1
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. High-dose methylprednisolone mediates YAP/TAZ-TEAD in vocal fold fibroblasts with macrophages. RESEARCH SQUARE 2024:rs.3.rs-4626638. [PMID: 39070624 PMCID: PMC11276011 DOI: 10.21203/rs.3.rs-4626638/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The pro-fibrotic effects of glucocorticoids may lead to a suboptimal therapeutic response for vocal fold (VF) pathology. Targeting macrophage-fibroblast interactions is an interesting therapeutic strategy; macrophages alter their phenotype to mediate both inflammation and fibrosis. In the current study, we investigated concentration-dependent effects of methylprednisolone on the fibrotic response, with an emphasis on YAP/TAZ-TEAD signaling, and inflammatory gene expression in VF fibroblasts in physical contact with macrophages. We sought to provide foundational data to optimize therapeutic strategies for millions of patients with voice/laryngeal disease-related disability. Following induction of inflammatory (M(IFN/LPS)) and fibrotic (M(TGF)) phenotypes, THP-1-derived macrophages were seeded onto HVOX vocal fold fibroblasts. Cells were co-cultured +/-0.3-3000nM methylprednisolone +/- 3μM verteporfin, a YAP/TAZ inhibitor. Inflammatory (CXCL10, TNF, PTGS2) and fibrotic genes (ACTA2, CCN2, COL1A1) in fibroblasts were analyzed by real-time polymerase chain reaction after cell sorting. Ser211-phosphorylated glucocorticoid receptor (S211-pGR) was assessed by Western blotting. Nuclear localization of S211-pGR and YAP/TAZ was analyzed by immunocytochemistry. Methylprednisolone decreased TNF and PTGS2 in fibroblasts co-cultured with M(IFN/LPS) macrophages and increased ACTA2 and CCN2 in fibroblasts co-cultured with M(IFN/LPS) and M(TGF). Lower concentrations were required to decrease TNF and PTGS2 expression and to increase S211-pGR than to increase ACTA2 and CCN2 expression and nuclear localization of S211-pGR. Methylprednisolone also increased YAP/TAZ nuclear localization. Verteporfin attenuated upregulation of CCN2, but not PTGS2 downregulation. High concentration methylprednisolone induced nuclear localization of S211-pGR and upregulated fibrotic genes mediated by YAP/TAZ activation.
Collapse
|
2
|
Livingstone DEW, Sooy K, Sykes C, Webster SP, Walker BR, Andrew R. 5α-Tetrahydrocorticosterone: A topical anti-inflammatory glucocorticoid with an improved therapeutic index in a murine model of dermatitis. Br J Pharmacol 2024; 181:1256-1267. [PMID: 37990638 DOI: 10.1111/bph.16285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Glucocorticoids are powerful anti-inflammatory drugs, but are associated with many side-effects. Topical application in atopic dermatitis leads to skin thinning, metabolic changes, and adrenal suppression. 5α-Tetrahydrocorticosterone (5αTHB) is a potential selective anti-inflammatory with reduced metabolic effects. Here, the efficacy and side-effect profile of 5αTHB were compared with hydrocortisone in preclinical models of irritant dermatitis. EXPERIMENTAL APPROACH Acute irritant dermatitis was invoked in ear skin of male C57BL/6 mice with a single topical application of croton oil. Inflammation was assessed as oedema via ear weight following treatment with 5αTHB and hydrocortisone. Side-effects of 5αTHB and hydrocortisone were assessed following chronic topical steroid treatment (28 days) to non-irritated skin. Skin thinning was quantified longitudinally by caliper measurements and summarily by qPCR for transcripts for genes involved in extracellular matrix homeostasis; systemic effects of topical steroid administration also were assessed. Clearance of 5αTHB and hydrocortisone were measured following intravenous and oral administration. KEY RESULTS 5αTHB suppressed ear swelling in mice, with ED50 similar to hydrocortisone (23 μg vs. 13 μg). Chronic application of 5αTHB did not cause skin thinning, adrenal atrophy, weight loss, thymic involution, or raised insulin levels, all of which were observed with topical hydrocortisone. Transcripts for genes involved in collagen synthesis and stability were adversely affected by all doses of hydrocortisone, but only by the highest dose of 5αTHB (8× ED50 ). 5αTHB was rapidly cleared from the systemic circulation. CONCLUSIONS AND IMPLICATIONS Topical 5αTHB has potential to treat inflammatory skin conditions, particularly in areas of delicate skin.
Collapse
Affiliation(s)
- Dawn Elizabeth Watson Livingstone
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, UK
| | - Karen Sooy
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Catherine Sykes
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Scott Peter Webster
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Brian Robert Walker
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ruth Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Kumar S, Wang S, Wang M, Zeb S, Khan MN, Chen Y, Zhu G, Zhu Z. Enhancement of sweetpotato tolerance to chromium stress through melatonin and glutathione: Insights into photosynthetic efficiency, oxidative defense, and growth parameters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108509. [PMID: 38461751 DOI: 10.1016/j.plaphy.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Melatonin (MT) and reduced glutathione (GSH) roles in mitigating chromium (Cr) toxicity in sweetpotato were explored. Plants, pre-treated with varying MT and GSH doses, were exposed to Cr (40 μM). Cr severely hampered growth by disrupting leaf photosynthesis, root system, and oxidative processes and increased Cr absorption. However, the exogenous application of 1 μM of MT and 2 mM of GSH substantially improved growth parameters by enhancing chlorophyll content, gas exchange (Pn, Tr, Gs, and Ci), and chlorophyll fluorescence (Fv/Fm, ETR, qP, and Y(II)). Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), superoxide ion (O2•-), electrolyte leakage (EL), and Cr uptake by roots (21.6 and 27.3%) and its translocation to shoots were markedly reduced by MT and GSH application, protecting the cell membrane from oxidative damage of Cr-toxicity. Microscopic analysis demonstrated that MT and GSH maintained chloroplast structure and integrity of mesophyll cells; they also enhanced stomatal length, width, and density, strengthening the photosynthetic system and plant growth and biomass. MT and GSH improved osmo-protectants (proline and soluble sugars), gene expression, and enzymatic and non-enzymatic antioxidant activities, mitigating osmotic stress and strengthening plant defenses under Cr stress. Importantly, the efficiency of GSH pre-treatment in reducing Cr-toxicity surpassed that of MT. The findings indicate that MT and GSH alleviate Cr detrimental effects by enhancing photosynthetic organ stability, component accumulation, and resistance to oxidative stress. This study is a valuable resource for plants confronting Cr stress in contaminated soils, but further field validation and detailed molecular exploration are necessary.
Collapse
Affiliation(s)
- Sunjeet Kumar
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Shihai Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mengzhao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Shah Zeb
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohammad Nauman Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
| | - Yanli Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China
| | - Guopeng Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Zhixin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Dodonova SA, Zhidkova EM, Kryukov AA, Valiev TT, Kirsanov KI, Kulikov EP, Budunova IV, Yakubovskaya MG, Lesovaya EA. Synephrine and Its Derivative Compound A: Common and Specific Biological Effects. Int J Mol Sci 2023; 24:17537. [PMID: 38139366 PMCID: PMC10744207 DOI: 10.3390/ijms242417537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.
Collapse
Affiliation(s)
- Svetlana A. Dodonova
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Ekaterina M. Zhidkova
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Alexey A. Kryukov
- Research Institute of Experimental Medicine, Department of Pathophysiology, Kursk State Medical University, 305041 Kursk, Russia; (S.A.D.); (A.A.K.)
| | - Timur T. Valiev
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
| | - Kirill I. Kirsanov
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Evgeny P. Kulikov
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| | - Irina V. Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611, USA;
| | - Marianna G. Yakubovskaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
| | - Ekaterina A. Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia; (E.M.Z.); (T.T.V.); (K.I.K.); (M.G.Y.)
- Faculty of Oncology, Ryazan State Medical University Named after Academician I.P. Pavlov, 390026 Ryazan, Russia
- Laboratory of Single Cell Biology, Russian University of People’s Friendship (RUDN) University, 117198 Moscow, Russia;
| |
Collapse
|
5
|
Nakamura R, Bing R, Gartling GJ, Garabedian MJ, Branski RC. Dose-Dependent Glucocorticoid Regulation of Transcription Factors in Vocal Fold Fibroblasts and Macrophages. Laryngoscope 2023; 133:2704-2711. [PMID: 36752581 PMCID: PMC10406972 DOI: 10.1002/lary.30594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Variable outcomes of glucocorticoid (GC) therapy for laryngeal disease are putatively due to diverse interactions of the GC receptor (GR) with cell signaling pathways, limited consideration regarding concentration-dependent effects, and inconsistent selection of GCs. In the current study, we evaluated the concentration-dependent effects of three frequently administered GCs on transcription factors with an emphasis on the phosphorylation of GR at Ser203 and Ser211 regulating the nuclear translocation of GR. This study provides foundational data regarding the diverse functions of GCs to optimize therapeutic approaches. STUDY DESIGN In vitro. METHODS Human vocal fold fibroblasts and THP1-derived macrophages were treated with different concentrations of dexamethasone, methylprednisolone, and triamcinolone in combination with IFN-γ, TNF-α, or IL4. Phosphorylated STAT1, NF-κB family molecules, and phosphorylated STAT6 were analyzed by Western blotting. Ser211-phosphorylated GR (S211-pGR) levels relative to GAPDH and Ser203-phosphorylated GR (S203-pGR) were also analyzed. RESULTS GCs differentially altered phosphorylated STAT1 and NF-κB family molecules in different cell types under IFN-γ and TNF-α stimuli. GCs did not alter phosphorylated STAT6 in IL4-treated macrophages. The three GCs were nearly equivalent. A lower concentration of dexamethasone increased S211-pGR/GAPDH ratios relative to increased S211-pGR/S203-pGR ratios regardless of cell type and treatment. CONCLUSION The three GCs employed in two cell lines had nearly equivalent effects on transcription factor regulation. Relatively high levels of Ser203-phosphorylation at low GC concentrations may be related to concentration-dependent differential effects of GCs in the two cell lines. LEVEL OF EVIDENCE NA Laryngoscope, 133:2704-2711, 2023.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Renjie Bing
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | - Gary J. Gartling
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
| | | | - Ryan C. Branski
- Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY
- Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
6
|
Mao L, Wei W, Chen J. Biased regulation of glucocorticoid receptors signaling. Biomed Pharmacother 2023; 165:115145. [PMID: 37454592 DOI: 10.1016/j.biopha.2023.115145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.
Collapse
Affiliation(s)
- Lijuan Mao
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine of Education Ministry, Anhui Cooperative Innovation Center for Anti-inflammatory Immune Drugs, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
7
|
Lee ZY, Tran T. Genomic and non-genomic effects of glucocorticoids in respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:1-30. [PMID: 37524484 DOI: 10.1016/bs.apha.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Cortisol is an endogenous steroid hormone essential for the natural resolution of inflammation. Synthetic glucocorticoids (GCs) were developed and are currently amongst the most widely prescribed anti-inflammatory drugs in our modern clinical landscape owing to their potent anti-inflammatory activity. However, the extent of GC's effects has yet to be fully elucidated. Indeed, GCs modulate a broad spectrum of cellular activity, from their classical regulation of gene expression to acute non-genomic mechanisms of action. Furthermore, tissue specific effects, disease specific conditions, and dose-dependent responses complicate their use, with side-effects potentially plaguing their use. It is thus vital to outline and consolidate the effects of GCs, to demystify and maximize their therapeutic potential while avoiding pitfalls that would otherwise render them obsolete.
Collapse
Affiliation(s)
- Zhao-Yong Lee
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Thai Tran
- Infectious Disease Translational Research Program, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
8
|
Alexandari AM, Horton CA, Shrikumar A, Shah N, Li E, Weilert M, Pufall MA, Zeitlinger J, Fordyce PM, Kundaje A. De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein-DNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540401. [PMID: 37214836 PMCID: PMC10197627 DOI: 10.1101/2023.05.11.540401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Transcription factors (TF) are proteins that bind DNA in a sequence-specific manner to regulate gene transcription. Despite their unique intrinsic sequence preferences, in vivo genomic occupancy profiles of TFs differ across cellular contexts. Hence, deciphering the sequence determinants of TF binding, both intrinsic and context-specific, is essential to understand gene regulation and the impact of regulatory, non-coding genetic variation. Biophysical models trained on in vitro TF binding assays can estimate intrinsic affinity landscapes and predict occupancy based on TF concentration and affinity. However, these models cannot adequately explain context-specific, in vivo binding profiles. Conversely, deep learning models, trained on in vivo TF binding assays, effectively predict and explain genomic occupancy profiles as a function of complex regulatory sequence syntax, albeit without a clear biophysical interpretation. To reconcile these complementary models of in vitro and in vivo TF binding, we developed Affinity Distillation (AD), a method that extracts thermodynamic affinities de-novo from deep learning models of TF chromatin immunoprecipitation (ChIP) experiments by marginalizing away the influence of genomic sequence context. Applied to neural networks modeling diverse classes of yeast and mammalian TFs, AD predicts energetic impacts of sequence variation within and surrounding motifs on TF binding as measured by diverse in vitro assays with superior dynamic range and accuracy compared to motif-based methods. Furthermore, AD can accurately discern affinities of TF paralogs. Our results highlight thermodynamic affinity as a key determinant of in vivo binding, suggest that deep learning models of in vivo binding implicitly learn high-resolution affinity landscapes, and show that these affinities can be successfully distilled using AD. This new biophysical interpretation of deep learning models enables high-throughput in silico experiments to explore the influence of sequence context and variation on both intrinsic affinity and in vivo occupancy.
Collapse
Affiliation(s)
- Amr M. Alexandari
- Department of Computer Science, Stanford University, Stanford, CA 94305
| | | | - Avanti Shrikumar
- Department of Earth System Science, Stanford University, Stanford, CA 94305
| | - Nilay Shah
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Eileen Li
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Miles A. Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA
- The University of Kansas Medical Center, Kansas City, KS, USA
| | - Polly M. Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305
- Department of Bioengineering, Stanford University, Stanford, CA 94305
- ChEM-H Institute, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA 94110
| | - Anshul Kundaje
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| |
Collapse
|
9
|
Dube N, Khan SH, Sasse R, Okafor CD. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. J Chem Inf Model 2023; 63:571-582. [PMID: 36594606 PMCID: PMC9875803 DOI: 10.1021/acs.jcim.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Allosteric pathways in proteins describe networks comprising amino acid residues which may facilitate the propagation of signals between distant sites. Through inter-residue interactions, dynamic and conformational changes can be transmitted from the site of perturbation to an allosteric site. While sophisticated computational methods have been developed to characterize such allosteric pathways linking specific sites on proteins, few attempts have been made to apply these approaches toward identifying new allosteric sites. Here, we use molecular dynamics simulations and suboptimal path analysis to discover new allosteric networks in steroid receptors with a focus on evolutionarily conserved pathways. Using modern receptors and a reconstructed ancestral receptor, we identify networks connecting several sites to the activation function surface 2 (AF-2), the site of coregulator recruitment. One of these networks is conserved across the entire family, connecting a predicted allosteric site located between helices 9 and 10 of the ligand-binding domain. We investigate the basis of this conserved network as well as the importance of this site, discovering that the site lies in a region of the ligand-binding domain characterized by conserved inter-residue contacts. This study suggests an evolutionarily importance of the helix 9-helix 10 site in steroid receptors and identifies an approach that may be applied to discover previously unknown allosteric sites in proteins.
Collapse
Affiliation(s)
- Namita Dube
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Sabab Hasan Khan
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Riley Sasse
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - C. Denise Okafor
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Wang Y, Gao J, Yu Y, Zhou L, Wang M, Xue W, Liu B, Wu X, Wu X, Gao H, Shen Y, Xu Q. A plant-derived glucocorticoid receptor modulator with potency to attenuate the side effects of glucocorticoid therapy. Br J Pharmacol 2023; 180:194-213. [PMID: 36165414 DOI: 10.1111/bph.15957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Continuous efforts have been made to move towards maintaining the beneficial anti-inflammatory functions of glucocorticoids (GCs) while minimizing side effects. Here, we investigated the selective glucocorticoid receptor (GR) modulator-like properties of a plant-derived compound caesaldekarin e (CA-e). EXPERIMENTAL APPROACH The therapeutic efficacy of CA-e was evaluated in several mouse models, including dextran sulfate sodium-induced colitis, ovalbumin-induced lung allergic inflammation, imiquimod-induced psoriasis-like skin inflammation and skin atrophy. The action of CA-e targeting the GR was analysed using molecular docking, cellular thermal shift assays and microscale thermophoresis. Other methods included DNA-protein pull-down assays and mass spectrometry. KEY RESULTS CA-e selectively inhibited positive GC response element ((+) GRE)-mediated direct transactivation while maintaining and even enhancing the anti-inflammatory effects of treatment with dexamethasone. CA-e, alone and in combination with dexamethasone, efficiently alleviated inflammation in several mouse models with milder side effects compared with dexamethasone alone. Mechanistically, CA-e inhibited the formation of dimers by binding to the dimerization interface located in the ligand-binding domain of GR and facilitated embryonic ectoderm development that is involved in the regulation of transcriptional repression to compete for binding to (+) GRE, eventually leading to the repression of (+) GRE-regulated genes. In addition, CA-e repressed NF-κB-dependent genes by enhancing the interaction between GR and p65. CONCLUSIONS AND IMPLICATIONS Our results reveal that CA-e is a novel GR modulator with strong potency to attenuate the side effects of GC therapy and can be used as a potential molecular tool for deciphering GR signalling.
Collapse
Affiliation(s)
- Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xudong Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Mitre-Aguilar IB, Moreno-Mitre D, Melendez-Zajgla J, Maldonado V, Jacobo-Herrera NJ, Ramirez-Gonzalez V, Mendoza-Almanza G. The Role of Glucocorticoids in Breast Cancer Therapy. Curr Oncol 2022; 30:298-314. [PMID: 36661673 PMCID: PMC9858160 DOI: 10.3390/curroncol30010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GCs) are anti-inflammatory and immunosuppressive steroid molecules secreted by the adrenal gland and regulated by the hypothalamic-pituitary-adrenal (HPA) axis. GCs present a circadian release pattern under normal conditions; they increase their release under stress conditions. Their mechanism of action can be via the receptor-independent or receptor-dependent pathway. The receptor-dependent pathway translocates to the nucleus, where the ligand-receptor complex binds to specific sequences in the DNA to modulate the transcription of specific genes. The glucocorticoid receptor (GR) and its endogenous ligand cortisol (CORT) in humans, and corticosterone in rodents or its exogenous ligand, dexamethasone (DEX), have been extensively studied in breast cancer. Its clinical utility in oncology has mainly focused on using DEX as an antiemetic to prevent chemotherapy-induced nausea and vomiting. In this review, we compile the results reported in the literature in recent years, highlighting current trends and unresolved controversies in this field. Specifically, in breast cancer, GR is considered a marker of poor prognosis, and a therapeutic target for the triple-negative breast cancer (TNBC) subtype, and efforts are being made to develop better GR antagonists with fewer side effects. It is necessary to know the type of breast cancer to differentiate the treatment for estrogen receptor (ER)-positive, ER-negative, and TNBC, to implement therapies that include the use of GCs.
Collapse
Affiliation(s)
- Irma B. Mitre-Aguilar
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Daniel Moreno-Mitre
- Centro de Desarrollo de Destrezas Médicas (CEDDEM), Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genomica Funcional del Cancer, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| | - Vilma Maldonado
- Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquimica, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Victoria Ramirez-Gonzalez
- Departamento de Cirugía-Experimental, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran (INCMNSZ), Mexico City 14080, Mexico
| | - Gretel Mendoza-Almanza
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Laboratorio de Epigenetica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico
| |
Collapse
|
12
|
Jiménez-Panizo A, Alegre-Martí A, Tettey T, Fettweis G, Abella M, Antón R, Johnson T, Kim S, Schiltz R, Núñez-Barrios I, Font-Díaz J, Caelles C, Valledor A, Pérez P, Rojas A, Fernández-Recio J, Presman D, Hager G, Fuentes-Prior P, Estébanez-Perpiñá E. The multivalency of the glucocorticoid receptor ligand-binding domain explains its manifold physiological activities. Nucleic Acids Res 2022; 50:13063-13082. [PMID: 36464162 PMCID: PMC9825158 DOI: 10.1093/nar/gkac1119] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. We identify four distinct homodimerization interfaces on the GR-LBD surface, which can associate into 20 topologically different homodimers. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution, quantitative fluorescence microscopy in living cells, and transcriptomic analyses. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work illustrates the unique flexibility of GR's LBD and suggests different dimeric conformations within cells. In addition, we unveil pathophysiologically relevant quaternary assemblies of the receptor with important implications for glucocorticoid action and drug design.
Collapse
Affiliation(s)
| | | | | | - Gregory Fettweis
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Montserrat Abella
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain,Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Rosa Antón
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Thomas A Johnson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Sohyoung Kim
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - R Louis Schiltz
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA
| | - Israel Núñez-Barrios
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Joan Font-Díaz
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carme Caelles
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain
| | - Annabel F Valledor
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Paloma Pérez
- Instituto de Biomedicina de Valencia (IBV)-CSIC, 46010, Valencia, Spain
| | - Ana M Rojas
- Andalusian Center for Developmental Biology (CABD-CSIC). Campus Universitario Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Fernández-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Diego M Presman
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires C1428EGA, Argentina
| | - Gordon L Hager
- Correspondence may also be addressed to Gordon L. Hager. Tel: +1 240 760 6618;
| | | | | |
Collapse
|
13
|
Michalek S, Goj T, Plazzo AP, Marovca B, Bornhauser B, Brunner T. LRH
‐1/
NR5A2
interacts with the glucocorticoid receptor to regulate glucocorticoid resistance. EMBO Rep 2022; 23:e54195. [PMID: 35801407 PMCID: PMC9442305 DOI: 10.15252/embr.202154195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Svenja Michalek
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| | - Thomas Goj
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Anna Pia Plazzo
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
| | - Blerim Marovca
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Beat Bornhauser
- Division of Oncology and Children's Research Centre University Children's Hospital Zurich Zurich Switzerland
| | - Thomas Brunner
- Department of Biology, Biochemical Pharmacology University of Konstanz Konstanz Germany
- Konstanz Research School Chemical Biology KORS‐CB University of Konstanz Konstanz Germany
| |
Collapse
|
14
|
Regazzo D, Mondin A, Scaroni C, Occhi G, Barbot M. The Role of Glucocorticoid Receptor in the Pathophysiology of Pituitary Corticotroph Adenomas. Int J Mol Sci 2022; 23:ijms23126469. [PMID: 35742910 PMCID: PMC9224504 DOI: 10.3390/ijms23126469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Adrenocorticotropic Hormone (ACTH)-secreting pituitary adenomas are rare tumors characterized by autonomous ACTH secretion with a consequent increase in circulating cortisol levels. The resulting clinical picture is called Cushing’s disease (CD), a severe condition burdened with high morbidity and mortality. Apart from increased cortisol levels, CD patients exhibit a partial resistance to the negative glucocorticoid (GC) feedback, which is of paramount clinical utility, as the lack of suppression after dexamethasone administration is one of the mainstays for the differential diagnosis of CD. Since the glucocorticoid receptor (GR) is the main regulator of negative feedback of the hypothalamic–pituitary–adrenal axis in normal conditions, its implication in the pathophysiology of ACTH-secreting pituitary tumors is highly plausible. In this paper, we review GR function and structure and the mechanisms of GC resistance in ACTH-secreting pituitary tumors and assess the effects of the available medical therapies targeting GR on tumor growth.
Collapse
Affiliation(s)
- Daniela Regazzo
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Alessandro Mondin
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Carla Scaroni
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
| | - Gianluca Occhi
- Department of Biology, University of Padova, 35128 Padova, Italy;
| | - Mattia Barbot
- Endocrinology Unit, Department of Medicine-DIMED, University Hospital of Padova, 35128 Padova, Italy; (D.R.); (A.M.); (C.S.)
- Correspondence:
| |
Collapse
|
15
|
Spies LML, Verhoog NJD, Louw A. Relative contribution of molecular mechanisms to cumulative ligand-mediated downregulation of GRα. Biochem Biophys Res Commun 2022; 602:113-119. [PMID: 35263658 DOI: 10.1016/j.bbrc.2022.02.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Central to the pharmacological use of glucocorticoids (GCs) is the availability of the glucocorticoid receptor alpha (GRα). However, chronic GC therapy often results in the ligand-mediated downregulation of the GRα, and the subsequent development of an acquired GC resistance. While studies have demonstrated the dimerization-dependent downregulation of GRα, as well as the molecular mechanisms through which ligand-mediated downregulation occurs, little is known regarding the relative contribution of these molecular mechanisms to the cumulative ligand-mediated downregulation of the receptor, especially within an endogenous system. Thus, to probe this, the current study evaluates the conformational-dependent regulation of GRα protein using mouse embryonic fibroblast (MEF) cells containing either wild type GRα (MEFwt) or the dimerization deficient GRα mutant (MEFdim) and inhibitors of transcription, translation, and proteasomal degradation. Results show that the promotion of GRα dimerization increases the downregulation of the receptor via two main mechanisms, proteasomal degradation of the receptor protein, and downregulation of GRwt mRNA transcripts. In contrast, when receptor dimerization is restricted these two mechanisms play a lesser role and results suggest that stabilization of GRα protein by non-coding RNAs may potentially be the major regulatory mechanism. Together, these findings clarify the relative contribution of the molecular mechanisms involved in ligand-mediated downregulation of GRα and provides pharmacological targets for the development of GRα ligands with a more favourable therapeutic index.
Collapse
Affiliation(s)
- Lee-Maine L Spies
- Department of Biochemistry, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| | - Nicolette J D Verhoog
- Department of Biochemistry, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van Der Bijl Street, Stellenbosch, 7600, South Africa.
| |
Collapse
|
16
|
Timmermans S, Vandewalle J, Libert C. Dimerization of the Glucocorticoid Receptor and Its Importance in (Patho)physiology: A Primer. Cells 2022; 11:cells11040683. [PMID: 35203332 PMCID: PMC8870481 DOI: 10.3390/cells11040683] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
The glucocorticoid receptor (GR) is a very versatile protein that comes in several forms, interacts with many proteins and has multiple functions. Numerous therapies are based on GRs’ actions but the occurrence of side effects and reduced responses to glucocorticoids have motivated scientists to study GRs in great detail. The notion that GRs can perform functions as a monomeric protein, but also as a homodimer has raised questions about the underlying mechanisms, structural aspects of dimerization, influencing factors and biological functions. In this review paper, we are providing an overview of the current knowledge and insights about this important aspect of GR biology.
Collapse
Affiliation(s)
- Steven Timmermans
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (S.T.); (J.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (S.T.); (J.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, VIB, 9052 Ghent, Belgium; (S.T.); (J.V.)
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Correspondence:
| |
Collapse
|
17
|
Timmermans S, Verhoog NJD, Van Looveren K, Dewaele S, Hochepied T, Eggermont M, Gilbert B, Boerema-de Munck A, Vanderhaeghen T, Vanden Berghe J, Garcia Gonzalez N, Vandewalle J, Bloch Y, Provost M, Savvides SN, De Bosscher K, Declercq W, Rottier RJ, Louw A, Libert C. Point mutation I634A in the glucocorticoid receptor causes embryonic lethality by reduced ligand binding. J Biol Chem 2022; 298:101574. [PMID: 35007536 PMCID: PMC8808175 DOI: 10.1016/j.jbc.2022.101574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
The glucocorticoid (GC) receptor (GR) is essential for normal development and in the initiation of inflammation. Healthy GRdim/dim mice with reduced dimerization propensity due to a point mutation (A465T) at the dimer interface of the GR DNA-binding domain (DBD) (here GRD/D) have previously helped to define the functions of GR monomers and dimers. Since GRD/D retains residual dimerization capacity, here we generated the dimer-nullifying double mutant GRD+L/D+L mice, featuring an additional mutation (I634A) in the ligand-binding domain (LBD) of GR. These mice are perinatally lethal, as are GRL/L mice (these mice have the I634A mutation but not the A465T mutation), displaying improper lung and skin formation. Using embryonic fibroblasts, high and low doses of dexamethasone (Dex), nuclear translocation assays, RNAseq, dimerization assays, and ligand-binding assays (and Kd values), we found that the lethal phenotype in these mice is due to insufficient ligand binding. These data suggest there is some correlation between GR dimerization potential and ligand affinity. We conclude that even a mutation as subtle as I634A, at a position not directly involved in ligand interactions sensu stricto, can still influence ligand binding and have a lethal outcome.
Collapse
Affiliation(s)
- Steven Timmermans
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Kelly Van Looveren
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Barbara Gilbert
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joke Vanden Berghe
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Natalia Garcia Gonzalez
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Yehudi Bloch
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Mathias Provost
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Savvas N Savvides
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Department of Biochemistry, Ghent University, Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Ghent, Belgium
| | - Wim Declercq
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands; Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Wu K, Liu Z, Liang J, Zhang F, Zhang F, Wang Y, Lia T, Liu S, Zhu Y, Li X. Expression of glucocorticoid receptor (GR) and clinical significance in adrenocortical carcinoma. Front Endocrinol (Lausanne) 2022; 13:903824. [PMID: 35992138 PMCID: PMC9389328 DOI: 10.3389/fendo.2022.903824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 12/02/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare endocrine tumor, and most cases present with hormone excess with poor prognosis. Our research aims to determine the clinical and biological significance of glucocorticoid receptor (GR) expression using large cohorts of ACC patients. Immunohistochemistry was used to assess the expression of GR in 78 ACC cases from the West China Hospital (WCH) cohort. RNA-seq data were retrieved from The Cancer Genome Atlas database (TCGA, n=79). Clinicopathological and follow-up data were obtained from two cohorts. The correlation between the GR gene and tumor immune status was estimated using TIMER and GEPIA2. Kaplan-Meier analysis was performed to identify the prognostic value of GR in ACC. In the WCH cohort, positive nuclear GR staining was identified in 90% of the primary ACC cases. Cortisol-secreting ACCs demonstrated significantly lower GR protein expression than did nonfunctioning tumors (P<0.001). This finding was validated by the mRNA data analysis of the TCGA cohort (P = 0.030). GR expression was found to be positively correlated with the immune cell infiltration level and immune-checkpoint-related gene expression in ACC. Survival comparison and multivariate analysis showed that GR expression is an independent prognostic predictor of disease-free survival and overall survival in ACC patients in both cohorts. Our findings suggest that low GR expression is significantly correlated with excess cortisol, immune signatures and poor survival in ACC patients. We propose that GR signaling may play an important role in ACC behavior and thus may be a therapeutic target, which deserves further research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yuchun Zhu
- *Correspondence: Xiang Li, ; Yuchun Zhu,
| | - Xiang Li
- *Correspondence: Xiang Li, ; Yuchun Zhu,
| |
Collapse
|
19
|
Structural insights into glucocorticoid receptor function. Biochem Soc Trans 2021; 49:2333-2343. [PMID: 34709368 DOI: 10.1042/bst20210419] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/02/2023]
Abstract
The glucocorticoid receptor (GR) is a steroid hormone-activated transcription factor that binds to various glucocorticoid response elements to up- or down- regulate the transcription of thousands of genes involved in metabolism, development, stress and inflammatory responses. GR consists of two domains enabling interaction with glucocorticoids, DNA response elements and coregulators, as well as a large intrinsically disordered region that mediates condensate formation. A growing body of structural studies during the past decade have shed new light on GR interactions, providing a new understanding of the mechanisms driving context-specific GR activity. Here, we summarize the established and emerging mechanisms of action of GR, primarily from a structural perspective. This minireview also discusses how the current state of knowledge of GR function may guide future glucocorticoid design with an improved therapeutic index for different inflammatory disorders.
Collapse
|
20
|
El Kharraz S, Dubois V, van Royen ME, Houtsmuller AB, Pavlova E, Atanassova N, Nguyen T, Voet A, Eerlings R, Handle F, Prekovic S, Smeets E, Moris L, Devlies W, Ohlsson C, Poutanen M, Verstrepen KJ, Carmeliet G, Launonen KM, Helminen L, Palvimo JJ, Libert C, Vanderschueren D, Helsen C, Claessens F. The androgen receptor depends on ligand-binding domain dimerization for transcriptional activation. EMBO Rep 2021; 22:e52764. [PMID: 34661369 DOI: 10.15252/embr.202152764] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/28/2023] Open
Abstract
Whereas dimerization of the DNA-binding domain of the androgen receptor (AR) plays an evident role in recognizing bipartite response elements, the contribution of the dimerization of the ligand-binding domain (LBD) to the correct functioning of the AR remains unclear. Here, we describe a mouse model with disrupted dimerization of the AR LBD (ARLmon/Y ). The disruptive effect of the mutation is demonstrated by the feminized phenotype, absence of male accessory sex glands, and strongly affected spermatogenesis, despite high circulating levels of testosterone. Testosterone replacement studies in orchidectomized mice demonstrate that androgen-regulated transcriptomes in ARLmon/Y mice are completely lost. The mutated AR still translocates to the nucleus and binds chromatin, but does not bind to specific AR binding sites. In vitro studies reveal that the mutation in the LBD dimer interface also affects other AR functions such as DNA binding, ligand binding, and co-regulator binding. In conclusion, LBD dimerization is crucial for the development of AR-dependent tissues through its role in transcriptional regulation in vivo. Our findings identify AR LBD dimerization as a possible target for AR inhibition.
Collapse
Affiliation(s)
- Sarah El Kharraz
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | | | | | - Ekatarina Pavlova
- Institute of Experimental Morphology Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Nina Atanassova
- Institute of Experimental Morphology Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tien Nguyen
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Florian Handle
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Prekovic
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.,Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Elien Smeets
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden.,Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology and KU Leuven Laboratory for Genetics and Genomics, VIB - KU Leuven Center for Microbiology, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | | | - Laura Helminen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Christine Helsen
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Spies LML, Verhoog NJD, Louw A. Acquired Glucocorticoid Resistance Due to Homologous Glucocorticoid Receptor Downregulation: A Modern Look at an Age-Old Problem. Cells 2021; 10:2529. [PMID: 34685511 PMCID: PMC8533966 DOI: 10.3390/cells10102529] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
For over 70 years, the unique anti-inflammatory properties of glucocorticoids (GCs), which mediate their effects via the ligand-activated transcription factor, the glucocorticoid receptor alpha (GRα), have allowed for the use of these steroid hormones in the treatment of various autoimmune and inflammatory-linked diseases. However, aside from the onset of severe side-effects, chronic GC therapy often leads to the ligand-mediated downregulation of the GRα which, in turn, leads to a decrease in GC sensitivity, and effectively, the development of acquired GC resistance. Although the ligand-mediated downregulation of GRα is well documented, the precise factors which influence this process are not well understood and, thus, the development of an acquired GC resistance presents an ever-increasing challenge to the pharmaceutical industry. Recently, however, studies have correlated the dimerization status of the GRα with its ligand-mediated downregulation. Therefore, the current review will be discussing the major role-players in the homologous downregulation of the GRα pool, with a specific focus on previously reported GC-mediated reductions in GRα mRNA and protein levels, the molecular mechanisms through which the GRα functional pool is maintained and the possible impact of receptor conformation on GC-mediated GRα downregulation.
Collapse
Affiliation(s)
| | | | - Ann Louw
- Department of Biochemistry, Stellenbosch University, Van de Byl Street, Stellenbosch 7200, South Africa; (L.-M.L.S.); (N.J.D.V.)
| |
Collapse
|
22
|
Chen H, Zhou R, Pang J, Guo Y, Chen J, Kang Y, Duan M, Hou T. Molecular View on the Dissociation Pathways and Transactivation Regulation Mechanism of Nonsteroidal GR Ligands. J Chem Inf Model 2021; 62:5233-5245. [PMID: 34506144 DOI: 10.1021/acs.jcim.1c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As a major drug target for anti-inflammatory therapy, the glucocorticoid receptor (GR) regulates a wide range of physiological processes through transactivation (TA) or transrepression. GR TA is involved in many adverse effects of GR-targeting drugs, and therefore, the discovery of novel GR ligands with lower TA activity and longer residence time is quite urgent. Undoubtedly, understanding the ligand dissociation mechanisms and the structural basis of the TA regulation is crucial for the development of novel GR-targeting drugs. Here, we used random accelerated molecular dynamics (RAMD) and funnel metadynamics (FM) simulations to explore the dissociation mechanisms of 5 classic glucocorticoids and 6 nonsteroidal GR ligands. Multiple ligand dissociation pathways were discovered. The classic glucocorticoids exhibit a strong preference for Path I, and most nonsteroidal ligands tend to dissociate along mixed pathways. We also find that the distinct unbinding preferences for AZD2906 and AZD9567, two representative nonsteroidal ligands with similar scaffolds but different TA activities, are primarily determined by their different polar interactions with the surrounding residues. Notably, the binding of AZD9567 poses a substantial impact on the conformation of the GR homodimer interface, which provides a valuable clue to understand the mechanisms of the TA-related side effects induced by the adjustments of the homodimerization process. These findings are critical for the structure-based rational design of novel GR ligands with more potent anti-inflammatory potency and reduced side effects.
Collapse
Affiliation(s)
- Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Rui Zhou
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Jinping Pang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Yue Guo
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Jiawen Chen
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| | - Mojie Duan
- National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071 Hubei, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058 Zhejiang, China.,State Key Lab of CAD&CG, Zhejiang University, Hangzhou, 310058 Zhejiang, China
| |
Collapse
|
23
|
Genome-wide binding potential and regulatory activity of the glucocorticoid receptor's monomeric and dimeric forms. Nat Commun 2021; 12:1987. [PMID: 33790284 PMCID: PMC8012360 DOI: 10.1038/s41467-021-22234-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/05/2021] [Indexed: 02/01/2023] Open
Abstract
A widely regarded model for glucocorticoid receptor (GR) action postulates that dimeric binding to DNA regulates unfavorable metabolic pathways while monomeric receptor binding promotes repressive gene responses related to its anti-inflammatory effects. This model has been built upon the characterization of the GRdim mutant, reported to be incapable of DNA binding and dimerization. Although quantitative live-cell imaging data shows GRdim as mostly dimeric, genomic studies based on recovery of enriched half-site response elements suggest monomeric engagement on DNA. Here, we perform genome-wide studies on GRdim and a constitutively monomeric mutant. Our results show that impairing dimerization affects binding even to open chromatin. We also find that GRdim does not exclusively bind half-response elements. Our results do not support a physiological role for monomeric GR and are consistent with a common mode of receptor binding via higher order structures that drives both the activating and repressive actions of glucocorticoids.
Collapse
|
24
|
Phasing the intranuclear organization of steroid hormone receptors. Biochem J 2021; 478:443-461. [DOI: 10.1042/bcj20200883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/28/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid–liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.
Collapse
|
25
|
Yang M, Chen J, Wei W. Dimerization of glucocorticoid receptors and its role in inflammation and immune responses. Pharmacol Res 2020; 166:105334. [PMID: 33276107 DOI: 10.1016/j.phrs.2020.105334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/18/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Glucocorticoids (GCs) plays an irreplaceable role in inflammation and immune responses, fat metabolism and sugar metabolism, it is often used for the treatment of asthma, rheumatoid arthritis and allergic rhinitis clinically, but long-term or high-dose use will produce adverse drug reactions (ADRs). Its biological action is mediated by glucocorticoid receptors (GRs), of which the oligomerization state is closely related to the target gene of which the GRs act. A leading hypothesis is that the beneficial anti-inflammatory effects of GCs occur through the transrepression mechanism mediated by GR monomers, while ADRs may be dependent on the transactivation mechanism mediated by GR dimers. However, in recent years, multiple studies have shown that the transactivation and transrepression functions of the GR dimer also confer anti-inflammatory effects. Furthermore, some studies have shown that some selective glucocorticoid receptor agonists and modulators (SEGRAMs) have good separation characteristics (i.e., preferentially mediate the transrepression of proinflammatory genes or preferentially activate anti-inflammatory target genes). This article reviewed the formation of GR dimers, the role of GR dimers in the inflammation and immune responses, and the progress of SEGRAMs to provide novel ideas for further understanding the anti-inflammatory mechanism of GR and the development of SEGRAMs.
Collapse
Affiliation(s)
- Mei Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Meishan Road 81, Hefei, 230032, China
| | - Jingyu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Meishan Road 81, Hefei, 230032, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Meishan Road 81, Hefei, 230032, China.
| |
Collapse
|
26
|
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol 2020; 16:363-377. [PMID: 32303708 DOI: 10.1038/s41574-020-0349-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptor crosstalk can be defined as the interplay between different nuclear receptors or between their overlapping signalling pathways. A subset of nuclear receptors (such as PPARs and RARs) engage in the formation of well-characterized 'typical' heterodimers with RXR. 'Atypical' heterodimers (such as GR with PPARs, or PPAR with ERR) might form a novel class of physical complexes that might be more transient in nature. These heterodimers might harbour strong transcriptional flexibility, with no strict need for DNA binding of both partners. Direct crosstalk could stem from a pairwise physical association between atypical nuclear receptor heterodimers, either via pre-existing interaction pairs or via interactions that are newly induced with small molecules; such crosstalk might constitute an uncharted space to target nuclear receptor physiological and/or pathophysiological actions. In this Review, we discuss the emerging aspects of crosstalk in the nuclear receptor field and present various mechanistic crosstalk modes with examples that support applicability of the atypical heterodimer concept. Stabilization or disruption, in a context-dependent or cell type-dependent manner, of these more transient heterodimers is expected to fuel unprecedented translational approaches to yield novel therapeutic agents to treat major human diseases with higher precision.
Collapse
Affiliation(s)
- Karolien De Bosscher
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium.
| | - Sofie J Desmet
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Dorien Clarisse
- Translational Nuclear Receptor Research, VIB Center for Medical Biotechnology, UGent Department of Biomolecular Medicine, Gent, Belgium
| | - Eva Estébanez-Perpiña
- Laboratory of Structural Biology, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB) of the University of Barcelona (UB), Barcelona, Spain
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, Netherlands
| |
Collapse
|
27
|
Koyanagi M, Arimura Y. Comparative Expression Analysis of Stress-Inducible Genes in Murine Immune Cells. Immunol Invest 2019; 49:907-925. [PMID: 31833438 DOI: 10.1080/08820139.2019.1702673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Psychological stress affects the immune system. Upon stress occurrence, glucocorticoid is released that binds to the glucocorticoid receptor and regulates gene expression. Thus, we aimed to examine the stress-induced immunomodulatory mechanisms by investigating the expression patterns of stress-inducible genes in murine immune cells. Methods: BALB/c, C57BL/6, glucocorticoid-receptor congenic mice, and corticotropin-releasing hormone (CRH)-deficient mice were exposed to synthetic glucocorticoid, dexamethasone, or placed under a restraint condition. The expression level of stress-related genes, such as Rtp801, Gilz, Mkp-1, Bnip3, and Trp53inp1 was measured in the immune cells in these mice. Results: Short restraint stress induced Rtp801 and Gilz expressions that were higher in the spleen of BALB/c mice than those in C57BL/6 mice. Mkp-1 expression increased equally in these two strains, despite the difference in the glucocorticoid level. These three genes induced by short restraint stress were not induced in the CRH-deficient mice. In contrast, Bnip3 and Trp53inp1 were only upregulated upon longer restraint events. In the thymus, Trp53inp1 expression was induced upon short restraint stress, whereas Gilz expression constantly increased upon short and repetitive restraint stresses. Conclusion: These results suggest that singular and repetitive bouts of stress lead to differential gene expression in mice and stress-induced gene expression in thymocytes is distinct from that observed in splenocytes. Gilz, Rtp801, and Mkp-1 genes induced by short restraint stress are dependent on CRH in the spleen.
Collapse
Affiliation(s)
- Madoka Koyanagi
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University , Tokyo, Japan
| | - Yutaka Arimura
- Department of Host Defense for Animals, School of Animal Science, Nippon Veterinary and Life Science University , Tokyo, Japan
| |
Collapse
|