histological damage, immunological marker (A-ds DNA, C1q, C3, IgG, IgM) levels, and inflammatory factor (TNF-α, IL-17, MCP-1) levels. Furthermore, the nuclear factor kappa B (NF-κB) and the mitogen-activated protein kinase (MAPK) signalling pathways were also assessed to elucidate the underlying mechanism. Results We found that MRL/lpr mice treated with 1,25-dihydroxyvitamin D3 displayed significantly attenuated LN. VitD3-treated mice exhibited significantly improved renal pathological damage and reduced proteinuria, BUN, SCr, A-ds DNA antibody and immune complex deposition levels (P < 0.05) compared with untreated MRL/lpr mice. Moreover, 1,25-dihydroxyvitamin D3 inhibited the complement cascade, inhibited the release of proinflammatory cytokines, such as TNF-α, IL-17, and MCP-1, and inhibited NF-κB and MAPK activation (P < 0.05). Conclusion 1,25-dihydroxyvitamin D3 exerts a protective effect against LN by inhibiting the NF-κB and MAPK signalling pathways, providing a potential treatment strategy for LN. Interestingly, the NF-κB and MAPK signalling pathways are time-dependent mediators of LN and may be associated with lupus activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02870-z.
Collapse
Affiliation(s)
- Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jie Liu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yingzhe Zhao
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Ning Xu
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - E Lv
- Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Chunzeng Ci
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
24
|
Fernandez-Ruiz R, Belmont HM. The role of anticomplement therapy in lupus nephritis. Transl Res 2022; 245:1-17. [PMID: 35158097 DOI: 10.1016/j.trsl.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
The complement system plays crucial roles in homeostasis and host defense against microbes. Deficiency of early complement cascade components has been associated with increased susceptibility to systemic lupus erythematosus (SLE), whereas excessive complement consumption is a hallmark of this disease. Although enhanced classical pathway activation by immune complexes was initially thought to be the main contributor to lupus nephritis (LN) pathogenesis, an increasing body of evidence has suggested the alternative and the lectin pathways are also involved. Therapeutic agents targeting complement activation have been used in LN patients and clinical trials are ongoing. We review the mechanisms by which complement system dysregulation contributes to renal injury in SLE and summarize the latest evidence on the use of anticomplement agents to manage this condition.
Collapse
Affiliation(s)
- Ruth Fernandez-Ruiz
- Division of Rheumatology, NYU Grossman School of Medicine, New York, New York
| | | |
Collapse
|
25
|
Anti-double stranded DNA antibodies: A rational diagnostic approach in limited resource settings. Pract Lab Med 2022; 31:e00285. [PMID: 35711387 PMCID: PMC9192786 DOI: 10.1016/j.plabm.2022.e00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/31/2022] [Indexed: 11/22/2022] Open
Abstract
Context Anti-double-stranded deoxyribonucleic acid antibodies (dsDNA Abs) are highly specific markers of systemic lupus erythematosus (SLE). Multiple methods are employed for their detection in routine diagnostics. Objectives The aim of this study was to evaluate a diagnostic approach for anti-dsDNA Abs using DNA-ELISA and Crithidia luciliae fluorescence test (CLIFT), in combination with antinuclear antibody (ANA) screening. Methods We enrolled 113 patients—53 with SLE, 50 with other systemic autoimmune rheumatic diseases (OSARD), and 10 with non-autoimmune clinical conditions (NAICC). Patients’ samples were tested for anti-dsDNA Abs using an enzyme-linked immunosorbent assay (ELISA) and CLIFT, combined to ANA screening by indirect immunofluorescence assay (ANA-IIFA). Results The mean age of patients was 39.94 ± 15 years (ranges: 11–85 years). Overall, specimens from 77.3%, 11.7%, and 20% of patients with SLE, OSARD and NAICC respectively were ELISA-positive; and those from 54.7% to 4% of patients with SLE and OSARD, respectively, were CLIFT-positive. CLIFT positivity was significantly associated with high ELISA titers (p = 0.002) and homogeneous ANA-IIF pattern (p = 0.0002). Conclusion For better clinical relevance of anti-dsDNA antibodies, we suggest a combined detection strategy based on ELISA, CLIFT and ANA-IIFA, considering the clinical criteria of SLE. Anti-dsDNA Abs represent an excellent indicator of systemic lupus erythematosus (SLE) activity and valuable diagnostic biomarker. We tested 103 autoimmune disease cases and 10 non-autoimmune condition cases for anti-dsDNA Abs using DNA and CLIFT, in combination with ANA-IIF screening. CLIFT positivity was significantly associated with high DNA-ELISA titers (p = 0.002) and homogeneous ANA-IIF pattern (p = 0.0002). High DNA-ELISA titers with a positive CLIFT are clinically relevant for the diagnosis of SLE, especially in the presence of a homogeneous ANA-IIF pattern.
Collapse
|
26
|
Shiwaku H, Katayama S, Kondo K, Nakano Y, Tanaka H, Yoshioka Y, Fujita K, Tamaki H, Takebayashi H, Terasaki O, Nagase Y, Nagase T, Kubota T, Ishikawa K, Okazawa H, Takahashi H. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep Med 2022; 3:100597. [PMID: 35492247 PMCID: PMC9043990 DOI: 10.1016/j.xcrm.2022.100597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia. Some patients with schizophrenia are positive for anti-NCAM1 autoantibodies Anti-NCAM1 antibody from schizophrenia patients inhibits NCAM1-NCAM1 interactions Anti-NCAM1 antibody from schizophrenia patients reduces spines and synapses in mice Anti-NCAM1 antibody from patients induces schizophrenia-related behavior in mice
Collapse
Affiliation(s)
- Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| | - Shingo Katayama
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuri Nakano
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruna Tamaki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | | | | | | | | | - Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Ibaraki 300-0051, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| |
Collapse
|
27
|
Mathapathi S, Chu CQ. Contribution of Impaired DNASE1L3 Activity to Anti-DNA Autoantibody Production in Systemic Lupus Erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:17-22. [PMID: 36467024 PMCID: PMC9524810 DOI: 10.2478/rir-2022-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 06/17/2023]
Abstract
Anti-DNA autoantibodies are pathogenic in systemic lupus erythematosus (SLE). Cell-free chromatin associated long DNA fragments are antigens for anti-DNA antibodies. In health state, released by cell death and actively secreted by live cells, these cell-free DNA are cleared by deoxyribonucleases (DNASES). In SLE, cell-free DNA are accumulated. The defective clearance of long fragments of cell-free DNA in SLE is largely attributed to impaired deoxyribonuclease 1 like 3 (DNASE1L3). DNASE1L3 null mutation results in monogenic SLE. The SLE risk single-nucleotide polymorphism (rs35677470) encodes R260C variant DNASE1L3, which is defective in secretion, leading to reduced levels of DNASE1L3. In addition, neutralizing autoantibodies to DNASE1L3 are produced in SLE to inhibit its enzymatic activity.
Collapse
Affiliation(s)
- Samarth Mathapathi
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Section of Rheumatology, VA Portland Health Care System, Portland, Oregon, USA
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University, Section of Rheumatology, VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
28
|
Rekvig OP. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact-A System Criticism and a Hypothesis. Front Immunol 2022; 12:808008. [PMID: 35087528 PMCID: PMC8786728 DOI: 10.3389/fimmu.2021.808008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Section of Autoimmunity, Fürst Medical Laboratory, Oslo, Norway.,Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
29
|
Kim DS, Park Y, Choi JW, Park SH, Cho ML, Kwok SK. Lactobacillus acidophilus Supplementation Exerts a Synergistic Effect on Tacrolimus Efficacy by Modulating Th17/Treg Balance in Lupus-Prone Mice via the SIGNR3 Pathway. Front Immunol 2021; 12:696074. [PMID: 34956169 PMCID: PMC8704231 DOI: 10.3389/fimmu.2021.696074] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTacrolimus (Tac) is an immunosuppressant used in the treatment of systemic lupus erythematosus (SLE); however, it induces T cell subset imbalances by reducing regulatory T (Treg) cells. Lactobacillus acidophilus (LA) is reported to have therapeutic efficacy in immune-mediated diseases via T cell regulation.MethodsThis study investigated whether a combination therapy of LA and Tac improves the therapeutic efficacy of Tac by modulating T cell subset populations in an animal model of SLE. Eight-week-old MRL/lpr mice were orally administered with 5 mg/kg of Tac and/or 50 mg/kg of LA daily for 8 weeks. Cecal microbiota compositions, serum autoantibodies levels, the degree of proteinuria, histological changes in the kidney, and populations of various T cell subsets in the spleen were analyzed.ResultsMice presented with significant gut dysbiosis, which were subsequently recovered by the combination treatment of Tac and LA. Double negative T cells in the peripheral blood and spleens of MRL/lpr mice were significantly decreased by the combination therapy. The combination treatment reduced serum levels of anti-dsDNA antibodies and Immunoglobulin G2a, and renal pathology scores were also markedly alleviated. The combination therapy induced Treg cells and decreased T helper 17 (Th17) cells both in vitro and in vivo. In vitro treatment with LA induced the production of indoleamine-2,3-dioxygenase, programmed death-ligand 1, and interleukin-10 via the specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 receptor signals.ConclusionThe present findings indicate that LA augments the therapeutic effect of Tac and modulates Th17/Treg balance in a murine model of SLE.
Collapse
Affiliation(s)
- Da Som Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong-Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Laboratory of Translational ImmunoMedicine, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- *Correspondence: Mi-La Cho, ; Seung-Ki Kwok,
| |
Collapse
|
30
|
Ali El Hussien M, Tsai CY, Satouh Y, Motooka D, Okuzaki D, Ikawa M, Kikutani H, Sakakibara S. Multiple tolerance checkpoints restrain affinity maturation of B cells expressing the germline precursor of a lupus patient-derived anti-dsDNA antibody in knock-in mice. Int Immunol 2021; 34:207-223. [PMID: 34865040 DOI: 10.1093/intimm/dxab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/27/2021] [Indexed: 11/13/2022] Open
Abstract
Anti-dsDNA antibodies are a hallmark of systemic lupus erythematosus and are highly associated with its exacerbation. Cumulative evidence has suggested that somatic hypermutation contributes to the high-affinity reactivity of anti-dsDNA antibodies. Our previous study demonstrated that these antibodies are generated from germline precursors with low-affinity ssDNA reactivity through affinity maturation and clonal expansion in patients with acute lupus. This raised the question of whether such precursors could be subject to immune tolerance. To address this, we generated a site-directed knock-in (KI) mouse line, G9gl, which carries germline-reverted sequences of the VH-DH-JH and Vκ-Jκ regions of patient-derived, high-affinity anti-dsDNA antibodies. G9gl heterozygous mice had a reduced number of peripheral B cells, only 27% of which expressed G9gl B cell receptor (BCR). The remaining B cells harbored non-KI allele-derived immunoglobulin heavy (IgH) chains or fusion products of upstream mouse VH and the KI gene, suggesting that receptor editing through VH replacement occurred in a large proportion of B cells in the KI mice. G9gl BCR-expressing B cells responded to ssDNA but not dsDNA, and exhibited several anergic phenotypes, including reduced surface BCR and shortened life span. Further, G9gl B cells were excluded from germinal centers (GCs) induced by several conditions. In particular, following immunization with methylated bovine serum albumin-conjugated bacterial DNA, G9gl B cells occurred at a high frequency in memory B cells but not GC B cells or plasmablasts. Collectively, multiple tolerance checkpoints prevented low-affinity precursors of pathogenic anti-dsDNA B cells from undergoing clonal expansion and affinity maturation in GCs.
Collapse
Affiliation(s)
- Marwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yuhkoh Satouh
- Animal Resource Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
31
|
González Rodríguez C, Aparicio Hernández M, Alarcón Torres I. Update and clinical management of anti-DNA auto-antibodies. ADVANCES IN LABORATORY MEDICINE 2021; 2:313-331. [PMID: 37362416 PMCID: PMC10197362 DOI: 10.1515/almed-2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/19/2020] [Indexed: 06/28/2023]
Abstract
Anti-deoxyribonucleic acid (DNA) antibodies in the clinical laboratory are intimately linked to the diagnosis and monitoring of systemic lupus erythematosus (SLE); however, the characteristics of the analytical methods and the properties of the antibodies themselves are heterogeneous. To review the definition and properties of anti-double-stranded anti-DNA (anti-dsDNA) antibodies, the adequacy of analytical methods, and the clinical requirements for this biomarker. Through PubMed we searched the existing literature with the terms anti-dsDNA, editorial, review, guideline, meta-analysis and SLE. The last search, anti-dsDNA and SLE restricted to the last two years. Information was expanded through related articles and those published in official state bodies related to anti-dsDNA and SLE. Clinical laboratory methods for anti-dsDNA analysis and their characteristics are analyze. The clinical utility of anti-dsDNA in its diagnostic, clinical association and follow-up aspects of SLE is reviewed. There is wide variability in analytical methods and deficits in standardization persist. They are part of the current SLE classification criteria and are used as markers in the follow-up of the disease. Their diagnostic usefulness improves when they are determined in antinuclear antibody (ANA)-positive patients. In follow-up, quantification is of interest, preferably with the same analytical method (given the deficits in standardization).
Collapse
Affiliation(s)
| | - MªBelén Aparicio Hernández
- Servicio Bioquímica Clínica y Análisis Cínicos, Complejo Asistencial Universitario Salamanca, Salamanca, Spain
| | | |
Collapse
|
32
|
Baek WY, Lee SM, Lee SW, Son IO, Choi S, Suh CH. Intravenous Administration of Toll-Like Receptor Inhibitory Peptide 1 is Effective for the Treatment of Systemic Lupus Erythematosus in a Mus musculus Model. JOURNAL OF RHEUMATIC DISEASES 2021; 28:133-142. [PMID: 37475994 PMCID: PMC10324895 DOI: 10.4078/jrd.2021.28.3.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 07/22/2023]
Abstract
Objective Systemic lupus erythematosus (SLE) is a common chronic autoimmune inflammatory disease According to recent studies, signaling through Toll-like receptor (TLR) protein, which promotes the production of inflammatory cytokines, leads to the development of SLE TLR-inhibitory peptide 1 (TIP1) has been newly identified for the treatment of autoimmune diseases. Methods The effect of TIP1 was analyzed in an SLE mouse model (MRL/lpr) The mice in the control treatment group (n=5) were administered an intravenous injection of phosphate-buffered saline twice weekly, whereas the mice in the TIP1 treatment group (n=6) were administered an intravenous injection of TIP1 (1 nmol/g) twice weekly MRL/mpj mice (n=5) were selected as normal controls The mice were injected for 4 weeks between 14 and 18 weeks of age, followed by assays of their spleen, kidneys, lymph nodes, serum, and urine. Results The antinuclear antibody and inflammatory cytokine (interferon-α) in the serum as well as levels of albumin in the urine of the mice in the TIP1 treatment group had decreased when compared to those of mice in the control treatment group Kidney inflammation in mice in the TIP1 treatment group was alleviated The mRNA expression levels of TLR7- or TLR9-related downstream signaling molecules also decreased in all organs of the mice in the TIP1 treatment group. Conclusion Intravenous treatment with TIP1 reduces symptoms and markers of inflammation in MRL/lpr mice Hence, TIP1 is a promising medication for the treatment of SLE.
Collapse
Affiliation(s)
- Wook-Young Baek
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sung-Min Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Sang-Won Lee
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - In-Ok Son
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| |
Collapse
|
33
|
Immune-Related Urine Biomarkers for the Diagnosis of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22137143. [PMID: 34281193 PMCID: PMC8267641 DOI: 10.3390/ijms22137143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
The kidney is one of the main organs affected by the autoimmune disease systemic lupus erythematosus. Lupus nephritis (LN) concerns 30-60% of adult SLE patients and it is significantly associated with an increase in the morbidity and mortality. The definitive diagnosis of LN can only be achieved by histological analysis of renal biopsies, but the invasiveness of this technique is an obstacle for early diagnosis of renal involvement and a proper follow-up of LN patients under treatment. The use of urine for the discovery of non-invasive biomarkers for renal disease in SLE patients is an attractive alternative to repeated renal biopsies, as several studies have described surrogate urinary cells or analytes reflecting the inflammatory state of the kidney, and/or the severity of the disease. Herein, we review the main findings in the field of urine immune-related biomarkers for LN patients, and discuss their prognostic and diagnostic value. This manuscript is focused on the complement system, antibodies and autoantibodies, chemokines, cytokines, and leukocytes, as they are the main effectors of LN pathogenesis.
Collapse
|
34
|
Neuberger EWI, Brahmer A, Ehlert T, Kluge K, Philippi KFA, Boedecker SC, Weinmann-Menke J, Simon P. Validating quantitative PCR assays for cfDNA detection without DNA extraction in exercising SLE patients. Sci Rep 2021; 11:13581. [PMID: 34193884 PMCID: PMC8245561 DOI: 10.1038/s41598-021-92826-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/07/2021] [Indexed: 01/10/2023] Open
Abstract
Circulating cell-free DNA (cfDNA) has been investigated as a screening tool for many diseases. To avoid expensive and time-consuming DNA isolation, direct quantification PCR assays can be established. However, rigorous validation is required to provide reliable data in the clinical and non-clinical context. Considering the International Organization for Standardization, as well as bioanalytical method validation guidelines, we provide a comprehensive procedure to validate assays for cfDNA quantification from blood plasma without DNA isolation. A 90 and 222 bp assay was validated to study the kinetics of cfDNA after exercise in patients with systemic lupus erythematosus (SLE). The assays showed ultra-low limit of quantification (LOQ) with 0.47 and 0.69 ng/ml, repeatability ≤ 11.6% (95% CI 8.1-20.3), and intermediate precision ≤ 12.1% (95% CI 9.2-17.7). Incurred sample reanalysis confirmed the precision of the procedure. The additional consideration of pre-analytical factors shows that centrifugation speed and temperature do not change cfDNA concentrations. In SLE patients cfDNA increases ~ twofold after a walking exercise, normalizing after 60 min of rest. The established assays allow reliable and cost-efficient quantification of cfDNA in minute amounts of plasma in the clinical setting. Additionally, the assay can be used as a tool to determine the impact of pre-analytical factors and validate cfDNA quantity and quality of isolated samples.
Collapse
Affiliation(s)
- Elmo W I Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Alexandra Brahmer
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Tobias Ehlert
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Katrin Kluge
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Keito F A Philippi
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany
| | - Simone C Boedecker
- Department of Rheumatology and Nephrology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Julia Weinmann-Menke
- Department of Rheumatology and Nephrology, University Medical Center Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Albert-Schweitzer Str. 22, 55128, Mainz, Germany.
| |
Collapse
|
35
|
Liu HF, Li Q, Peng YQ. Alport syndrome combined with lupus nephritis in a Chinese family: A case report. World J Clin Cases 2021; 9:4721-4727. [PMID: 34222438 PMCID: PMC8223833 DOI: 10.12998/wjcc.v9.i18.4721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alport syndrome (ATS) is a rare hereditary disease caused by mutations in genes such as COL4A3, COL4A4, and COL4A5. ATS involves a spectrum of phenotypes ranging from isolated hematuria that is nonprogressive to progressive renal disease with extrarenal abnormalities. Although ATS can be combined with other diseases or syndromes, ATS combined with lupus nephritis has not been reported before.
CASE SUMMARY A Chinese family with ATS was recruited for the current study. Clinical characteristics (including findings from renal biopsy) of ATS patients were collected from medical records, and potential causative genes were explored by whole-exome sequencing. A heterozygous substitution in intron 22 of COL4A3 (NM_000091 c.2657-1G>A) was found in the patients, which was further confirmed by quantitative polymerase chain reaction.
CONCLUSION Heterozygous substitution of a COL4A3 gene splice site was identified by whole-exome sequencing, revealing the molecular pathogenic basis of this disorder. In general, identification of pathogenic genes can help to fully understand the molecular mechanism of disease and facilitate precise treatment.
Collapse
Affiliation(s)
- Hui-Fang Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District, Chongqing 400050, China
| | - Qing Li
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District, Chongqing 400050, China
| | - You-Qun Peng
- Department of Nephrology, Traditional Chinese Medicine Hospital of Jiulongpo District, Chongqing 400050, China
| |
Collapse
|
36
|
Takata H, Shimizu T, Kawaguchi Y, Ueda H, Elsadek NE, Ando H, Ishima Y, Ishida T. Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: A possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies. Int J Pharm 2021; 601:120529. [PMID: 33781884 DOI: 10.1016/j.ijpharm.2021.120529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based therapy with plasmid DNA (pDNA) and small interfering RNA (siRNA) have received recent attention for their ability to modulate the cellular expression of genes and proteins. Polyethylene glycol-modified (PEGylated) cationic nanoparticles have been used as non-viral vectors for the in vivo delivery of these nucleic acids. We have reported that PEGylated cationic liposomes (PCL) including pDNA or siRNA induce anti-PEG antibodies upon repeated intravenous injection, leading to the formation of immune complexes and enhanced clearance from the blood of subsequent doses. However, the issue surrounding the association of nucleic acids with PCL whether induces anti-nucleic acid antibodies has not been studied. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with the character of end-organ damage and the presence of anti-nuclear antibodies. We used a healthy mouse and an SLE mouse model to test the hypothesis that nucleic acids associated with PCL induce anti-nuclear antibodies and then induce SLE and exacerbate SLE symptoms. We report here that pDNA or siRNA associated with PCL (pDNA/PCL or siRNA/PCL) induced anti-DNA or RNA antibodies, respectively, in healthy mice. Repeated injections did not, however, cause SLE-like symptoms in the healthy mice. In addition, in SLE-prone mice with pre-existing anti-nuclear antibodies, pDNA/PCL were deposited on the kidneys and exacerbated lupus nephritis subsequent to the formation of immune complexes. These results may imply that nucleic acids associated with PCL do not contribute to the onset of SLE in healthy individuals who lack anti-nuclear antibodies, but nucleic acids may exacerbate the symptoms in SLE patients who have pre-existing anti-nuclear antibodies.
Collapse
Affiliation(s)
- Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Hiro Ueda
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Nehal E Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan.
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Lupus nephritis is a common severe manifestation of systemic lupus erythematosus. Despite recent advances in therapeutics and understanding of its pathogenesis, there are still substantial unmet needs. This review discusses recent discoveries in these areas, especially the role of tubulointerstitial inflammation (TII) in lupus nephritis. RECENT FINDINGS Non-white ethnicity is still a major risk and poor prognostic factor in lupus nephritis. TII and fibrosis have been found to be associated with worse renal outcome but the current lupus nephritis treatment guidelines and trials are based on the degree of glomerular inflammation. In combination with mycophenolate mofetil, a B-cell-targeted therapy (belimumab) and a calcineurin inhibitor (voclosporin) have shown efficacy in recent lupus nephritis trials. However, response rates have been modest. While lupus glomerulonephritis results from immune complex deposition derived from systemic autoantibodies, TII arises from complex processes associated with in situ adaptive cell networks. These include local antibody production, and cognate or antigen-induced interactions between T follicular helper cells, and likely other T-cell populations, with antigen presenting cells including B cells, myeloid dendritic cells and plasmacytoid dendritic cells. SUMMARY Better understanding of the pathogenesis of TII will identify novel therapeutic targets predicted to improve outcomes in our patients with lupus nephritis.
Collapse
Affiliation(s)
- Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Marcus R. Clark
- Section of Rheumatology, Department of Medicine and Gwenn Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637
| | - Kichul Ko
- Section of Rheumatology, Department of Medicine and Gwenn Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL 60637
| |
Collapse
|
38
|
Rekvig OP. Autoimmunity and SLE: Factual and Semantic Evidence-Based Critical Analyses of Definitions, Etiology, and Pathogenesis. Front Immunol 2020; 11:569234. [PMID: 33123142 PMCID: PMC7573073 DOI: 10.3389/fimmu.2020.569234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
One cannot discuss anti-dsDNA antibodies and lupus nephritis without discussing the nature of Systemic lupus erythematosus (SLE). SLE is insistently described as a prototype autoimmune syndrome, with anti-dsDNA antibodies as a central biomarker and a pathogenic factor. The two entities, "SLE" and "The Anti-dsDNA Antibody," have been linked in previous and contemporary studies although serious criticism to this mutual linkage have been raised: Anti-dsDNA antibodies were first described in bacterial infections and not in SLE; later in SLE, viral and parasitic infections and in malignancies. An increasing number of studies on classification criteria for SLE have been published in the aftermath of the canonical 1982 American College of Rheumatology SLE classification sets of criteria. Considering these studies, it is surprising to observe a nearby complete absence of fundamental critical/theoretical discussions aimed to explain how and why the classification criteria are linked in context of etiology, pathogenicity, or biology. This study is an attempt to prioritize critical comments on the contemporary definition and classification of SLE and of anti-dsDNA antibodies in context of lupus nephritis. Epidemiology, etiology, pathogenesis, and measures of therapy efficacy are implemented as problems in the present discussion. In order to understand whether or not disparate clinical SLE phenotypes are useful to determine its basic biological processes accounting for the syndrome is problematic. A central problem is discussed on whether the clinical role of anti-dsDNA antibodies from principal reasons can be accepted as a biomarker for SLE without clarifying what we define as an anti-dsDNA antibody, and in which biologic contexts the antibodies appear. In sum, this study is an attempt to bring to the forum critical comments on the contemporary definition and classification of SLE, lupus nephritis and anti-dsDNA antibodies. Four concise hypotheses are suggested for future science at the end of this analytical study.
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Fürst Medical Laboratory, Oslo, Norway
| |
Collapse
|
39
|
Talotta R, Atzeni F, Laska MJ. Therapeutic peptides for the treatment of systemic lupus erythematosus: a place in therapy. Expert Opin Investig Drugs 2020; 29:845-867. [PMID: 32500750 DOI: 10.1080/13543784.2020.1777983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Studies in vitro and in vivo have identified several peptides that are potentially useful in treating systemic lupus erythematosus (SLE). The rationale for their use lies in the cost-effective production, high potency, target selectivity, low toxicity, and a peculiar mechanism of action that is mainly based on the induction of immune tolerance. Three therapeutic peptides have entered clinical development, but they have yielded disappointing results. However, some subsets of patients, such as those with the positivity of anti-dsDNA antibodies, appear more likely to respond to these medications. AREAS COVERED This review evaluates the potential use of therapeutic peptides for SLE and gives an opinion on how they may offer advantages for SLE treatment. EXPERT OPINION Given their acceptable safety profile, therapeutic peptides could be added to agents traditionally used to treat SLE and this may offer a synergistic and drug-sparing effect, especially in selected patient populations. Moreover, they could temporarily be utilized to manage SLE flares, or be administered as a vaccine in subjects at risk. Efforts to ameliorate bioavailability, increase the half-life and prevent immunogenicity are ongoing. The formulation of hybrid compounds, like peptibodies or peptidomimetic small molecules, is expected to yield renewed treatments with a better pharmacologic profile and increased efficacy.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | - Fabiola Atzeni
- Department of Clinical and Experimental Medicine, Rheumatology Unit, Azienda Ospedaliera "Gaetano Martino", University of Messina , Messina, Italy
| | | |
Collapse
|
40
|
Gatto M, Radu CM, Luisetto R, Ghirardello A, Bonsembiante F, Trez D, Valentino S, Bottazzi B, Simioni P, Cavicchioli L, Doria A. Immunization with Pentraxin3 prevents transition from subclinical to clinical lupus nephritis in lupus-prone mice: Insights from renal ultrastructural findings. J Autoimmun 2020; 111:102443. [PMID: 32265078 DOI: 10.1016/j.jaut.2020.102443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/15/2020] [Accepted: 03/22/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Pentraxin3 (PTX3) is an emerging player in lupus nephritis (LN). Anti-PTX3 antibodies showed to delay LN occurrence in vivo. AIM To evaluate renal changes following immunization with PTX3 in a murine model of LN. MATERIALS AND METHODS Twenty-two lupus-prone New Zealand Black/White (NZB/W)F1 mice were divided into two groups (n = 11) and subcutaneously injected with human recombinant (hr)PTX3 100 μg or phosphate buffer saline (PBS) 200 μl, three times 3 weeks apart, starting before development of proteinuria. Five mice from each group were scheduled for sacrifice at week 22 and 6 from each group at week 29. Renal lesions included electron-dense deposits (EDD), glomerular deposition of IgG, complement and PTX3 as markers of renal inflammation. They were evaluated by immunofluorescence (IF), confocal and immunoelectron microscopy (IEM). Validated semiquantitative scores were used when available to score renal lesions. Chi-squared test with Fisher exact test was used for comparison. RESULTS Nineteen out of 22 mice were sacrificed as scheduled. Only hrPTX3-immunized mice developed anti-PTX3 antibodies. Compared to PBS-injected mice, they displayed a dramatic decrease in glomerular deposits of IgG, C1q and PTX3, as well as in the amount of EDD (p = 0.006) and podocyte effacement (p = 0.043). Importantly, PTX3 was pinpointed inside the EDD and co-localized with nuclear material. CONCLUSIONS Immunization with PTX3 prevented progression from the preclinical to the clinical stage of LN, inciting anti-PTX3 antibodies and preventing renal PTX3 deposition. PTX3 is a novel component of EDD, submitting it as one initiating autoantigen in LN and as potential target for early treatment.
Collapse
Affiliation(s)
- Mariele Gatto
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Claudia M Radu
- Department of Women's and Children's Health, University of Padova, Padova, Italy; Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Roberto Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Anna Ghirardello
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy; Department of Animal Medicine, Production and Health University of Padova, Italy
| | - Davide Trez
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | | | | | - Paolo Simioni
- Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Padova, Italy
| | - Andrea Doria
- Unit of Rheumatology, Department of Medicine (DIMED), University of Padova, Padova, Italy.
| |
Collapse
|