1
|
Ge ZB, Zhang XY, Zhang CM, Xu TT, Li SY, Wei MX, Ding XY, Bai CJ, Wang H, Zhou HH, Wang MY. C-Reactive Protein Is Not the Driver Factor in Ulcerative Colitis. Gastroenterol Res Pract 2024; 2024:1386147. [PMID: 39380742 PMCID: PMC11461073 DOI: 10.1155/2024/1386147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose: C-reactive protein (CRP) functions as a nonspecific marker in various inflammatory disorders, particularly in evaluating the efficacy of pharmacological treatments in patients with ulcerative colitis. The existing body of evidence does not offer adequate support for the direct implication of CRP in modulating the advancement of ulcerative colitis. Methods: Our study employed a rigorous mouse model. An ulcerative colitis mouse model was established by subjecting CRP-deficient mice to dextran sulfate sodium (DSS) treatment. The phenotype of the mice, which encompassed parameters such as body weight, colon length, and spleen weight, was meticulously evaluated. Additionally, various physiological and biochemical indicators were assessed, including colon histopathology, expression levels of inflammatory factors, and staining of the intestinal mucus layer. Results: The absence of CRP did not significantly affect the phenotype, physiological characteristics, and biochemical indices in a mouse model of ulcerative colitis compared to mice with wild-type CRP. Additionally, eliminating intestinal bacteria flora interference through antibiotic treatment revealed that mice lacking CRP did not demonstrate any notable variations in the ulcerative colitis model. Meanwhile, the survival rate of mice lacking CRP did not exhibit a statistically significant difference compared to wild-type mice. Conclusion: The results of our study suggest that CRP may not directly mediate ulcerative colitis. Instead, it is more likely to be a bystander that is present alongside with elevated inflammatory factors. Further investigation is warranted to determine the precise role of CRP in humans, given the significant limitations associated with the use of mouse models.
Collapse
Affiliation(s)
- Zhong-Bo Ge
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Xin-Yun Zhang
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Chun-Miao Zhang
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Tao-Tao Xu
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Si-Yi Li
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Meng-Xiao Wei
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Xin-Yuan Ding
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| | - Cai-Juan Bai
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal TumourThe Institute of Clinical Research and Translational MedicineGansu Provincial Hospital, Lanzhou, China
| | - Han Wang
- Department of Blood TransfusionThe First Hospital of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hai-Hong Zhou
- Translational Medicine Research CentreGansu Provincial Cancer Hospital, Lanzhou 730050, China
| | - Ming-Yu Wang
- MOE Key Laboratory of Cell Activities and Stress AdaptationsSchool of Life SciencesLanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
2
|
Cheng B, Tang YL, Gou YF, Li JY, Xu TH, Zhu L. Efficient expression and purification of rat CRP in Pichia pastoris. Front Immunol 2024; 15:1465365. [PMID: 39253072 PMCID: PMC11381232 DOI: 10.3389/fimmu.2024.1465365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
C-reactive protein (CRP) plays a crucial role in the diagnosis and monitoring of the non-specific acute phase response in humans. In contrast, rat CRP (rCRP) is an atypical acute-phase protein that possesses unique features, such as a possible incapacity to trigger the complement system and markedly elevated baseline plasma concentrations. To facilitate in vitro studies on these unique characteristics, obtaining high-quality pure rCRP is essential. Here we explored various strategies for rCRP purification, including direct isolation from rat plasma and recombinant expression in both prokaryotic and eukaryotic systems. Our study optimized the recombinant expression system to enhance the secretion and purification efficiency of rCRP. Compared to traditional purification methods, we present a streamlined and effective approach for the expression and purification of rCRP in the Pichia pastoris system. This refined methodology offers significant improvements in the efficiency and effectiveness of rCRP purification, thereby facilitating further structural and functional studies on rCRP.
Collapse
Affiliation(s)
- Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Fei Gou
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jing-Yi Li
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhu
- Ministry of Education (MOE) Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Zhou HH, Tang YL, Xu TH, Cheng B. C-reactive protein: structure, function, regulation, and role in clinical diseases. Front Immunol 2024; 15:1425168. [PMID: 38947332 PMCID: PMC11211361 DOI: 10.3389/fimmu.2024.1425168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
C-reactive protein (CRP) is a plasma protein that is evolutionarily conserved, found in both vertebrates and many invertebrates. It is a member of the pentraxin superfamily, characterized by its pentameric structure and calcium-dependent binding to ligands like phosphocholine (PC). In humans and various other species, the plasma concentration of this protein is markedly elevated during inflammatory conditions, establishing it as a prototypical acute phase protein that plays a role in innate immune responses. This feature can also be used clinically to evaluate the severity of inflammation in the organism. Human CRP (huCRP) can exhibit contrasting biological functions due to conformational transitions, while CRP in various species retains conserved protective functions in vivo. The focus of this review will be on the structural traits of CRP, the regulation of its expression, activate complement, and its function in related diseases in vivo.
Collapse
Affiliation(s)
- Hai-Hong Zhou
- Centre for Translational Medicine, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
- Centre for Translational Medicine, Gansu Provincial Cancer Hospital, Lanzhou, China
- Centre for Translational Medicine, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou, China
| | - Yu-Long Tang
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tian-Hao Xu
- Ministry of Education (MOE), Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bin Cheng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Singh SK, Prislovsky A, Ngwa DN, Munkhsaikhan U, Abidi AH, Brand DD, Agrawal A. C-reactive protein lowers the serum level of IL-17, but not TNF-α, and decreases the incidence of collagen-induced arthritis in mice. Front Immunol 2024; 15:1385085. [PMID: 38650931 PMCID: PMC11033386 DOI: 10.3389/fimmu.2024.1385085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
The biosynthesis of C-reactive protein (CRP) in the liver is increased in inflammatory diseases including rheumatoid arthritis. Previously published data suggest a protective function of CRP in arthritis; however, the mechanism of action of CRP remains undefined. The aim of this study was to evaluate the effects of human CRP on the development of collagen-induced arthritis (CIA) in mice which is an animal model of autoimmune inflammatory arthritis. Two CRP species were employed: wild-type CRP which binds to aggregated IgG at acidic pH and a CRP mutant which binds to aggregated IgG at physiological pH. Ten CRP injections were given on alternate days during the development of CIA. Both wild-type and mutant CRP reduced the incidence of CIA, that is, reduced the number of mice developing CIA; however, CRP did not affect the severity of the disease in arthritic mice. The serum levels of IL-17, IL-6, TNF-α, IL-10, IL-2 and IL-1β were measured: both wild-type and mutant CRP decreased the level of IL-17 and IL-6 but not of TNF-α, IL-10, IL-2 and IL-1β. These data suggest that CRP recognizes and binds to immune complexes, although it was not clear whether CRP functioned in its native pentameric or in its structurally altered pentameric form in the CIA model. Consequently, ligand-complexed CRP, through an as-yet undefined mechanism, directly or indirectly, inhibits the production of IL-17 and eventually protects against the initiation of the development of arthritis. The data also suggest that IL-17, not TNF-α, is critical for the development of autoimmune inflammatory arthritis.
Collapse
Affiliation(s)
- Sanjay K. Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Amanda Prislovsky
- The Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN, United States
| | - Donald N. Ngwa
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Undral Munkhsaikhan
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, United States
| | - Ammaar H. Abidi
- College of Dental Medicine, Lincoln Memorial University, Knoxville, TN, United States
| | - David D. Brand
- The Lt. Col. Luke Weathers, Jr. VA Medical Center, Memphis, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
5
|
Bhattacharya S, Munshi C. Biological significance of C-reactive protein, the ancient acute phase functionary. Front Immunol 2023; 14:1238411. [PMID: 37860004 PMCID: PMC10582692 DOI: 10.3389/fimmu.2023.1238411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023] Open
Abstract
C-reactive protein (CRP) is one of the major members of the family of acute phase proteins (APP). Interest in this CRP was the result of a seminal discovery of its pattern of response to pneumococcal infection in humans. CRP has the unique property of reacting with phosphocholine-containing substances, such as pneumococcal C-polysaccharide, in the presence of Ca2+. The attention regarding the origin of CRP and its multifunctionality has gripped researchers for several decades. The reason can be traced to the integrated evolution of CRP in the animal kingdom. CRP has been unequivocally listed as a key indicator of infectious and inflammatory diseases including autoimmune diseases. The first occurrence of CRP in the evolutionary ladder appeared in arthropods followed by molluscs and much later in the chordates. The biological significance of CRP has been established in the animal kingdom starting from invertebrates. Interestingly, the site of synthesis of CRP is mainly the liver in vertebrates, while in invertebrates it is located in diverse tissues. CRP is a multifunctional player in the scenario of innate immunity. CRP acts as an opsonin in the area of complement activation and phagocytosis. Interestingly, CRP upregulates and downregulates both cytokine production and chemotaxis. Considering various studies of CRP in humans and non-human animals, it has been logically proposed that CRP plays a common role in animals. CRP also interacts with Fcγ receptors and triggers the inflammatory response of macrophages. CRP in other animals such as primates, fish, echinoderms, arthropods, and molluscs has also been studied in some detail which establishes the evolutionary significance of CRP. In mammals, the increase in CRP levels is an induced response to inflammation or trauma; interestingly, in arthropods and molluscs, CRP is constitutively expressed and represents a major component of their hemolymph. Investigations into the primary structure of CRP from various species revealed the overall relatedness between vertebrate and invertebrate CRP. Invertebrates lack an acquired immune response; they are therefore dependent on the multifunctional role of CRP leading to the evolutionary success of the invertebrate phyla.
Collapse
Affiliation(s)
| | - Chayan Munshi
- Ethophilia (An Autonomous Research Group), Santiniketan, India
| |
Collapse
|
6
|
Kirkgöz K. C-Reactive Protein in Atherosclerosis-More than a Biomarker, but not Just a Culprit. Rev Cardiovasc Med 2023; 24:297. [PMID: 39077585 PMCID: PMC11262456 DOI: 10.31083/j.rcm2410297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 07/31/2024] Open
Abstract
C-reactive protein (CRP) is a pentraxin that is mainly synthesized in the liver in response to inflammatory cytokines. It exists in two functionally and structurally distinct isoforms. The first is a highly pro-inflammatory and mostly tissue-bound monomeric isoform (mCRP). The second is circulating pentameric CRP (pCRP), which also serves as a substrate for the formation of mCRP. CRP is elevated during inflammatory conditions and is associated with a higher risk of cardiovascular disease. The aim of this review is to examine the current state of knowledge regarding the role of these two distinct CRP isoforms on atherogenesis. This should allow further evaluation of CRP as a potential therapeutic target for atherosclerosis. While it seems clear that CRP should be used as a therapeutic target for atherosclerosis and cardiovascular disease, questions remain about how this can be achieved. Current data suggests that CRP is more than just a biomarker of atherosclerosis and cardiovascular disease. Indeed, recent evidence shows that mCRP in particular is strongly atherogenic, whereas pCRP may be partially protective against atherogenesis. Thus, further investigation is needed to determine how the two CRP isoforms contribute to atherogenesis and the development of cardiovascular disease.
Collapse
Affiliation(s)
- Kürsat Kirkgöz
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
7
|
Yan H, Hu X, Shao H, Li J, Deng J, Liu L. Low-Cost Full-Range Detection of C-Reactive Protein in Clinical Samples by Aptamer Hairpin Probes and Coprecipitation of Silver Ions and Gold Nanoparticles. Anal Chem 2023; 95:11918-11925. [PMID: 37531571 DOI: 10.1021/acs.analchem.3c01131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
C-reactive protein (CRP) levels can vary widely related to diverse disease contexts. However, expensive antibodies have impeded the clinical utility of antibody-based full-range CRP assays, especially in developing countries. Herein, we established a low-cost, antibody-free, 96-well plate-based full-range CRP detection method by combining gold nanoparticles (AuNPs), silver iodide (AgI), Eosin Y, and the aptamer hairpin probe (AHP) with Ag+-mediated cytosine-cytosine mismatches, that is, the Au@AgI/Eosin Y-AHP method. After binding the target CRP, the AHP released Ag+, which subsequently induced the aggregation of AuNPs on the surface of AgI colloids, resulting in a significant increase in the adsorption of Eosin Y on the surface of AuNPs. The changes in fluorescence intensity (FI) of Eosin Y in the supernate without and with CRP were proportional to the concentration of the CRP in the wide range of 0.01-40 ng/mL (r = 0.9969), and 96 samples can be detected in 96-well plates simultaneously by a microplate reader within 45 min. Remarkably, the CRP levels of 100 clinical samples achieved with the Au@AgI/Eosin Y-AHP had a good correlation with those obtained with the latex-enhanced immune turbidimetry assay (r = 0.986). Furthermore, the kit based on the Au@AgI/Eosin Y-AHP method costs only $8.1 for 100 tests. Therefore, the new method is beneficial for less developed areas where expensive assays are not affordable.
Collapse
Affiliation(s)
- Hong Yan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huaze Shao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jincheng Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jieqi Deng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lihong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Halaris A, Hain D, Law R, Brown L, Lewis D, Filip M. Single nucleotide polymorphisms in C-reactive protein (CRP) predict response to adjunctive celecoxib treatment of resistant bipolar depression. Brain Behav Immun Health 2023; 30:100625. [PMID: 37181328 PMCID: PMC10172701 DOI: 10.1016/j.bbih.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Background Affective illness has been associated with a proinflammatory state, and it is generally accepted that the immune system plays a key role in the pathophysiology of mood disorders. Since inflammatory biomarkers are elevated in bipolar disorder, anti-inflammatory combination therapies may enhance response and reverse treatment resistance. Purpose In the present study we investigated the possible impact of single nucleotide polymorphisms (SNPs) within the CRP gene on CRP blood levels, treatment response and level-of-stress perception in our cohort of treatment-resistant bipolar-depressed patients receiving escitalopram and celecoxib, or escitalopram and placebo, as previously reported (Halaris et al., 2020). Methods Study design, clinical findings, and CRP blood levels have been reported previously (Halaris et al., 2020; Edberg et al., 2018). In this follow-up study we extracted DNA from blood cells collected at baseline. Genome-wide genotyping was performed for all subjects using the Infinium Multi-Ethnic Global-8 v1.0 Kit. Based on reports in the literature indicating possible associations with psychiatric conditions, ten previously reported CRP gene polymorphisms were evaluated in a preliminary analysis. We focused on rs3093059 and rs3093077 were in complete LD. Carriers were defined as those possessing at least one C allele for rs3093059, or at least one G allele for rs3093077. Additionally, we determined blood levels of the medications administered. Results Non-carriers of rs3093059 and rs3093077 had significantly lower baseline CRP blood levels than carriers (p = 0.03). Increased rates of HAM-D17 response (p = 0.21) and remission (p = 0.13) and lower PSS-14 scores (p = 0.13) were observed in non-carriers among subjects receiving celecoxib but they did not reach statistical significance. When examining all subjects, nominally significant associations between carrier-status and remission (p = 0.04) and PSS-14 scores (p = 0.04) were observed after correcting for treatment arm. Non-carriers receiving celecoxib had the highest rates of response and remission, and the lowest stress scores. Conclusions Carriers of the CRP SNPs may have higher baseline CRP levels, although non-carriers appear to benefit more from celecoxib co-therapy. Determination of the carrier status in conjunction with pretreatment blood CRP level measurement may contribute to personalized psychiatric practice, but replication of the present findings is needed.
Collapse
Affiliation(s)
- Angelos Halaris
- Loyola University School of Medicine and Loyola University Medical Center, 2160 South First Ave., Maywood, IL, 60153, USA
- Corresponding author.
| | - Daniel Hain
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - Rebecca Law
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - Lisa Brown
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - David Lewis
- Myriad Neuroscience, 6960 Cintas Blvd, Mason, OH, 45040, USA
| | - Maria Filip
- Department of Adult Psychiatry Medical University of Lodz, Aleksandrowska 159, 91-229, Lodz, Poland
- The Polish National Agency for Academic Exchange, Polna 40, 00-635, Warsaw, Poland
| |
Collapse
|
9
|
Hypotheses on Atherogenesis Triggering: Does the Infectious Nature of Atherosclerosis Development Have a Substruction? Cells 2023; 12:cells12050707. [PMID: 36899843 PMCID: PMC10001176 DOI: 10.3390/cells12050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Since the end of the 20th century, it has been clear that atherosclerosis is an inflammatory disease. However, the main triggering mechanism of the inflammatory process in the vascular walls is still unclear. To date, many different hypotheses have been put forward to explain the causes of atherogenesis, and all of them are supported by strong evidence. Among the main causes of atherosclerosis, which underlies these hypotheses, the following can be mentioned: lipoprotein modification, oxidative transformation, shear stress, endothelial dysfunction, free radicals' action, homocysteinemia, diabetes mellitus, and decreased nitric oxide level. One of the latest hypotheses concerns the infectious nature of atherogenesis. The currently available data indicate that pathogen-associated molecular patterns from bacteria or viruses may be an etiological factor in atherosclerosis. This paper is devoted to the analysis of existing hypotheses for atherogenesis triggering, and special attention is paid to the contribution of bacterial and viral infections to the pathogenesis of atherosclerosis and cardiovascular disease.
Collapse
|
10
|
Alterations of NMR-Based Lipoprotein Profile Distinguish Unstable Angina Patients with Different Severity of Coronary Lesions. Metabolites 2023; 13:metabo13020273. [PMID: 36837892 PMCID: PMC9958945 DOI: 10.3390/metabo13020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/09/2022] [Accepted: 11/08/2022] [Indexed: 02/17/2023] Open
Abstract
Non-invasive detection of unstable angina (UA) patients with different severity of coronary lesions remains challenging. This study aimed to identify plasma lipoproteins (LPs) that can be used as potential biomarkers for assessing the severity of coronary lesions, determined by the Gensini score (GS), in UA patients. We collected blood plasma from 67 inpatients with angiographically normal coronary arteries (NCA) and 230 UA patients, 155 of them with lowGS (GS ≤ 25.4) and 75 with highGS (GS > 25.4), and analyzed it using proton nuclear magnetic resonance spectroscopy to quantify 112 lipoprotein variables. In a logistic regression model adjusted for four well-known risk factors (age, sex, body mass index and use of lipid-lowering drugs), we tested the association between each lipoprotein and the risk of UA. Combined with the result of LASSO and PLS-DA models, ten of them were identified as important LPs. The discrimination with the addition of selected LPs was evaluated. Compared with the basic logistic model that includes four risk factors, the addition of these ten LPs concentrations did not significantly improve UA versus NCA discrimination. However, thirty-two selected LPs showed notable discrimination power in logistic regression modeling distinguishing highGS UA patients from NCA with a 14.9% increase of the area under the receiver operating characteristics curve. Among these LPs, plasma from highGS patients was enriched with LDL and VLDL subfractions, but lacked HDL subfractions. In summary, we conclude that blood plasma lipoproteins can be used as biomarkers to distinguish UA patients with severe coronary lesions from NCA patients.
Collapse
|
11
|
Xu Q, Wu Q, Li H, Tian X, Zuo Y, Zhang Y, Zhang X, Lin Y, Wu Y, Wang Y, Wang A, Meng X. Joint High Level of Oxidized Low-Density Lipoprotein and High-Sensitivity C-Reactive Protein are Associated With Recurrent Stroke and Poor Functional Outcome in Minor Stroke or Transient Ischemic Attack. J Am Heart Assoc 2022; 11:e027665. [PMID: 36205258 PMCID: PMC9673654 DOI: 10.1161/jaha.122.027665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background Oxidized low‐density lipoprotein (oxLDL) and hs‐CRP (high‐sensitivity C‐reactive protein) plays an important role in cardiovascular diseases though inflammation and oxidative stress, etc. However, evidence on their combined effects on stroke prognosis is still limited. We aimed to explore the joint association of oxLDL and hs‐CRP with outcomes of minor stroke or transient ischemic attack. Methods and Results A subgroup of 3019 patients from the CHANCE trial (Clopidogrel in High‐Risk Patients With Acute Nondisabling Cerebrovascular Events) were analyzed. Baseline oxLDL and hs‐CRP levels were measured. The primary outcome was any stroke within 90 days. The secondary outcomes included any stroke within 1 year, and ischemic stroke, combined vascular events, and poor functional outcomes (modified Rankin Scale 2–6 or 3–6) at 90 days and 1 year. Vascular events outcomes were analyzed with Cox proportional hazards and poor functional outcomes with logistic models. Elevated oxLDL (>28.81 μg/dL) and hs‐CRP (>4.20 mg/L) was observed in 624 (20.67%) of the 3019 patients. Patients with oxLDL >28.81 μg/dL and hs‐CRP >4.20 mg/L had a higher risk of recurrent stroke within 90 days (adjusted hazard ratio, 1.52; 95% CI, 1.17–1.97), compared with those with oxLDL ≤28.81 μg/dL and hs‐CRP ≤4.20 mg/L, after adjusting relevant confounding factors (P=0.002). Similar results were observed for secondary outcomes (P<0.05 for all). Conclusions In patients with minor stroke or transient ischemic attack, joint high levels of oxLDL and hs‐CRP was associated with increased risk of recurrent stroke, combined vascular events, and poor functional outcome.
Collapse
Affiliation(s)
- Qin Xu
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Qiong Wu
- Department of Neurology The Second Hospital of Dalian Medical University Dalian China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Xue Tian
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China.,Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China.,Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Yingting Zuo
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China.,Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China.,Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Yijun Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Yongzhong Lin
- Department of Neurology The Second Hospital of Dalian Medical University Dalian China
| | - Yiping Wu
- Department of Neurology HanDan Central Hospital Handan China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China.,Advanced Innovation Center for Human Brain Protection Capital Medical University Beijing China.,Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital Capital Medical University Beijing China
| |
Collapse
|
12
|
Potempa LA, Qiu WQ, Stefanski A, Rajab IM. Relevance of lipoproteins, membranes, and extracellular vesicles in understanding C-reactive protein biochemical structure and biological activities. Front Cardiovasc Med 2022; 9:979461. [PMID: 36158829 PMCID: PMC9493015 DOI: 10.3389/fcvm.2022.979461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Early purification protocols for C-reactive protein (CRP) often involved co-isolation of lipoproteins, primarily very low-density lipoproteins (VLDLs). The interaction with lipid particles was initially attributed to CRP’s calcium-dependent binding affinity for its primary ligand—phosphocholine—the predominant hydrophilic head group expressed on phospholipids of most lipoprotein particles. Later, CRP was shown to additionally express binding affinity for apolipoprotein B (apo B), a predominant apolipoprotein of both VLDL and LDL particles. Apo B interaction with CRP was shown to be mediated by a cationic peptide sequence in apo B. Optimal apo B binding required CRP to be surface immobilized or aggregated, treatments now known to structurally change CRP from its serum soluble pentamer isoform (i.e., pCRP) into its poorly soluble, modified, monomeric isoform (i.e., mCRP). Other cationic ligands have been described for CRP which affect complement activation, histone bioactivities, and interactions with membranes. mCRP, but not pCRP, binds cholesterol and activates signaling pathways that activate pro-inflammatory bioactivities long associated with CRP as a biomarker. Hence, a key step to express CRP’s biofunctions is its conversion into its mCRP isoform. Conversion occurs when (1) pCRP binds to a membrane surface expressed ligand (often phosphocholine); (2) biochemical forces associated with binding cause relaxation/partial dissociation of secondary and tertiary structures into a swollen membrane bound intermediate (described as mCRPm or pCRP*); (3) further structural relaxation which leads to total, irreversible dissociation of the pentamer into mCRP and expression of a cholesterol/multi-ligand binding sequence that extends into the subunit core; (4) reduction of the CRP subunit intrachain disulfide bond which enhances CRP’s binding accessibility for various ligands and activates acute phase proinflammatory responses. Taken together, the biofunctions of CRP involve both lipid and protein interactions and a conformational rearrangement of higher order structure that affects its role as a mediator of inflammatory responses.
Collapse
Affiliation(s)
- Lawrence A. Potempa
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
- *Correspondence: Lawrence A. Potempa,
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Alzheimer’s Disease Center, Boston University School of Medicine, Boston, MA, United States
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, United States
| | - Ashley Stefanski
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| | - Ibraheem M. Rajab
- College of Science, Health and Pharmacy, Roosevelt University Schaumburg, Schaumburg, IL, United States
| |
Collapse
|
13
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
14
|
Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Anti-Inflammatory Therapy for Atherosclerosis: Focusing on Cytokines. Int J Mol Sci 2021; 22:ijms22137061. [PMID: 34209109 PMCID: PMC8269273 DOI: 10.3390/ijms22137061] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023] Open
Abstract
Atherosclerosis is a well-known global health problem. Despite the high prevalence of the disease, numerous aspects of pathogenesis remain unclear. Subsequently, there are still no cure or adequate preventive measures available. Atherogenesis is now considered a complex interplay between lipid metabolism alterations, oxidative stress, and inflammation. Inflammation in atherogenesis involves cellular elements of both innate (such as macrophages and monocytes) and adaptive immunity (such as B-cells and T-cells), as well as various cytokines cascades. Because inflammation is, in general, a well-investigated therapeutic target, and strategies for controlling inflammation have been successfully used to combat a number of other diseases, inflammation seems to be the preferred target for the treatment of atherosclerosis as well. In this review, we summarized data on targeting the most studied inflammatory molecular targets, CRP, IL-1β, IL-6, IFN-γ, and TNF-α. Studies in animal models have shown the efficacy of anti-inflammatory therapy, while clinical studies revealed the incompetence of existing data, which blocks the development of an effective atheroprotective drug. However, all data on cytokine targeting give evidence that anti-inflammatory therapy can be a part of a complex treatment.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Dwaipayan Bharadwaj
- Academy of Scientific and Innovative Research, CSIR-Institute of Genomics and Integrative Biology Campus, New Delhi 110025, India;
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Gauri Prasad
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3 Solyanka Street, 109240 Moscow, Russia;
| | - Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia;
- Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
15
|
Zeinolabediny Y, Kumar S, Slevin M. Monomeric C-Reactive Protein - A Feature of Inflammatory Disease Associated With Cardiovascular Pathophysiological Complications? In Vivo 2021; 35:693-697. [PMID: 33622861 DOI: 10.21873/invivo.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Monomeric C-reactive protein (mCRP), the dissociated form of native C-reactive protein, is a critical molecule that causes and perpetuates inflammation in serious diseases. It has 'adhesive'-like properties causing aggregation of blood cells and platelets, and can stick permanently within arterial tissue where it can contribute to further complications including thrombosis, linking it potentially to atherosclerosis and subsequent acute coronary events. In this mini review, we discuss briefly the implications and the potential value of measuring and manipulating it for clinical diagnostics and therapeutic purposes.
Collapse
Affiliation(s)
- Yasmin Zeinolabediny
- Department of Life Sciences, Metropolitan University, Manchester, Manchester, U.K
| | - Shant Kumar
- Department of Life Sciences, Metropolitan University, Manchester, Manchester, U.K
| | - Mark Slevin
- Department of Life Sciences, Metropolitan University, Manchester, Manchester, U.K.
| |
Collapse
|
16
|
Pathak A, Singh SK, Thewke DP, Agrawal A. Conformationally Altered C-Reactive Protein Capable of Binding to Atherogenic Lipoproteins Reduces Atherosclerosis. Front Immunol 2020; 11:1780. [PMID: 32849641 PMCID: PMC7431523 DOI: 10.3389/fimmu.2020.01780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to test the hypothesis that C-reactive protein (CRP) protects against the development of atherosclerosis and that a conformational alteration of wild-type CRP is necessary for CRP to do so. Atherosclerosis is an inflammatory cardiovascular disease and CRP is a plasma protein produced by the liver in inflammatory states. The co-localization of CRP and low-density lipoproteins (LDL) at atherosclerotic lesions suggests a possible role of CRP in atherosclerosis. CRP binds to phosphocholine-containing molecules but does not interact with LDL unless the phosphocholine groups in LDL are exposed. However, CRP can bind to LDL, without the exposure of phosphocholine groups, if the native conformation of CRP is altered. Previously, we reported a CRP mutant, F66A/T76Y/E81A, generated by site-directed mutagenesis, that did not bind to phosphocholine. Unexpectedly, this mutant CRP, without any more conformational alteration, was found to bind to atherogenic LDL. We hypothesized that this CRP mutant, unlike wild-type CRP, could be anti-atherosclerotic and, accordingly, the effects of mutant CRP on atherosclerosis in atherosclerosis-prone LDL receptor-deficient mice were evaluated. Administration of mutant CRP into mice every other day for a few weeks slowed the progression of atherosclerosis. The size of atherosclerotic lesions in the aorta of mice treated with mutant CRP for 9 weeks was ~40% smaller than the lesions in the aorta of untreated mice. Thus, mutant CRP conferred protection against atherosclerosis, providing a proof of concept that a local inflammation-induced structural change in wild-type CRP is a prerequisite for CRP to control the development of atherosclerosis.
Collapse
Affiliation(s)
- Asmita Pathak
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay K Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Douglas P Thewke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Alok Agrawal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
17
|
Lv JM, Chen JY, Liu ZP, Yao ZY, Wu YX, Tong CS, Cheng B. Celluar Folding Determinants and Conformational Plasticity of Native C-Reactive Protein. Front Immunol 2020; 11:583. [PMID: 32296446 PMCID: PMC7137756 DOI: 10.3389/fimmu.2020.00583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/13/2020] [Indexed: 11/13/2022] Open
Abstract
C-reactive protein (CRP) is an acute phase reactant secreted by hepatocytes as a pentamer. The structure formation of pentameric CRP has been demonstrated to proceed in a stepwise manner in live cells. Here, we further dissect the sequence determinants that underlie the key steps in cellular folding and assembly of CRP. The initial folding of CRP subunits depends on a leading sequence with a conserved dipeptide that licenses the formation of the hydrophobic core. This drives the bonding of the intra-subunit disulfide requiring a favorable niche largely conferred by a single residue within the C-terminal helix. A conserved salt bridge then mediates the assembly of folded subunits into pentamer. The pentameric assembly harbors a pronounced plasticity in inter-subunit interactions, which may form the basis for a reversible activation of CRP in inflammation. These results provide insights into how sequence constraints are evolved to dictate structure and function of CRP.
Collapse
Affiliation(s)
- Jian-Min Lv
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Jun-Yao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zu-Pei Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhen-Yu Yao
- Xi'an Key Laboratory of Children's Health and Diseases, The Affiliated Children Hospital, Children's Research Institute, Xi'an Jiaotong University, Xi'an, China
| | - Yue-Xin Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Cheng-Sen Tong
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
18
|
Labarrere CA, Dabiri AE, Kassab GS. Thrombogenic and Inflammatory Reactions to Biomaterials in Medical Devices. Front Bioeng Biotechnol 2020; 8:123. [PMID: 32226783 PMCID: PMC7080654 DOI: 10.3389/fbioe.2020.00123] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Blood-contacting medical devices of different biomaterials are often used to treat various cardiovascular diseases. Thrombus formation is a common cause of failure of cardiovascular devices. Currently, there are no clinically available biomaterials that can totally inhibit thrombosis under the more challenging environments (e.g., low flow in the venous system). Although some biomaterials reduce protein adsorption or cell adhesion, the issue of biomaterial associated with thrombosis and inflammation still exists. To better understand how to develop more thrombosis-resistant medical devices, it is essential to understand the biology and mechano-transduction of thrombus nucleation and progression. In this review, we will compare the mechanisms of thrombus development and progression in the arterial and venous systems. We will address various aspects of thrombosis, starting with biology of thrombosis, mathematical modeling to integrate the mechanism of thrombosis, and thrombus formation on medical devices. Prevention of these problems requires a multifaceted approach that involves more effective and safer thrombolytic agents but more importantly the development of novel thrombosis-resistant biomaterials mimicking the biological characteristics of the endothelium and extracellular matrix tissues that also ameliorate the development and the progression of chronic inflammation as part of the processes associated with the detrimental generation of late thrombosis and neo-atherosclerosis. Until such developments occur, engineers and clinicians must work together to develop devices that require minimal anticoagulants and thrombolytics to mitigate thrombosis and inflammation without causing serious bleeding side effects.
Collapse
Affiliation(s)
| | - Ali E Dabiri
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
19
|
Tunctan B, Senol SP, Temiz-Resitoglu M, Guden DS, Sahan-Firat S, Falck JR, Malik KU. Eicosanoids derived from cytochrome P450 pathway of arachidonic acid and inflammatory shock. Prostaglandins Other Lipid Mediat 2019; 145:106377. [PMID: 31586592 DOI: 10.1016/j.prostaglandins.2019.106377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022]
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Septic shock, the most common form of vasodilatory shock, is a subset of sepsis in which circulatory and cellular/metabolic abnormalities are severe enough to increase mortality. Inflammatory shock constitutes the hallmark of sepsis, but also a final common pathway of any form of severe long-term tissue hypoperfusion. The pathogenesis of inflammatory shock seems to be due to circulating substances released by pathogens (e.g., bacterial endotoxins) and host immuno-inflammatory responses (e.g., changes in the production of histamine, bradykinin, serotonin, nitric oxide [NO], reactive nitrogen and oxygen species, and arachidonic acid [AA]-derived eicosanoids mainly through NO synthase, cyclooxygenase, and cytochrome P450 [CYP] pathways, and proinflammatory cytokine formation). Therefore, refractory hypotension to vasoconstrictors with end-organ hypoperfusion is a life threatening feature of inflammatory shock. This review summarizes the current knowledge regarding the role of eicosanoids derived from CYP pathway of AA in animal models of inflammatory shock syndromes with an emphasis on septic shock in addition to potential therapeutic strategies targeting specific CYP isoforms responsible for proinflammatory/anti-inflammatory mediator production.
Collapse
Affiliation(s)
- Bahar Tunctan
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey.
| | - Sefika Pinar Senol
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | | | - Demet Sinem Guden
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Seyhan Sahan-Firat
- Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee, Center for Health Sciences, Memphis, TN, USA
| |
Collapse
|