1
|
Takewaki D, Kiguchi Y, Masuoka H, Manu MS, Raveney BJE, Narushima S, Kurokawa R, Ogata Y, Kimura Y, Sato N, Ozawa Y, Yagishita S, Araki T, Miyake S, Sato W, Suda W, Yamamura T. Tyzzerella nexilis strains enriched in mobile genetic elements are involved in progressive multiple sclerosis. Cell Rep 2024; 43:114785. [PMID: 39341204 DOI: 10.1016/j.celrep.2024.114785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-demyelinating disease with an inflammatory pathology formed by self-reactive lymphocytes with activated glial cells. Progressive MS, characterized by resistance to medications, significantly differs from the non-progressive form in gut microbiome profiles. After confirming an increased abundance of "Tyzzerella nexilis" in various cohorts of progressive MS, we identified a distinct cluster of T. nexilis strains enriched in progressive MS based on long-read metagenomics. The distinct T. nexilis cluster is characterized by a large number of mobile genetic elements (MGEs) and a lack of defense systems against MGEs. Microbial genes for sulfate reduction and flagella formation with pathogenic implications are specific to this cluster. Moreover, these flagellar genes are encoded on MGEs. Mono-colonization with MGE-enriched T. nexilis made germ-free mice more susceptible to experimental autoimmune encephalomyelitis. These results indicate that the progression of MS may be promoted by MGE-enriched T. nexilis with potentially pathogenic properties.
Collapse
Affiliation(s)
- Daiki Takewaki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuya Kiguchi
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8568, Japan
| | - Hiroaki Masuoka
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mallahalli S Manu
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Ben J E Raveney
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Seiko Narushima
- Laboratory for Mucosal Immunity, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Rina Kurokawa
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yusuke Ogata
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukio Kimura
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Radiology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Noriko Sato
- Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Radiology, National Center of Neurology and Psychiatry Hospital, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yusuke Ozawa
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sosuke Yagishita
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Wataru Suda
- Laboratory for Symbiotic Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
2
|
Zhang W, Wang Y, Zhu M, Liu K, Zhang HL. Gut flora in multiple sclerosis: implications for pathogenesis and treatment. Neural Regen Res 2024; 19:1480-1488. [PMID: 38051890 PMCID: PMC10883522 DOI: 10.4103/1673-5374.387974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Multiple sclerosis is an inflammatory disorder characterized by inflammation, demyelination, and neurodegeneration in the central nervous system. Although current first-line therapies can help manage symptoms and slow down disease progression, there is no cure for multiple sclerosis. The gut-brain axis refers to complex communications between the gut flora and the immune, nervous, and endocrine systems, which bridges the functions of the gut and the brain. Disruptions in the gut flora, termed dysbiosis, can lead to systemic inflammation, leaky gut syndrome, and increased susceptibility to infections. The pathogenesis of multiple sclerosis involves a combination of genetic and environmental factors, and gut flora may play a pivotal role in regulating immune responses related to multiple sclerosis. To develop more effective therapies for multiple sclerosis, we should further uncover the disease processes involved in multiple sclerosis and gain a better understanding of the gut-brain axis. This review provides an overview of the role of the gut flora in multiple sclerosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Ying Wang
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Mingqin Zhu
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Kangding Liu
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Beijing, China
| |
Collapse
|
3
|
Li L, Zhou R, Sun L. Application of Theiler's murine encephalomyelitis virus in treatment of multiple sclerosis. Front Microbiol 2024; 15:1415365. [PMID: 38989030 PMCID: PMC11233754 DOI: 10.3389/fmicb.2024.1415365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Rui Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
4
|
Raghib MF, Bernitsas E. From Animal Models to Clinical Trials: The Potential of Antimicrobials in Multiple Sclerosis Treatment. Biomedicines 2023; 11:3069. [PMID: 38002068 PMCID: PMC10668955 DOI: 10.3390/biomedicines11113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Microbes, including bacteria and certain viruses, particularly Epstein-Barr virus (EBV), have been linked to the pathogenesis of MS. While there is currently no cure for MS, antibiotics and antivirals have been studied as potential treatment options due to their immunomodulatory ability that results in the regulation of the immune process. The current issue addressed in this systematic review is the effect of antimicrobials, including antibiotics, antivirals, and antiparasitic agents in animals and humans. We performed a comprehensive search of PubMed, Google Scholar, and Scopus for articles on antimicrobials in experimental autoimmune encephalomyelitis animal models of MS, as well as in people with MS (pwMS). In animal models, antibiotics tested included beta-lactams, minocycline, rapamycin, macrolides, and doxycycline. Antivirals included acyclovir, valacyclovir, and ganciclovir. Hydroxychloroquine was the only antiparasitic that was tested. In pwMS, we identified a total of 24 studies, 17 of them relevant to antibiotics, 6 to antivirals, and 1 relevant to antiparasitic hydroxychloroquine. While the effect of antimicrobials in animal models was promising, only minocycline and hydroxychloroquine improved outcome measures in pwMS. No favorable effect of the antivirals in humans has been observed yet. The number and size of clinical trials testing antimicrobials have been limited. Large, multicenter, well-designed studies are needed to further evaluate the effect of antimicrobials in MS.
Collapse
Affiliation(s)
- Muhammad Faraz Raghib
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Evanthia Bernitsas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Sastry Neuroimaging Laboratory, Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
6
|
Lalonde R, Strazielle C. Probiotic Influences on Motor Skills: A Review. Curr Neuropharmacol 2023; 21:2481-2486. [PMID: 37550907 PMCID: PMC10616912 DOI: 10.2174/1570159x21666230807150523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 08/09/2023] Open
Abstract
The effects of probiotics have mostly been shown to be favorable on measures of anxiety and stress. More recent experiments indicate single- and multi-strain probiotics in treating motorrelated diseases. Initial studies in patients with Parkinson's disease and Prader-Willi syndrome are concordant with this hypothesis. In addition, probiotics improved motor coordination in normal animals and models of Parkinson's disease, multiple sclerosis, and spinal cord injury as well as grip strength in hepatic encephalopathy. Further studies should delineate the most optimal bacterial profile under each condition.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
7
|
Benítez-Fernández R, Gil C, Guaza C, Mestre L, Martínez A. The Dual PDE7-GSK3β Inhibitor, VP3.15, as Neuroprotective Disease-Modifying Treatment in a Model of Primary Progressive Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms232214378. [PMID: 36430856 PMCID: PMC9694690 DOI: 10.3390/ijms232214378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, autoimmune and degenerative disease with axonal damage and demyelination as its main features. Its dual neurological and autoimmune nature makes it a disease that is difficult to treat. Treatments that simultaneously stop the immune response while protecting and repairing the nervous system are urgent. That is of utmost importance for the primary progressive multiple sclerosis (PPMS), a rare and severe variant of MS, characterized by worsening neurological function from the onset of symptoms. In this sense, inhibitors of glycogen synthase kinase 3β (GSK3β) and phosphodiesterase 7 (PDE7) have recently shown great therapeutic potential for the treatment of demyelinating diseases. Here we investigated a dual inhibitor of these two targets, the small molecule VP3.15, in a preclinical model, which resembles primary-progressive MS (PPMS), the Theiler's mouse encephalomyelitis virus-induced demyelinated disease (TMEV-IDD). In our study, VP3.15 ameliorates the disease course improving motor deficits of infected mice. Chronic treatment with VP3.15 also showed significant efficacy in the immunomodulation process, as well as in the proliferation and differentiation of oligodendroglial precursors, improving the preservation of myelin and axonal integrity. Therefore, our results support a treatment with the safe VP3.15 as an integrative therapeutic strategy for the treatment of PPMS.
Collapse
Affiliation(s)
- Rocio Benítez-Fernández
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Instituto Cajal-CSIC, Doctor Arce 37, 28002 Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Guaza
- Instituto Cajal-CSIC, Doctor Arce 37, 28002 Madrid, Spain
| | - Leyre Mestre
- Instituto Cajal-CSIC, Doctor Arce 37, 28002 Madrid, Spain
- Correspondence: (L.M.); (A.M.); Tel.: +34-918-703-112 (A.M.)
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029Madrid, Spain
- Correspondence: (L.M.); (A.M.); Tel.: +34-918-703-112 (A.M.)
| |
Collapse
|
8
|
D'Alessandro G, Marrocco F, Limatola C. Microglial cells: Sensors for neuronal activity and microbiota-derived molecules. Front Immunol 2022; 13:1011129. [PMID: 36426369 PMCID: PMC9679421 DOI: 10.3389/fimmu.2022.1011129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Microglial cells play pleiotropic homeostatic activities in the brain, during development and in adulthood. Microglia regulate synaptic activity and maturation, and continuously patrol brain parenchyma monitoring for and reacting to eventual alterations or damages. In the last two decades microglia were given a central role as an indicator to monitor the inflammatory state of brain parenchyma. However, the recent introduction of single cell scRNA analyses in several studies on the functional role of microglia, revealed a not-negligible spatio-temporal heterogeneity of microglial cell populations in the brain, both during healthy and in pathological conditions. Furthermore, the recent advances in the knowledge of the mechanisms involved in the modulation of cerebral activity induced by gut microbe-derived molecules open new perspectives for deciphering the role of microglial cells as possible mediators of these interactions. The aim of this review is to summarize the most recent studies correlating gut-derived molecules and vagal stimulation, as well as dysbiotic events, to alteration of brain functioning, and the contribution of microglial cells.
Collapse
Affiliation(s)
- Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Laboratory affiliated to Pasteur Italy, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| | - Francesco Marrocco
- Department of Physiology and Pharmacology, Laboratory affiliated to Pasteur Italy, University of Rome La Sapienza, Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Laboratory affiliated to Pasteur Italy, University of Rome La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
9
|
Melamed E, Palmer JL, Fonken C. Advantages and limitations of experimental autoimmune encephalomyelitis in breaking down the role of the gut microbiome in multiple sclerosis. Front Mol Neurosci 2022; 15:1019877. [PMID: 36407764 PMCID: PMC9672668 DOI: 10.3389/fnmol.2022.1019877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/11/2022] [Indexed: 08/22/2023] Open
Abstract
Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | | | |
Collapse
|
10
|
Gur M, Zuckerman-Levin N, Masarweh K, Hanna M, Laghi L, Marazzato M, Levanon S, Hakim F, Bar-Yoseph R, Wilschanski M, Bentur L. The effect of probiotic administration on metabolomics and glucose metabolism in CF patients. Pediatr Pulmonol 2022; 57:2335-2343. [PMID: 35676769 PMCID: PMC9796051 DOI: 10.1002/ppul.26037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Cystic fibrosis (CF)-related diabetes (CFRD) affects 50% of CF adults. Gut microbial imbalance (dysbiosis) aggravates their inflammatory response and contributes to insulin resistance (IR). We hypothesized that probiotics may improve glucose tolerance by correcting dysbiosis. METHODS A single-center prospective pilot study assessing the effect of Vivomixx® probiotic (450 billion/sachet) on clinical status, spirometry, lung clearance index (LCI), and quality of life (QOL) questionnaires; inflammatory parameters (urine and stool metabolomics, blood cytokines); and glucose metabolism (oral glucose tolerance test [OGTT]), continuous glucose monitoring [CGM], and homeostasis model assessment of IR (HOMA-IR) in CF patients. RESULTS Twenty-three CF patients (six CFRD), mean age 17.7 ± 8.2 years. After 4 months of probiotic administration, urinary cysteine (p = 0.018), lactulose (p = 0.028), arabinose (p = 0.036), mannitol (p = 0.041), and indole 3-lactate (p = 0.046) significantly increased, while 3-methylhistidine (p = 0.046) and N-acetyl glutamine (p = 0.047) decreased. Stool 2-Hydroxyisobutyrate (p = 0.022) and 3-methyl-2-oxovalerate (p = 0.034) decreased. Principal component analysis, based on urine metabolites, found significant partitions between subjects at the end of treatment compared to baseline (p = 0.004). After 2 months of probiotics, the digestive symptoms domain of Cystic Fibrosis Questionnaire-Revised improved (p = 0.007). In the nondiabetic patients, a slight decrease in HOMA-IR, from 2.28 to 1.86, was observed. There was no significant change in spirometry results, LCI, blood cytokines and CGM. CONCLUSIONS Changes in urine and stool metabolic profiles, following the administration of probiotics, may suggest a positive effect on glucose metabolism in CF. Larger long-term studies are needed to confirm our findings. Understanding the interplay between dysbiosis, inflammation, and glucose metabolism may help preventing CFRD.
Collapse
Affiliation(s)
- Michal Gur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nehama Zuckerman-Levin
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Pediatric Diabetes Unit, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Kamal Masarweh
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Moneera Hanna
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy.,Interdepartmental Centre for Industrial Agrofood Research, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Shir Levanon
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Fahed Hakim
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Bar-Yoseph
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Wilschanski
- Department of Pediatric Gastroenterology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Bentur
- Pediatric Pulmonary Institute and CF Center, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel.,Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
11
|
Yang M, Zheng X, Wu Y, Zhang R, Yang Q, Yu Z, Liu J, Zha B, Gong Q, Yang B, Sun B, Zeng M. Preliminary Observation of the Changes in the Intestinal Flora of Patients With Graves’ Disease Before and After Methimazole Treatment. Front Cell Infect Microbiol 2022; 12:794711. [PMID: 35402292 PMCID: PMC8989835 DOI: 10.3389/fcimb.2022.794711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Immune dysfunction caused by environmental factors plays an important role in the development of Graves’ disease (GD), and environmental factors are closely related to the intestinal flora. Our previous study showed significant changes in the intestinal flora in GD patients compared with healthy volunteers. This study analyzed the relationships between changes in the intestinal flora, thyroid function and relevant thyroid antibodies in GD patients before and after methimazole treatment. The subjects were divided into the UGD group (18 newly diagnosed GD patients), the TGD group (10 GD patients with normal or approximately normal thyroid function after methimazole treatment) and the NC group (11 healthy volunteers). Their fresh stool samples were sent for 16S rRNA gene amplification and Illumina platform sequencing. The correlations of the relative abundance of Bifidobacterium with the levels of TRAb, TgAb and TPOAb in the NC group and the UGD group were analyzed. A total of 1,562,445 high-quality sequences were obtained. In the UGD group, the abundances of Bifidobacterium and Collinsella were higher than that in the NC group; Bacteroides abundance in the TGD group was higher than that in the NC group, while Prevotella and Dialister abundances were lower than that in the NC group; Prevotella and Collinsella abundances in the UGD group were higher than that in the TGD group. The predominant abundance distribution of Bifidobacteriaceae in the UGD group at the family level was superior to that in the NC group. The abundance of Bifidobacterium was positively correlated with the levels of TRAb, TgAb, and TPOAb. The biological diversity of the intestinal flora was reduced in GD patients. After methimazole treatment, the composition of the intestinal flora was significantly altered. The change in Bifidobacterium abundance was positively correlated with TRAb, TgAb and TPOAb, suggesting that it might be related to the immune mechanism of GD. The results of this study may deepen our understanding of the pathogenesis of GD and provide a new idea for the treatment of GD.
Collapse
Affiliation(s)
- Mengxue Yang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Mengxue Yang,
| | - Xiaodi Zheng
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yueyue Wu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qian Yang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Bingbing Zha
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of the Ministry of Education, Zunyi Medical University, Zunyi, China
- Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bo Yang
- Department of Endocrinology, Zunyi Medical University, Zunyi, China
| | - Bowen Sun
- Department of Endocrinology, Zunyi Medical University, Zunyi, China
| | - Miao Zeng
- Department of Infectious Diseases I, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Farnesol induces protection against murine CNS inflammatory demyelination and modifies gut microbiome. Clin Immunol 2022; 235:108766. [PMID: 34091018 PMCID: PMC8660955 DOI: 10.1016/j.clim.2021.108766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Farnesol is a 15‑carbon organic isoprenol synthesized by plants and mammals with anti-oxidant, anti-inflammatory, and neuroprotective activities. We sought to determine whether farnesol treatment would result in protection against murine experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis (MS). We compared disease progression and severity in C57BL/6 mice treated orally with 100 mg/kg/day farnesol solubilized in corn oil to corn-oil treated and untreated EAE mice. Farnesol significantly delayed the onset of EAE (by ~2 days) and dramatically decreased disease severity (~80%) compared to controls. Disease protection by farnesol was associated with a significant reduction in spinal cord infiltration by monocytes-macrophages, dendritic cells, CD4+ T cells, and a significant change in gut microbiota composition, including a decrease in the Firmicutes:Bacteroidetes ratio. The study suggests FOL could protect MS patients against CNS inflammatory demyelination by partially modulating the gut microbiome composition.
Collapse
|
13
|
Park J, Kim CH. Regulation of common neurological disorders by gut microbial metabolites. Exp Mol Med 2021; 53:1821-1833. [PMID: 34857900 PMCID: PMC8741890 DOI: 10.1038/s12276-021-00703-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
The gut is connected to the CNS by immunological mediators, lymphocytes, neurotransmitters, microbes and microbial metabolites. A mounting body of evidence indicates that the microbiome exerts significant effects on immune cells and CNS cells. These effects frequently result in the suppression or exacerbation of inflammatory responses, the latter of which can lead to severe tissue damage, altered synapse formation and disrupted maintenance of the CNS. Herein, we review recent progress in research on the microbial regulation of CNS diseases with a focus on major gut microbial metabolites, such as short-chain fatty acids, tryptophan metabolites, and secondary bile acids. Pathological changes in the CNS are associated with dysbiosis and altered levels of microbial metabolites, which can further exacerbate various neurological disorders. The cellular and molecular mechanisms by which these gut microbial metabolites regulate inflammatory diseases in the CNS are discussed. We highlight the similarities and differences in the impact on four major CNS diseases, i.e., multiple sclerosis, Parkinson's disease, Alzheimer's disease, and autism spectrum disorder, to identify common cellular and molecular networks governing the regulation of cellular constituents and pathogenesis in the CNS by microbial metabolites.
Collapse
Affiliation(s)
- Jeongho Park
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Chidambaram SB, Essa MM, Rathipriya AG, Bishir M, Ray B, Mahalakshmi AM, Tousif AH, Sakharkar MK, Kashyap RS, Friedland RP, Monaghan TM. Gut dysbiosis, defective autophagy and altered immune responses in neurodegenerative diseases: Tales of a vicious cycle. Pharmacol Ther 2021; 231:107988. [PMID: 34536490 DOI: 10.1016/j.pharmthera.2021.107988] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
The human microbiota comprises trillions of symbiotic microorganisms and is involved in regulating gastrointestinal (GI), immune, nervous system and metabolic homeostasis. Recent observations suggest a bidirectional communication between the gut microbiota and the brain via immune, circulatory and neural pathways, termed the Gut-Brain Axis (GBA). Alterations in gut microbiota composition, such as seen with an increased number of pathobionts and a decreased number of symbionts, termed gut dysbiosis or microbial intestinal dysbiosis, plays a prominent role in the pathogenesis of central nervous system (CNS)-related disorders. Clinical reports confirm that GI symptoms often precede neurological symptoms several years before the development of neurodegenerative diseases (NDDs). Pathologically, gut dysbiosis disrupts the integrity of the intestinal barrier leading to ingress of pathobionts and toxic metabolites into the systemic circulation causing GBA dysregulation. Subsequently, chronic neuroinflammation via dysregulated immune activation triggers the accumulation of neurotoxic misfolded proteins in and around CNS cells resulting in neuronal death. Emerging evidence links gut dysbiosis to the aggravation and/or spread of proteinopathies from the peripheral nervous system to the CNS and defective autophagy-mediated proteinopathies. This review summarizes the current understanding of the role of gut microbiota in NDDs, and highlights a vicious cycle of gut dysbiosis, immune-mediated chronic neuroinflammation, impaired autophagy and proteinopathies, which contributes to the development of neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. We also discuss novel therapeutic strategies targeting the modulation of gut dysbiosis through prebiotics, probiotics, synbiotics or dietary interventions, and faecal microbial transplantation (FMT) in the management of NDDs.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India.
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman; Biomedical Sciences Department, University of Pacific, Sacramento, CA, USA.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai 600 094, Tamil Nadu, India
| | - Muhammed Bishir
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - A H Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, KA, India; Centre for Experimental Pharmacology and Toxicology (CPT), JSS Academy of Higher Education & Research, Mysuru 570015, KA, India
| | - Meena K Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Rajpal Singh Kashyap
- Research Centre, Dr G. M. Taori Central India Institute of Medical Sciences (CIIMS), Nagpur, Maharashtra, India
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY 40292, USA
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham NG7 2UH, UK; Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
15
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
16
|
Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Transl Med 2021; 19:317. [PMID: 34301274 PMCID: PMC8306367 DOI: 10.1186/s12967-021-02995-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Constipation is a common gastrointestinal dysfunction which has a potential impact on people's immune state and their quality of life. Here we investigated the effects of constipation on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Methods Constipation was induced by loperamide in female C57BL/6 mice. The alternations of gut microbiota, permeability of intestinal barrier and blood–brain barrier, and histopathology of colon were assessed after constipation induction. EAE was induced in the constipation mice. Fecal microbiota transplantation (FMT) was performed from constipation mice into microbiota-depleted mice. Clinical scores, histopathology of inflammation and demyelination, Treg/Th17 and Treg17/Teff17 imbalance both in the peripheral lymphatic organs and central nervous system, cytokines include TGF-β, GM-CSF, IL-10, IL-17A, IL-17F, IL-21, IL-22, and IL-23 in serum were assessed in different groups. Results Compared with the vehicle group, the constipation mice showed gut microbiota dysbiosis, colon inflammation and injury, and increased permeability of intestinal barrier and blood–brain barrier. We found that the clinical and pathological scores of the constipation EAE mice were severer than that of the EAE mice. Compared with the EAE mice, the constipation EAE mice showed reduced percentage of Treg and Treg17 cells, increased percentage of Th17 and Teff17 cells, and decreased ratio of Treg/Th17 and Treg17/Teff17 in the spleen, inguinal lymph nodes, brain, and spinal cord. Moreover, the serum levels of TGF-β, IL-10, and IL-21 were decreased while the GM-CSF, IL-17A, IL-17F, IL-22, and IL-23 were increased in the constipation EAE mice. In addition, these pathological processes could be transferred via their gut microbiota. Conclusions Our results verified that constipation induced gut microbiota dysbiosis exacerbated EAE via aggravating Treg/Th17 and Treg17/Teff17 imbalance and cytokines disturbance in C57BL/6 mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02995-z.
Collapse
|
17
|
Ghezzi L, Cantoni C, Pinget GV, Zhou Y, Piccio L. Targeting the gut to treat multiple sclerosis. J Clin Invest 2021; 131:e143774. [PMID: 34196310 DOI: 10.1172/jci143774] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The gut-brain axis (GBA) refers to the complex interactions between the gut microbiota and the nervous, immune, and endocrine systems, together linking brain and gut functions. Perturbations of the GBA have been reported in people with multiple sclerosis (pwMS), suggesting a possible role in disease pathogenesis and making it a potential therapeutic target. While research in the area is still in its infancy, a number of studies revealed that pwMS are more likely to exhibit altered microbiota, altered levels of short chain fatty acids and secondary bile products, and increased intestinal permeability. However, specific microbes and metabolites identified across studies and cohorts vary greatly. Small clinical and preclinical trials in pwMS and mouse models, in which microbial composition was manipulated through the use of antibiotics, fecal microbiota transplantation, and probiotic supplements, have provided promising outcomes in preventing CNS inflammation. However, results are not always consistent, and large-scale randomized controlled trials are lacking. Herein, we give an overview of how the GBA could contribute to MS pathogenesis, examine the different approaches tested to modulate the GBA, and discuss how they may impact neuroinflammation and demyelination in the CNS.
Collapse
Affiliation(s)
- Laura Ghezzi
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,University of Milan, Milan, Italy
| | - Claudia Cantoni
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gabriela V Pinget
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yanjiao Zhou
- Department of Medicine, School of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Laura Piccio
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA.,Brain and Mind Centre, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.,Hope Center for Neurological Disorders, Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Yu B, Wang L, Chu Y. Gut microbiota shape B cell in health and disease settings. J Leukoc Biol 2021; 110:271-281. [PMID: 33974295 DOI: 10.1002/jlb.1mr0321-660r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Recent accumulating evidence supports the hypothesis that the intricate interaction between gut microbiota and the immune system profoundly affects health and disease in humans and mice. In this context, microbiota plays an important role in educating and shaping the host immune system which, in turn, regulates gut microbiota diversity and function to maintain homeostasis. Studies have demonstrated that intestinal microbiota participates in shaping B cells in health and disease settings. Herein, we review the recent progress in understanding how microbiota regulates B-cell development, focusing on early-life B-cell repertoire generation in GALT and how microbial products, including microbial antigens and metabolites, affect B-cell activation and differentiation to ultimately regulate B-cell function. We also discuss the interaction between gut microbiota and B cells under pathogenic conditions and highlight new approaches that can be applied to treat various diseases.
Collapse
Affiliation(s)
- Baichao Yu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Endocrinology and Metabolism, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Biotherapy Research Center, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Mandal RK, Denny JE, Namazzi R, Opoka RO, Datta D, John CC, Schmidt NW. Dynamic modulation of spleen germinal center reactions by gut bacteria during Plasmodium infection. Cell Rep 2021; 35:109094. [PMID: 33979614 PMCID: PMC8141963 DOI: 10.1016/j.celrep.2021.109094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota educate the local and distal immune system in early life to imprint long-term immunological outcomes while maintaining the capacity to dynamically modulate the local mucosal immune system throughout life. It is unknown whether gut microbiota provide signals that dynamically regulate distal immune responses following an extra-gastrointestinal infection. We show here that gut bacteria composition correlated with the severity of malaria in children. Using the murine model of malaria, we demonstrate that parasite burden and spleen germinal center reactions are malleable to dynamic cues provided by gut bacteria. Whereas antibiotic-induced changes in gut bacteria have been associated with immunopathology or impairment of immunity, the data demonstrate that antibiotic-induced changes in gut bacteria can enhance immunity to Plasmodium. This effect is not universal but depends on baseline gut bacteria composition. These data demonstrate the dynamic communications that exist among gut bacteria, the gut-distal immune system, and control of Plasmodium infection.
Collapse
Affiliation(s)
- Rabindra K Mandal
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA; Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joshua E Denny
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nathan W Schmidt
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA; Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
20
|
B Cells and Microbiota in Autoimmunity. Int J Mol Sci 2021; 22:ijms22094846. [PMID: 34063669 PMCID: PMC8125537 DOI: 10.3390/ijms22094846] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Trillions of microorganisms inhabit the mucosal membranes maintaining a symbiotic relationship with the host's immune system. B cells are key players in this relationship because activated and differentiated B cells produce secretory immunoglobulin A (sIgA), which binds commensals to preserve a healthy microbial ecosystem. Mounting evidence shows that changes in the function and composition of the gut microbiota are associated with several autoimmune diseases suggesting that an imbalanced or dysbiotic microbiota contributes to autoimmune inflammation. Bacteria within the gut mucosa may modulate autoimmune inflammation through different mechanisms from commensals ability to induce B-cell clones that cross-react with host antigens or through regulation of B-cell subsets' capacity to produce cytokines. Commensal signals in the gut instigate the differentiation of IL-10 producing B cells and IL-10 producing IgA+ plasma cells that recirculate and exert regulatory functions. While the origin of the dysbiosis in autoimmunity is unclear, compelling evidence shows that specific species have a remarkable influence in shaping the inflammatory immune response. Further insight is necessary to dissect the complex interaction between microorganisms, genes, and the immune system. In this review, we will discuss the bidirectional interaction between commensals and B-cell responses in the context of autoimmune inflammation.
Collapse
|
21
|
Digehsara SG, Name N, Sartipnia N, Karim E, Taheri S, Ebrahimi MT, Arasteh J. Analysis of inflammasomes and CYP27B1 genes in cuprizone demyelinated C57BL/6 mice and evaluation of Th1 and Th2 patterns after oral administration of Lactobacillus casei strain T2 (IBRC-M10783). Microb Pathog 2021; 155:104931. [PMID: 33930419 DOI: 10.1016/j.micpath.2021.104931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022]
Abstract
Multiple sclerosis is characterized by the destruction of myelin in the CNS. Various factors including genetics, epigenetics, and environmental factors are involved in the development of the disease. There is evidence that changes in the gut microbiome profile are associated with immune-related diseases such as MS. Probiotics can alter the composition of the gut microbiota on the mucosal surfaces by differentiating naive T cells into Th1, Th2, Th17, and Treg cells. Female C57BL/6 mice were divided into 6 groups (n = 7): Normal group, cuprizone group (gavage of cuprizone for 4 weeks), Probiotic group (gavage of probiotic for 4 weeks), Treatment1 group (Probiotic for 4 weeks and then cuprizone for 4 weeks), treatment2 group (cuprizone for 4 weeks and then probiotic for 4 weeks) and treatment3 group (cuprizone for 4 weeks and then probiotic for 4 weeks with vitamin D3). Then the expression of NLRP-1, NLRP-3, AIM2, and CYP27B1 genes were evaluated using Real-Time PCR, and serum levels of IFN-γ and IL-4 were also measured by ELISA.The results showed a significant decrease in the expression of inflammasome and CYP27B1 genes in the probiotic-treated groups compared to the cuprizone group. Also, the comparison between probiotic-treated groups and cuprizone group showed a significant decrease in the amount of IFN-γ and IL-4. Due to reduced expression of the inflammasome genes as well as the decrease in IFN-γ levels as an inflammatory cytokine, it appears that L. casei may be effective in the healing process of demyelinated mice.
Collapse
Affiliation(s)
| | - Niloofar Name
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Sartipnia
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Elahe Karim
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | | | - Javad Arasteh
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
Almeida L, Dhillon-LaBrooy A, Castro CN, Adossa N, Carriche GM, Guderian M, Lippens S, Dennerlein S, Hesse C, Lambrecht BN, Berod L, Schauser L, Blazar BR, Kalesse M, Müller R, Moita LF, Sparwasser T. Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity 2020; 54:68-83.e6. [PMID: 33238133 PMCID: PMC7837214 DOI: 10.1016/j.immuni.2020.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressively compromised the integrity of the electron transport chain. Ultimately, this led to deficient oxidative phosphorylation, diminishing nicotinamide adenine dinucleotide concentrations and impairing cytokine production in differentiating T cells. In accordance, mice lacking mEF-G1 in T cells were protected from experimental autoimmune encephalomyelitis, demonstrating that this pathway is crucial in maintaining T cell function and pathogenicity.
Collapse
Affiliation(s)
- Luís Almeida
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Ayesha Dhillon-LaBrooy
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Carla N Castro
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany
| | - Nigatu Adossa
- QIAGEN, Aarhus C 8000, Denmark; University of Turku, Computational Biomedicine, Turku Center for Biotechnology, Turku 20520, Finland
| | - Guilhermina M Carriche
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany
| | | | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center, Göttingen 37073, Germany
| | - Christina Hesse
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | | | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN 55454, USA
| | - Markus Kalesse
- Institute for Organic Chemistry, Leibniz University Hannover, Hannover, Germany; Helmholtz Center for Infection Research (HZI), Braunschweig 38124, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Center for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Luís F Moita
- Innate Immunity and Inflammation Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Center for Experimental and Clinical Infection Research, Hannover Medical School and the Helmholtz Center for Infection Research, Hannover 30625, Germany; Institute of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| |
Collapse
|
23
|
Mestre L, Carrillo-Salinas FJ, Feliú A, Mecha M, Alonso G, Espejo C, Calvo-Barreiro L, Luque-García JL, Estevez H, Villar LM, Guaza C. How oral probiotics affect the severity of an experimental model of progressive multiple sclerosis? Bringing commensal bacteria into the neurodegenerative process. Gut Microbes 2020; 12:1813532. [PMID: 32900255 PMCID: PMC7524398 DOI: 10.1080/19490976.2020.1813532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A growing number of studies support that the bidirectional interactions between the gut microbiota, the immune system and the CNS are relevant for the pathophysiology of MS. Several studies have reported alterations in the gut microbiome of MS patients. In addition, a variety of studies in animal models of MS have suggested that specific members of the gut commensal microbiota can exacerbate or ameliorate neuroinflammation. Probiotics represent oral nontoxic immunomodulatory agents that would exert benefits when using in combination with current MS therapy. Here we investigate the effect of Vivomixx on the gut microbiome and central and peripheral immune responses in a murine model of primary progressive MS. Vivomixx administration was associated with increased abundance of many taxa such as Bacteroidetes, Actinobacteria, Tenericutes and TM7. This was accompanied by a clear improvement of the motor disability of Theiler's virus infected mice; in the CNS Vivomixx reduced microgliosis, astrogliosis and leukocyte infiltration. Notably, the presence of Breg cells (CD19+CD5+CD1dhigh) in the CNS was enhanced by Vivomixx, and while spinal cord gene expression of IL-1β and IL-6 was diminished, the probiotic promoted IL-10 gene expression. One of the most significant findings was the increased plasma levels of butyrate and acetate levels in TMEV-mice that received Vivomixx. Peripheral immunological changes were subtle but interestingly, the probiotic restricted IL-17 production by Th17-polarized CD4+ T-cells purified from the mesenteric lymph nodes of Theiler's virus infected mice. Our data reinforce the beneficial effects of oral probiotics that would be coadjuvant treatments to current MS therapies.
Collapse
Affiliation(s)
- Leyre Mestre
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain,Red Española de Esclerosis Múltiple (REEM),CONTACT Leyre Mestre ; Carmen Guaza Neuroimmunology Group, Functional and Systems Neurobiology Department Instituto Cajal, CSIC;; Madrid28002, Spain
| | - Francisco J. Carrillo-Salinas
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain,Tufts University School of Medicine, Boston, MA, USA
| | - Ana Feliú
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain,Red Española de Esclerosis Múltiple (REEM)
| | - Miriam Mecha
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain,Red Española de Esclerosis Múltiple (REEM)
| | - Graciela Alonso
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain,Red Española de Esclerosis Múltiple (REEM)
| | - Carmen Espejo
- Red Española de Esclerosis Múltiple (REEM),Servei de Neurología-Neuroimmunología, Centre d’Esclerosi Múltiple de Catalunya, Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Barcelona, Spain,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Calvo-Barreiro
- Servei de Neurología-Neuroimmunología, Centre d’Esclerosi Múltiple de Catalunya, Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Barcelona, Spain,Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - José L. Luque-García
- Analytical Chemistry Department, Complutense University of Madrid, Madrid, Spain
| | - Héctor Estevez
- Analytical Chemistry Department, Complutense University of Madrid, Madrid, Spain
| | - Luisa María Villar
- Red Española de Esclerosis Múltiple (REEM),Immunology Department, Hospital Universitario Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Guaza
- Neuroimmunology Group, Functional and Systems Neurobiology Department, Instituto Cajal, CSIC, Madrid, Spain,Red Española de Esclerosis Múltiple (REEM)
| |
Collapse
|
24
|
Suganya K, Koo BS. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int J Mol Sci 2020; 21:E7551. [PMID: 33066156 PMCID: PMC7589356 DOI: 10.3390/ijms21207551] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiome acts as an integral part of the gastrointestinal tract (GIT) that has the largest and vulnerable surface with desirable features to observe foods, nutrients, and environmental factors, as well as to differentiate commensals, invading pathogens, and others. It is well-known that the gut has a strong connection with the central nervous system (CNS) in the context of health and disease. A healthy gut with diverse microbes is vital for normal brain functions and emotional behaviors. In addition, the CNS controls most aspects of the GI physiology. The molecular interaction between the gut/microbiome and CNS is complex and bidirectional, ensuring the maintenance of gut homeostasis and proper digestion. Besides this, several mechanisms have been proposed, including endocrine, neuronal, toll-like receptor, and metabolites-dependent pathways. Changes in the bidirectional relationship between the GIT and CNS are linked with the pathogenesis of gastrointestinal and neurological disorders; therefore, the microbiota/gut-and-brain axis is an emerging and widely accepted concept. In this review, we summarize the recent findings supporting the role of the gut microbiota and immune system on the maintenance of brain functions and the development of neurological disorders. In addition, we highlight the recent advances in improving of neurological diseases by probiotics/prebiotics/synbiotics and fecal microbiota transplantation via the concept of the gut-brain axis.
Collapse
Affiliation(s)
- Kanmani Suganya
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University, Gyeongju 38066, Korea;
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University, Ilsan Hospital, 814 Siksa-dong, Goyang-si, Gyeonggi-do 10326, Korea
| |
Collapse
|
25
|
Kohl HM, Castillo AR, Ochoa-Repáraz J. The Microbiome as a Therapeutic Target for Multiple Sclerosis: Can Genetically Engineered Probiotics Treat the Disease? Diseases 2020; 8:diseases8030033. [PMID: 32872621 PMCID: PMC7563507 DOI: 10.3390/diseases8030033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
There is an increasing interest in the intestinal microbiota as a critical regulator of the development and function of the immune, nervous, and endocrine systems. Experimental work in animal models has provided the foundation for clinical studies to investigate associations between microbiota composition and function and human disease, including multiple sclerosis (MS). Initial work done using an animal model of brain inflammation, experimental autoimmune encephalomyelitis (EAE), suggests the existence of a microbiota-gut-brain axis connection in the context of MS, and microbiome sequence analyses reveal increases and decreases of microbial taxa in MS intestines. In this review, we discuss the impact of the intestinal microbiota on the immune system and the role of the microbiome-gut-brain axis in the neuroinflammatory disease MS. We also discuss experimental evidence supporting the hypothesis that modulating the intestinal microbiota through genetically modified probiotics may provide immunomodulatory and protective effects as a novel therapeutic approach to treat this devastating disease.
Collapse
|
26
|
Kim JS, Kirkland RA, Lee SH, Cawthon CR, Rzepka KW, Minaya DM, de Lartigue G, Czaja K, de La Serre CB. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Physiol Behav 2020; 225:113082. [PMID: 32682966 DOI: 10.1016/j.physbeh.2020.113082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Vagal afferent neurons (VAN), located in the nodose ganglion (NG) innervate the gut and terminate in the nucleus of solitary tract (NTS) in the brainstem. They are the primary sensory neurons integrating gut-derived signals to regulate meal size. Chronic high-fat diet (HFD) consumption impairs vagally mediated satiety, resulting in overfeeding. There is evidence that HFD consumption leads to alterations in both vagal nerve function and structural integrity. HFD also leads to marked gut microbiota dysbiosis; in rodent models, dysbiosis is sufficient to induce weight gain. In this study, we investigated the effect of microbiota dysbiosis on gut-brain vagal innervation independently of diet. To do so, we recolonized microbiota-depleted rats with gastrointestinal (GI) contents isolated from donor animals fed either a HFD (45 or 60% fat) or a low fat diet (LFD, 13% fat). We used two different depletion models while maintaining the animals on LFD: 1) conventionally raised Fischer and Wistar rats that underwent a depletion paradigm using an antibiotic cocktail and 2) germ free (GF) raised Fischer rats. Following recolonization, receiver animals were designated as ConvLF and ConvHF. Fecal samples were collected throughout these studies and analyzed via 16S Illumina sequencing. In both models, bacteria that were identified as characteristic of HFD were successfully transferred to recipient animals. Three weeks post-colonization, ConvHF rats showed significant increases in ionized calcium-binding adapter molecule-1 (Iba1) positive immune cells in the NG compared to ConvLF animals. Additionally, using isolectin B4 (IB4) staining to identify c-fibers, we found that, compared to ConvLF animals, ConvHF rats displayed decreased innervation at the level of the medial NTS; c-fibers at this level are believed to be primarily of vagal origin. This alteration in vagal structure was associated with a loss in satiety induced by the gut peptide cholecystokinin (CCK). Increased presence of immunocompetent Iba1+ cells along the gut-brain axis and alterations in NTS innervation were still evident in ConvHF rats compared to ConvLF animals 12 weeks post-colonization and were associated with increases in food intake and body weight (BW). We conclude from these data that microbiota dysbiosis can alter gut-brain vagal innervation, potentially via recruitment and/or activation of immune cells.
Collapse
Affiliation(s)
- J S Kim
- Dept. of Foods and Nutrition, USA
| | | | - S H Lee
- Dept. of Foods and Nutrition, USA
| | | | - K W Rzepka
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | - D M Minaya
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | - G de Lartigue
- Dept. of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - K Czaja
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
27
|
Omura S, Sato F, Park AM, Fujita M, Khadka S, Nakamura Y, Katsuki A, Nishio K, Gavins FNE, Tsunoda I. Bioinformatics Analysis of Gut Microbiota and CNS Transcriptome in Virus-Induced Acute Myelitis and Chronic Inflammatory Demyelination; Potential Association of Distinct Bacteria With CNS IgA Upregulation. Front Immunol 2020; 11:1138. [PMID: 32733435 PMCID: PMC7358278 DOI: 10.3389/fimmu.2020.01138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023] Open
Abstract
Virus infections have been associated with acute and chronic inflammatory central nervous system (CNS) diseases, e.g., acute flaccid myelitis (AFM) and multiple sclerosis (MS), where animal models support the pathogenic roles of viruses. In the spinal cord, Theiler's murine encephalomyelitis virus (TMEV) induces an AFM-like disease with gray matter inflammation during the acute phase, 1 week post infection (p.i.), and an MS-like disease with white matter inflammation during the chronic phase, 1 month p.i. Although gut microbiota has been proposed to affect immune responses contributing to pathological conditions in remote organs, including the brain pathophysiology, its precise role in neuroinflammatory diseases is unclear. We infected SJL/J mice with TMEV; harvested feces and spinal cords on days 4 (before onset), 7 (acute phase), and 35 (chronic phase) p.i.; and examined fecal microbiota by 16S rRNA sequencing and CNS transcriptome by RNA sequencing. Although TMEV infection neither decreased microbial diversity nor changed overall microbiome patterns, it increased abundance of individual bacterial genera Marvinbryantia on days 7 and 35 p.i. and Coprococcus on day 35 p.i., whose pattern-matching with CNS transcriptome showed strong correlations: Marvinbryantia with eight T-cell receptor (TCR) genes on day 7 and with seven immunoglobulin (Ig) genes on day 35 p.i.; and Coprococcus with gene expressions of not only TCRs and IgG/IgA, but also major histocompatibility complex (MHC) and complements. The high gene expression of IgA, a component of mucosal immunity, in the CNS was unexpected. However, we observed substantial IgA positive cells and deposition in the CNS, as well as a strong correlation between CNS IgA gene expression and serum anti-TMEV IgA titers. Here, changes in a small number of distinct gut bacteria, but not overall gut microbiota, could affect acute and chronic immune responses, causing AFM- and MS-like lesions in the CNS. Alternatively, activated immune responses would alter the composition of gut microbiota.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Sundar Khadka
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yumina Nakamura
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Aoshi Katsuki
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Felicity N. E. Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osaka, Japan
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
28
|
Beneficial and Detrimental Effects of Regulatory T Cells in Neurotropic Virus Infections. Int J Mol Sci 2020; 21:ijms21051705. [PMID: 32131483 PMCID: PMC7084400 DOI: 10.3390/ijms21051705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neurotropic viruses infect the central nervous system (CNS) and cause acute or chronic neurologic disabilities. Regulatory T cells (Treg) play a critical role for immune homeostasis, but may inhibit pathogen-specific immunity in infectious disorders. The present review summarizes the current knowledge about Treg in human CNS infections and their animal models. Besides dampening pathogen-induced immunopathology, Treg have the ability to facilitate protective responses by supporting effector T cell trafficking to the infection site and the development of resident memory T cells. Moreover, Treg can reduce virus replication by inducing apoptosis of infected macrophages and attenuate neurotoxic astrogliosis and pro-inflammatory microglial responses. By contrast, detrimental effects of Treg are caused by suppression of antiviral immunity, allowing for virus persistence and latency. Opposing disease outcomes following Treg manipulation in different models might be attributed to differences in technique and timing of intervention, infection route, genetic background, and the host’s age. In addition, mouse models of virus-induced demyelination revealed that Treg are able to reduce autoimmunity and immune-mediated CNS damage in a disease phase-dependent manner. Understanding the unique properties of Treg and their complex interplay with effector cells represents a prerequisite for the development of new therapeutic approaches in neurotropic virus infections.
Collapse
|
29
|
Dworsky-Fried Z, Kerr BJ, Taylor AMW. Microbes, microglia, and pain. NEUROBIOLOGY OF PAIN 2020; 7:100045. [PMID: 32072077 PMCID: PMC7016021 DOI: 10.1016/j.ynpai.2020.100045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Explore the connection between the gut microbiome and microglia in chronic pain. Discuss mechanisms by which gut bacteria might influence microglia to contribute to chronic pain. Highlight gaps in knowledge and discuss future directions for the field.
Globally, it is estimated that one in five people suffer from chronic pain, with prevalence increasing with age. The pathophysiology of chronic pain encompasses complex sensory, immune, and inflammatory interactions within both the central and peripheral nervous systems. Microglia, the resident macrophages of the central nervous system (CNS), are critically involved in the initiation and persistence of chronic pain. Microglia respond to local signals from the CNS but are also modulated by signals from the gastrointestinal tract. Emerging data from preclinical and clinical studies suggest that communication between the gut microbiome, the community of bacteria residing within the gut, and microglia is involved in producing chronic pain. Targeted strategies that manipulate or restore the gut microbiome have been shown to reduce microglial activation and alleviate symptoms associated with inflammation. These data indicate that manipulations of the gut microbiome in chronic pain patients might be a viable strategy in improving pain outcomes. Herein, we discuss the evidence for a connection between microglia and the gut microbiome and explore the mechanisms by which commensal bacteria might influence microglial reactivity to drive chronic pain.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G2H7, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton T6G2H7, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G2H7, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton T6G2H7, Canada
| |
Collapse
|
30
|
Bianchi VE, Herrera PF, Laura R. Effect of nutrition on neurodegenerative diseases. A systematic review. Nutr Neurosci 2019; 24:810-834. [PMID: 31684843 DOI: 10.1080/1028415x.2019.1681088] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are characterized by the progressive functional loss of neurons in the brain, causing cognitive impairment and motoneuron disability. Although multifactorial interactions are evident, nutrition plays an essential role in the pathogenesis and evolution of these diseases. A systematic literature search was performed, and the prevalence of studies evaluated the effect of the Mediterranean diet (MeDiet), nutritional support, EPA and DHA, and vitamins on memory and cognition impairment. The data showed that malnutrition and low body mass index (BMI) is correlated with the higher development of dementia and mortality. MeDiet, nutritional support, and calorie-controlled diets play a protective effect against cognitive decline, Alzheimer's disease (AD), Parkinson disease (PD) while malnutrition and insulin resistance represent significant risk factors. Malnutrition activates also the gut-microbiota-brain axis dysfunction that exacerbate neurogenerative process. Omega-3 and -6, and the vitamins supplementation seem to be less effective in protecting neuron degeneration. Insulin activity is a prevalent factor contributing to brain health while malnutrition correlated with the higher development of dementia and mortality.
Collapse
Affiliation(s)
| | - Pomares Fredy Herrera
- Director del Centro de Telemedicina, Grupo de investigación en Atención Primaria en salud/Telesalud, Doctorado en Medicina /Neurociencias, University of Cartagena, Colombia
| | - Rizzi Laura
- Molecular Biology, School of Medicine and Surgery, University of Milano-Bicocca, Monza Brianza, Italy
| |
Collapse
|
31
|
van de Wouw M, Boehme M, Dinan TG, Cryan JF. Monocyte mobilisation, microbiota & mental illness. Brain Behav Immun 2019; 81:74-91. [PMID: 31330299 DOI: 10.1016/j.bbi.2019.07.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal microbiome has emerged as a key player in regulating brain and behaviour. This has led to the strategy of targeting the gut microbiota to ameliorate disorders of the central nervous system. Understanding the underlying signalling pathways in which the microbiota impacts these disorders is crucial for the development of future therapeutics for improving CNS functionality. One of the major pathways through which the microbiota influences the brain is the immune system, where there is an increasing appreciation for the role of monocyte trafficking in regulating brain homeostasis. In this review, we will shed light on the role of monocyte trafficking as a relay of microbiota signals in conditions where the central nervous system is in disorder, such as stress, peripheral inflammation, ageing, traumatic brain injury, stroke, multiple sclerosis, Alzheimer's disease and Parkinson's disease. We also cover how the gastrointestinal microbiota is implicated in these mental illnesses. In addition, we aim to discuss how the monocyte system can be modulated by the gut microbiota to mitigate disorders of the central nervous system, which will lead to novel microbiota-targeted strategies.
Collapse
Affiliation(s)
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|