1
|
Luo M, Zhang W, Yang J, Du X, Wang X, Xu G, Tang H, Wang Z, Zhong X, Feng J, Ma N. CD83 mediates the inhibitory effect of the S1PR1 agonist CYM5442 on LPS-induced M1 polarization of macrophages through the ERK-STAT-1 signaling pathway. Int Immunopharmacol 2024; 143:113526. [PMID: 39486189 DOI: 10.1016/j.intimp.2024.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Macrophages possess M1/M2 polarization, which perform an essential role in immunology and inflammation studies. However, few studies have investigated the specific molecules involved in the polarization process beyond its induction and characterization. Here, we determined that the molecule S1PR1 regulates M1 polarization in macrophages and that the surface marker CD83 is involved in this process. The S1PR1 agonist CYM5442 specifically increases CD83 expression in macrophages. Although the agonist CYM5442 and LPS regulate CD83 differently in macrophages, they have a synergistic effect that enhances CD83 expression. Notably, CYM5442 does not act synergistically with IL-4 regarding CD83 expression and does not affect IL-4-induced macrophage M2 polarization. Furthermore, CYM5442 inhibits the expression of LPS-induced inflammatory cytokines and the phosphorylation of ERK1/2 and STAT-1 in macrophages. However, this inhibition was significantly diminished or absent when CD83 is deficient, highlighting the importance of CD83 in mediating S1PR1 signaling in LPS-induced M1 polarization of macrophages. Overall, our findings provide valuable insights into the molecular mechanisms underlying macrophage polarization, particularly the roles of S1PR1 and CD83 in modulating inflammatory responses.
Collapse
Affiliation(s)
- MeiHua Luo
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Wei Zhang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Juan Yang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xi Du
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Guofeng Xu
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Zhibin Wang
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Xiaolin Zhong
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Jianguo Feng
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Ning Ma
- Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
2
|
Lu X, Ji Q, Pan H, Feng Y, Ye D, Gan L, Wan J, Ye J. IL-23p19 deficiency reduces M1 macrophage polarization and improves stress-induced cardiac remodeling by alleviating macrophage ferroptosis in mice. Biochem Pharmacol 2024; 222:116072. [PMID: 38387530 DOI: 10.1016/j.bcp.2024.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Interleukin-23p19 (IL-23p19) has been demonstrated to be involved in the occurrence and development of cardiovascular diseases such as myocardial infarction and atherosclerosis. This study aimed to examine whether IL-23p19 regulates cardiac remodeling processes and explore its possible mechanisms. METHODS AND RESULTS Transverse aortic constriction was performed to construct a mouse cardiac remodeling model, and sham surgery was used as a control. The results showed that IL-23p19 expression was increased in the heart after surgery and may be mainly produced by cardiac macrophages. Knockout of IL-23p19 attenuated M1 macrophage polarization, reduced ferroptosis, improved the process of cardiac remodeling and alleviated cardiac dysfunction in TAC mice. Cell culture experiments found that macrophages were the main cause of ferroptosis when phenylephrine (PE) was added, and blocking ferroptosis with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, significantly inhibited M1 macrophage polarization. Treatment with Fer-1 also improved cardiac remodeling and alleviated cardiac dysfunction in IL-23p19-/- mice subjected to TAC surgery. Finally, TAC IL-23p19-/- mice that were administered macrophages isolated from WT mice exhibited an increased proportion of M1 macrophages and aggravated cardiac remodeling, and these effects were reversed when Fer-1 was administered. CONCLUSION Knockout of IL-23p19 may attenuate M1 macrophage polarization to improve the cardiac remodeling process by reducing macrophage ferroptosis, and IL-23p19 may be a potential target for the prevention and treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Qingwei Ji
- Department of Cardiology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China; Institute of Cardiovascular Diseases, Guangxi Academy of Medical Sciences, Nanning, China
| | - Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Liren Gan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
3
|
Li X, Jiang F, Hu Y, Lang Z, Zhan Y, Zhang R, Tao Q, Luo C, Yu J, Zheng J. Schisandrin B Promotes Hepatic Stellate Cell Ferroptosis via Wnt Pathway-Mediated Ly6C lo Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37922022 DOI: 10.1021/acs.jafc.3c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
A key event in liver fibrosis is the activation of the hepatic stellate cell (HSC). Schisandrin B (Sch B), a major component extracted from Schisandra chinensis, has been shown to inhibit HSC activation. Recently, ferroptosis (FPT) has been reported to be involved in HSC activation. However, whether Sch B has an effect on the HSC FPT remains unclear. Herein, we explored the effects of Sch B on liver fibrosis in vivo and in vitro and the roles of Wnt agonist 1 and ferrostatin-1 in the antifibrotic effects of Sch B. Sch B effectively alleviated CCl4-induced liver fibrosis, with decreased collagen deposition and α-SMA level. Additionally, Sch B resulted in an increase in lymphocyte antigen 6 complex locus C low (Ly6Clo) macrophages, contributing to a reduced level of TIMP1 and increased MMP2. Notably, the Wnt pathway was involved in Sch B-mediated Ly6C macrophage phenotypic transformation. Further studies demonstrated that Sch B-treated macrophages had an inhibitory effect on HSC activation, which was associated with HSC FPT. GPX4, a negative regulator of FPT, was induced by Sch B and found to be involved in the crosstalk between macrophage and HSC FPT. Furthermore, HSC inactivation as well as FPT induced by Sch B-treated macrophages was blocked down by Wnt pathway agonist 1. Collectively, we demonstrate that Sch B inhibits liver fibrosis, at least partially, through mediating Ly6Clo macrophages and HSC FPT. Sch B enhances Wnt pathway inactivation, leading to the increase in Ly6Clo macrophages, which contributes to HSC FPT. Sch B may be a promising drug for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Feng Jiang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhang Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengchu Luo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinglu Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Department of Laboratory Medicine, Lishui Municipal Central Hospital,Lishui 323020, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
4
|
Zhang Q, Song Q, Liu S, Xu Y, Gao D, Lu P, Liu Y, Zhao G, Wu L, Zhao C, Yang J. Integrated transcriptomic and metabolomic analysis reveals the metabolic programming of GM-CSF- and M-CSF- differentiated mouse macrophages. Front Immunol 2023; 14:1230772. [PMID: 37818352 PMCID: PMC10560851 DOI: 10.3389/fimmu.2023.1230772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Macrophages play a critical role in the inflammatory response and tumor development. Macrophages are primarily divided into pro-inflammatory M1-like and anti-inflammatory M2-like macrophages based on their activation status and functions. In vitro macrophage models could be derived from mouse bone marrow cells stimulated with two types of differentiation factors: GM-CSF (GM-BMDMs) and M-CSF (M-BMDMs), to represent M1- and M2-like macrophages, respectively. Since macrophage differentiation requires coordinated metabolic reprogramming and transcriptional rewiring in order to fulfill their distinct roles, we combined both transcriptome and metabolome analysis, coupled with experimental validation, to gain insight into the metabolic status of GM- and M-BMDMs. The data revealed higher levels of the tricarboxylic acid cycle (TCA cycle), oxidative phosphorylation (OXPHOS), fatty acid oxidation (FAO), and urea and ornithine production from arginine in GM-BMDMs, and a preference for glycolysis, fatty acid storage, bile acid metabolism, and citrulline and nitric oxide (NO) production from arginine in M-BMDMs. Correlation analysis with the proteomic data showed high consistency in the mRNA and protein levels of metabolic genes. Similar results were also obtained when compared to RNA-seq data of human monocyte derived macrophages from the GEO database. Furthermore, canonical macrophage functions such as inflammatory response and phagocytosis were tightly associated with the representative metabolic pathways. In the current study, we identified the core metabolites, metabolic genes, and functional terms of the two distinct mouse macrophage populations. We also distinguished the metabolic influences of the differentiation factors GM-CSF and M-CSF, and wish to provide valuable information for in vitro macrophage studies.
Collapse
Affiliation(s)
- Qianyue Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qiaoling Song
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shan Liu
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Yuting Xu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Danling Gao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peizhe Lu
- Department of Neuroscience, University of Michigan, Ann Arbor, MI, United States
| | - Yuantao Liu
- Department of Endocrinology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Guanghui Zhao
- Medical Laboratory Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Oncology Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lihong Wu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
5
|
Zang R, Xue L, Zhang M, Peng X, Li X, Du K, Shi C, Liu Y, Lin Y, Han W, Yu R, Wang Q, Yang J, Wang X, Jiang T. Design and syntheses of a bimolecular STING agonist based on the covalent STING antagonist. Eur J Med Chem 2023; 250:115184. [PMID: 36758305 DOI: 10.1016/j.ejmech.2023.115184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Cyclic GMP-AMP synthase and stimulator of interferon genes (cGAS-STING) signaling stimulators, an essential innate immunity component, monitor invading pathogen DNA and damaged self-DNA, making them an appealing target for drug development. The natural STING agonist, 2'3'-cGAMP, mounts and stabilizes the STING homodimer to trigger an antiviral or antitumor immune responses. However, cyclic-dinucleotide-based STING agonists show limited clinical effects owing to their short half-lives. To explore whether STING-dimer stabilizers could trigger STING signaling instead of cyclic dinucleotide-based molecules, we analyzed the structural characteristics of STING to design and synthesize a series of compounds based on the covalent STING inhibitor C-170, three of which were 23, 26, and 27, exhibited STING-dependent immune activation, both in vitro and in vivo. Compound 23 could act synergistically with cGAMP and other STING agonists as a promising moderate STING agonist. This indicates that promoting STING dimerization is a promising strategy for designing next-generation STING agonists.
Collapse
Affiliation(s)
- Ruochen Zang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266100, China
| | - Liang Xue
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts and Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xiaoyue Peng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Xionghao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Kaixin Du
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Chuanqin Shi
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Center of Translational Medicine, ZiBo Central Hospital, Zibo, 255036, China
| | - Yuqian Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Yuxi Lin
- Institute of Cancer Biology and Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenwei Han
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University (Qingdao), Qingdao, 266100, China; Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jinbo Yang
- Marine Drug Screening and Evaluation Platform, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, 266071, China
| | - Xin Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Marine Drug Screening and Evaluation Platform, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, 266071, China.
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts and Innovation Center for Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
6
|
Song Q, Datta S, Liang X, Xu X, Pavicic P, Zhang X, Zhao Y, Liu S, Zhao J, Xu Y, Xu J, Wu L, Wu Z, Zhang M, Zhao Z, Lin C, Wang Y, Han P, Jiang P, Qin Y, Li W, Zhang Y, Luo Y, Sen G, Stark GR, Zhao C, Hamilton T, Yang J. Type I interferon signaling facilitates resolution of acute liver injury by priming macrophage polarization. Cell Mol Immunol 2023; 20:143-157. [PMID: 36596875 PMCID: PMC9886918 DOI: 10.1038/s41423-022-00966-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Due to their broad functional plasticity, myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury (APAP-ALI). A comprehensive understanding of cellular diversity and intercellular crosstalk is essential to elucidate the mechanisms and to develop therapeutic strategies for APAP-ALI treatment. Here, we identified the function of IFN-I in the myeloid compartment during APAP-ALI. Utilizing single-cell RNA sequencing, we characterized the cellular atlas and dynamic progression of liver CD11b+ cells post APAP-ALI in WT and STAT2 T403A mice, which was further validated by immunofluorescence staining, bulk RNA-seq, and functional experiments in vitro and in vivo. We identified IFN-I-dependent transcriptional programs in a three-way communication pathway that involved IFN-I synthesis in intermediate restorative macrophages, leading to CSF-1 production in aging neutrophils that ultimately enabled Trem2+ restorative macrophage maturation, contributing to efficient liver repair. Overall, we uncovered the heterogeneity of hepatic myeloid cells in APAP-ALI at single-cell resolution and the therapeutic potential of IFN-I in the treatment of APAP-ALI.
Collapse
Affiliation(s)
- Qiaoling Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shyamasree Datta
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xue Liang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Xiaohan Xu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Paul Pavicic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiaonan Zhang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuanyuan Zhao
- Department of Radiation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Zhao
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Xu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lihong Wu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihua Wu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Minghui Zhang
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhan Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chunhua Lin
- Department of Urology, Yantai Yuhuangding Hospital, Yantai, China
| | - Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Peng Han
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Peng Jiang
- Department of Radiation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yating Qin
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Wei Li
- Department of Radiation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Shenzhen, China
| | - Ganes Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - George R Stark
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chenyang Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Thomas Hamilton
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Song Q, Zhang Y, Zhou M, Xu Y, Zhang Q, Wu L, Liu S, Zhang M, Zhang L, Wu Z, Peng W, Liu X, Zhao C. The Culture Dish Surface Influences the Phenotype and Dissociation Strategy in Distinct Mouse Macrophage Populations. Front Immunol 2022; 13:920232. [PMID: 35874686 PMCID: PMC9299442 DOI: 10.3389/fimmu.2022.920232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
The nature of the culture dish surface and the technique used to detach adherent cells could very likely influence the cell viability and cell membrane protein integrity of harvested macrophages. Several previous studies assessed the detachment efficacies of enzymatic and non-enzymatic methods for harvesting the single cell suspensions of macrophages, but a comprehensive study assessing different dissociation methods and culture conditions for detaching functionally different macrophage populations has not yet been reported. In this study, via the well-established GM-CSF and M-CSF differentiated bone marrow derived macrophage models (GM-BMDMs and M-BMDMs), we compared four commonly used enzymatic (trypsin and accutase) and non-enzymatic (PBS and EDTA) dissociation methods along with necessary mechanical detaching steps (scraping and pipetting) to evaluate the viable cell recovery and cell surface marker integrality of GM-BMDMs and M-BMDMs cultured on standard cell culture dish (TC dish), or on culture dish (noTC dish) that was not conditioned to enhance adherence. The data showed that accutase yielded a better recovery of viable cells comparing with PBS and EDTA, especially for tightly adherent GM-BMDMs on TC dishes, with a relatively higher level of detected cell membrane marker F4/80 than trypsin. An additional gradient centrifugation-based dead cell removal approach could increase the proportion of viable cells for TC cultured GM-BMDMs after accutase dissociation. Furthermore, transcriptome analysis was performed to evaluate the putative influence of culture dishes. At steady state, BMDMs cultured on noTC dishes exhibited more proinflammatory gene expression signatures (e.g. IL6, CXCL2 and ILlβ) and functions (e.g. TNF and IL17 signaling pathways). Similar inflammatory responses were observed upon LPS challenge regardless of culture conditions and differentiation factors. However, in LPS treated samples, the difference of gene expression patterns, signaling pathways and molecular functions between TC and noTC cultured BMDMs were largely dependent on the types of growth factors (M-CSF and GM-CSF). This observation might provide valuable information for in vitro macrophage studies.
Collapse
Affiliation(s)
- Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Mingming Zhou
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qianyue Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lihong Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Shan Liu
- Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Minghui Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lei Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihua Wu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Weixun Peng
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xutao Liu
- Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, United States
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
8
|
Wei W, Zhang Y, Song Q, Zhang Q, Zhang X, Liu X, Wu Z, Xu X, Xu Y, Yan Y, Zhao C, Yang J. Transmissible ER stress between macrophages and tumor cells configures tumor microenvironment. Cell Mol Life Sci 2022; 79:403. [PMID: 35799071 PMCID: PMC11073001 DOI: 10.1007/s00018-022-04413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Endoplasmic reticulum (ER) stress initiates the unfolded protein response (UPR) and is decisive for tumor cell growth and tumor microenvironment (TME) maintenance. Tumor cells persistently undergo ER stress and could transmit it to the neighboring macrophages and surroundings. Tumor infiltrating macrophages can also adapt to the microenvironment variations to fulfill their highly energy-demanding and biological functions via ER stress. However, whether the different macrophage populations differentially sense ER stress and transmit ER stress to surrounding tumor cells has not yet been elucidated. Here, we aimed to investigate the role of transmissible ER stress, a novel regulator of intercellular communication in the TME. Murine bone marrow-derived macrophage (BMDM) can be polarized toward distinct functional endpoints termed classical (M1) and alternative (M2) activation, and their polarization status has been shown to be tightly correlated with their functional significance. We showed that tumor cells could receive the transmissible ER stress from two differentially polarized macrophage populations with different extent of ER stress activation. The proinflammatory M1-like macrophages respond to ER stress with less extent, however they could transmit more ER stress to tumor cells. Moreover, by analyzing the secreted components of two ER-stressed macrophage populations, we identified certain damage-associated molecular patterns (DAMPs), including S100A8 and S100A9, which are dominantly secreted by M1-like macrophages could lead to significant recipient tumor cells death in synergy with transferred ER stress.
Collapse
Affiliation(s)
- Wei Wei
- Institute of Cancer Biology and Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
| | - Yazhuo Zhang
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Qiaoling Song
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Qianyue Zhang
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Xiaonan Zhang
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
| | - Xinning Liu
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Zhihua Wu
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
| | - Xiaohan Xu
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Yuting Xu
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Yu Yan
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China
| | - Chenyang Zhao
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China.
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China.
| | - Jinbo Yang
- Institute of Cancer Biology and Drug Screening, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China.
- Innovation Center for Marine Drug Screening and Evaluation, Qingdao National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Qingdao, 266100, Shandong, China.
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266071, Shandong, China.
| |
Collapse
|
9
|
Zhao Z, Zhang Y, Gao D, Zhang Y, Han W, Xu X, Song Q, Zhao C, Yang J. Inhibition of Histone H3 Lysine-27 Demethylase Activity Relieves Rheumatoid Arthritis Symptoms via Repression of IL6 Transcription in Macrophages. Front Immunol 2022; 13:818070. [PMID: 35371061 PMCID: PMC8965057 DOI: 10.3389/fimmu.2022.818070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) occurs in about 5 per 1,000 people and can lead to severe joint damage and disability. However, the knowledge of pathogenesis and treatment for RA remains limited. Here, we found that histone demethylase inhibitor GSK-J4 relieved collagen induced arthritis (CIA) symptom in experimental mice model, and the underlying mechanism is related to epigenetic transcriptional regulation in macrophages. The role of epigenetic regulation has been introduced in the process of macrophage polarization and the pathogenesis of inflammatory diseases. As a repressive epigenetic marker, tri-methylation of lysine 27 on histone H3 (H3K27me3) was shown to be important for transcriptional gene expression regulation. Here, we comprehensively analyzed H3K27me3 binding promoter and corresponding genes function by RNA sequencing in two differentially polarized macrophage populations. The results revealed that H3K27me3 binds on the promoter regions of multiple critical cytokine genes and suppressed their transcription, such as IL6, specifically in M-CSF derived macrophages but not GM-CSF derived counterparts. Our results may provide a new approach for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Zhan Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Danling Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenwei Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Yan Y, Zhang Y, Li M, Zhang Y, Zhang X, Zhang X, Xu Y, Wei W, Wang J, Xu X, Song Q, Zhao C. C644-0303, a small-molecule inhibitor of the Wnt/β-catenin pathway, suppresses colorectal cancer growth. Cancer Sci 2021; 112:4722-4735. [PMID: 34431598 PMCID: PMC8586673 DOI: 10.1111/cas.15118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β‐catenin signaling pathway plays an important role in tissue homeostasis, and its malignant activation is closely related to the occurrence and development of many cancers, especially colorectal cancer with adenomatous polyposis coli (APC) and CTNNB1 mutations. By applying a TCF/lymphoid‐enhancing factor (LEF) luciferase reporter system, the high‐throughput screening of 18 840 small‐molecule compounds was performed. A novel scaffold compound, C644‐0303, was identified as a Wnt/β‐catenin signaling inhibitor and exhibited antitumor efficacy. It inhibited both constitutive and ligand activated Wnt signals and its downstream gene expression. Functional studies showed that C644‐0303 causes cell cycle arrest, induces apoptosis, and inhibits cancer cell migration. Moreover, transcription factor array indicated that C644‐0303 could suppress various tumor‐promoting transcription factor activities in addition to Wnt/β‐catenin. Finally, C644‐0303 suppressed tumor spheroidization in a 3‐dimensional cell culture model and inhibited xenograft tumor growth in mice. In conclusion, we report a novel structural small molecular inhibitor targeting the Wnt/β‐catenin signaling pathway that has therapeutic potential for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yu Yan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Mengyuan Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaonan Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wei Wei
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
FATP4 inactivation in cultured macrophages attenuates M1- and ER stress-induced cytokine release via a metabolic shift towards triacylglycerides. Biochem J 2021; 478:1861-1877. [PMID: 33900381 DOI: 10.1042/bcj20210155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022]
Abstract
Fatty acid transport protein 4 (FATP4) belongs to a family of acyl-CoA synthetases which activate long-chain fatty acids into acyl-CoAs subsequently used in specific metabolic pathways. Patients with FATP4 mutations and Fatp4-null mice show thick desquamating skin and other complications, however, FATP4 role on macrophage functions has not been studied. We here determined whether the levels of macrophage glycerophospholipids, sphingolipids including ceramides, triacylglycerides, and cytokine release could be altered by FATP4 inactivation. Two in vitro experimental systems were studied: FATP4 knockdown in THP-1-derived macrophages undergoing M1 (LPS + IFNγ) or M2 (IL-4) activation and bone marrow-derived macrophages (BMDMs) from macrophage-specific Fatp4-knockout (Fatp4M-/-) mice undergoing tunicamycin (TM)-induced endoplasmic reticulum stress. FATP4-deficient macrophages showed a metabolic shift towards triacylglycerides and were protected from M1- or TM-induced release of pro-inflammatory cytokines and cellular injury. Fatp4M-/- BMDMs showed specificity in attenuating TM-induced activation of inositol-requiring enzyme1α, but not other unfolded protein response pathways. Under basal conditions, FATP4/Fatp4 deficiency decreased the levels of ceramides and induced an up-regulation of mannose receptor CD206 expression. The deficiency led to an attenuation of IL-8 release in THP-1 cells as well as TNF-α and IL-12 release in BMDMs. Thus, FATP4 functions as an acyl-CoA synthetase in macrophages and its inactivation suppresses the release of pro-inflammatory cytokines by shifting fatty acids towards the synthesis of specific lipids.
Collapse
|
12
|
Lu Q, Wang J, Zhang X, Tian R, Qiao L, Ge L, Pan J, Wang L. TXNDC5 protects synovial fibroblasts of rheumatoid arthritis from the detrimental effects of endoplasmic reticulum stress. Intractable Rare Dis Res 2020; 9:23-29. [PMID: 32201671 PMCID: PMC7062600 DOI: 10.5582/irdr.2019.01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
TXNDC5 is an endoplasmic reticulum (ER)-resident chaperone that protects the endothelium from secondary effects of ER stress. Previous studies by the current authors identified TXNDC5 as a key pathological factor in promoting the inflammatory phenotype of fibroblast-like synoviocytes (FLSs) from rheumatoid arthritis (RA). However, its activity in RA FLSs under ER stress remains unclear. The current study found that TXNDC5 is responsive to ER stress in RA FLSs since its expression was induced by ER stress at both the endogenous and secretory level. A functional study indicated that silencing TXNDC5 reduced the viability of RA FLSs more markedly in the presence of ER stressors. In contrast, rhTXNDC5 attenuated a decrease in cell viability as a result of ER stress. Moreover, silencing TXNDC5 attenuated the induction of IL-6 and IL-8 from RA FLSs in response to ER stress. In addition, rhTXNDC5 induced a greater increase in VEGF production during ER stress. These findings confirm the pro-survival and pro-inflammation roles of TXNDC5 under ER stress in RA FLSs. TXNDC5 appears to act as a mediator linking ER stress and inflammation of RA.
Collapse
Affiliation(s)
- Qiqi Lu
- School of Medicine and Life Sciences, University of Ji'nan-Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinguang Wang
- Department of Orthopedics, Dezhou People's Hospital, Dezhou, Shandong, China
| | - Xiumei Zhang
- Graduate Education Centre of the Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Ruisong Tian
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Li Qiao
- College of Clinical Medicine, Shandong University, Ji'nan, Shandong, China
| | - Luna Ge
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jihong Pan
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Lin Wang
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Key Lab for Biotechnology Drugs of the Ministry of Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|