1
|
Moustakli E, Gkountis A, Dafopoulos S, Zikopoulos A, Sotiriou S, Zachariou A, Dafopoulos K. Comparative Analysis of Fluorescence In Situ Hybridization and Next-Generation Sequencing in Sperm Evaluation: Implications for Preimplantation Genetic Testing and Male Infertility. Int J Mol Sci 2024; 25:11296. [PMID: 39457078 PMCID: PMC11508275 DOI: 10.3390/ijms252011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Pre-implantation genetic testing (PGT) is a crucial process for selecting embryos created through assisted reproductive technology (ART). Couples with chromosomal rearrangements, infertility, recurrent miscarriages, advanced maternal age, known single-gene disorders, a family history of genetic conditions, previously affected pregnancies, poor embryo quality, or congenital anomalies may be candidates for PGT. Preimplantation genetic testing for aneuploidies (PGT-A) enables the selection and transfer of euploid embryos, significantly enhancing implantation rates in assisted reproduction. Fluorescence in situ hybridization (FISH) is the preferred method for analyzing biopsied cells to identify these abnormalities. While FISH is a well-established method for identifying sperm aneuploidy, NGS offers a more comprehensive assessment of genetic material, potentially enhancing our understanding of male infertility. Chromosomal abnormalities, arising during meiosis, can lead to aneuploid sperm, which may hinder embryo implantation and increase miscarriage rates. This review provides a comparative analysis of fluorescence in situ hybridization (FISH) and next-generation sequencing (NGS) in sperm evaluations, focusing on their implications for preimplantation genetic testing. This analysis explores the strengths and limitations of FISH and NGS, aiming to elucidate their roles in improving ART outcomes and reducing the risk of genetic disorders in offspring. Ultimately, the findings will inform best practices in sperm evaluations and preimplantation genetic testing strategies.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Antonios Gkountis
- Genesis Athens Thessaly, Centre for Human Reproduction, 41335 Larissa, Greece;
| | - Stefanos Dafopoulos
- Department of Health Sciences, European University Cyprus, 2404 Nicosia, Cyprus;
| | | | - Sotirios Sotiriou
- Department of Embryology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece;
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| | - Konstantinos Dafopoulos
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
2
|
Lee S, Yoo I, Cheon Y, Ka H. Complement system molecules: Expression and regulation at the maternal-conceptus interface during pregnancy in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105229. [PMID: 39004297 DOI: 10.1016/j.dci.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
3
|
Struijf EM, De la O Becerra KI, Ruyken M, de Haas CJC, van Oosterom F, Siere DY, van Keulen JE, Heesterbeek DAC, Dolk E, Heukers R, Bardoel BW, Gros P, Rooijakkers SHM. Inhibition of cleavage of human complement component C5 and the R885H C5 variant by two distinct high affinity anti-C5 nanobodies. J Biol Chem 2023; 299:104956. [PMID: 37356719 PMCID: PMC10374974 DOI: 10.1016/j.jbc.2023.104956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023] Open
Abstract
The human complement system plays a crucial role in immune defense. However, its erroneous activation contributes to many serious inflammatory diseases. Since most unwanted complement effector functions result from C5 cleavage into C5a and C5b, development of C5 inhibitors, such as clinically approved monoclonal antibody eculizumab, are of great interest. Here, we developed and characterized two anti-C5 nanobodies, UNbC5-1 and UNbC5-2. Using surface plasmon resonance, we determined a binding affinity of 119.9 pM for UNbC5-1 and 7.7 pM for UNbC5-2. Competition experiments determined that the two nanobodies recognize distinct epitopes on C5. Both nanobodies efficiently interfered with C5 cleavage in a human serum environment, as they prevented red blood cell lysis via membrane attack complexes (C5b-9) and the formation of chemoattractant C5a. The cryo-EM structure of UNbC5-1 and UNbC5-2 in complex with C5 (3.6 Å resolution) revealed that the binding interfaces of UNbC5-1 and UNbC5-2 overlap with known complement inhibitors eculizumab and RaCI3, respectively. UNbC5-1 binds to the MG7 domain of C5, facilitated by a hydrophobic core and polar interactions, and UNbC5-2 interacts with the C5d domain mostly by salt bridges and hydrogen bonds. Interestingly, UNbC5-1 potently binds and inhibits C5 R885H, a genetic variant of C5 that is not recognized by eculizumab. Altogether, we identified and characterized two different, high affinity nanobodies against human C5. Both nanobodies could serve as diagnostic and/or research tools to detect C5 or inhibit C5 cleavage. Furthermore, the residues targeted by UNbC5-1 hold important information for therapeutic inhibition of different polymorphic variants of C5.
Collapse
Affiliation(s)
- Eva M Struijf
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karla I De la O Becerra
- Structural Biochemistry Group, Faculty of Science, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Maartje Ruyken
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Carla J C de Haas
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fleur van Oosterom
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Danique Y Siere
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joanne E van Keulen
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dani A C Heesterbeek
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Bart W Bardoel
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Piet Gros
- Structural Biochemistry Group, Faculty of Science, Department of Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Department Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Scully M, Neave L. Etiology and outcomes: Thrombotic microangiopathies in pregnancy. Res Pract Thromb Haemost 2023; 7:100084. [PMID: 37063764 PMCID: PMC10099310 DOI: 10.1016/j.rpth.2023.100084] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
A State of the Art lecture titled "Etiology and Outcomes of Thrombotic Microangiopathies in Pregnancy" was presented at the International Society on Thrombosis and Haemostasis Congress in 2022. First, it is important to understand changes in laboratory parameters in normal pregnancy, including complement levels, specifically the increase in C3, C4, C3a, and C4a throughout pregnancy. Complement is critical in normal pregnancy for implantation and for placental development. Complement-mediated hemolytic uremic syndrome (CM-HUS) and thrombotic thrombocytopenic purpura (TTP) can present anytime from the first trimester to the postpartum period. In comparison, Thrombotic microangiopathies specific to pregnancy, such as preeclampsia (PET) or hemolysis, elevated liver enzymes, and low platelets (HELLP), present from the second trimester. C5b-9 deposition (following terminal complement pathway activation) is demonstrated in CM-HUS cases, and in HELLP and few PET cases. PET can also be confirmed and related to severity using soluble fms-like tyrosine kinase-1/placental growth factor ratios. Diagnosis of CM-HUS and TTP in pregnancy can be further complicated by clinical overlap at presentation with PET or occasionally HELLP. Management is aided by ADAMTS-13 analysis to confirm or exclude TTP. Treatment of CM-HUS, in conjunction with supportive care, is complement inhibitor therapy (eculizumab or ravulizumab). Acute TTP requires standard therapy, but caplacizumab should be avoided. Confirmation of congenital or immune subtypes informs care in subsequent pregnancies. Finally, we summarize relevant new data on this topic presented during the 2022 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
| | - Lucy Neave
- Department of Haematology, University College of London Hospitals NHS Trust, London, UK
| |
Collapse
|
5
|
Smith-Jackson K, Harrison RA. Alternative pathway activation in pregnancy, a measured amount "complements" a successful pregnancy, too much results in adverse events. Immunol Rev 2023; 313:298-319. [PMID: 36377667 PMCID: PMC10100418 DOI: 10.1111/imr.13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During pregnancy, the maternal host must adapt in order to enable growth of the fetus. These changes affect all organ systems and are designed both to protect the fetus and to minimize risk to the mother. One of the most prominent adaptations involves the immune system. The semi-allogenic fetoplacental unit has non-self components and must be protected against attack from the host. This requires both attenuation of adaptive immunity and protection from innate immune defense mechanisms. One of the key innate immune players is complement, and it is important that the fetoplacental unit is not identified as non-self and subjected to complement attack. Adaptation of the complement response must, however, be managed in such a way that maternal protection against infection is not compromised. As the complement system also plays a significant facilitating role in many of the stages of a normal pregnancy, it is also important that any necessary adaptation to accommodate the semi-allogenic aspects of the fetoplacental unit does not compromise this. In this review, both the physiological role of the alternative pathway of complement in facilitating a normal pregnancy, and its detrimental participation in pregnancy-specific disorders, are discussed.
Collapse
Affiliation(s)
- Kate Smith-Jackson
- Complement Therapeutics Research Group, Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle-upon-Tyne, UK.,The National Renal Complement Therapeutics Centre (NRCTC), Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | | |
Collapse
|
6
|
Sharma S, Rodrigues PR, Zaher S, Davies LC, Ghazal P. Immune-metabolic adaptations in pregnancy: A potential stepping-stone to sepsis. EBioMedicine 2022; 86:104337. [PMID: 36470829 PMCID: PMC9782817 DOI: 10.1016/j.ebiom.2022.104337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
Physiological shifts during pregnancy predispose women to a higher risk of developing sepsis resulting from a maladapted host-response to infection. Insightful studies have delineated subtle point-changes to the immune system during pregnancy. Here, we present an overlay of these point-changes, asking what changes and when, at a physiological, cellular, and molecular systems-level in the context of sepsis. We identify distinct immune phases in pregnancy delineated by placental hormone-driven changes in homeostasis setpoints of the immune and metabolic systems that subtly mirrors changes observed in sepsis. We propose that pregnancy immune-metabolic setpoint changes impact feedback thresholds that increase risk for a maladapted host-response to infection and thus act as a stepping-stone to sepsis. Defining maternal immune-metabolic setpoint changes is not only vital for tailoring the right diagnostic tools for early management of maternal sepsis but will facilitate an unravelling of the pathophysiological pathways that predispose an individual to sepsis.
Collapse
Affiliation(s)
- Simran Sharma
- Project Sepsis, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK,Department of Obstetrics & Gynaecology, University Hospital of Wales, Cardiff, CF14 4XW, UK,Corresponding author. Department of Obstetrics & Gynaecology, University Hospital of Wales, Cardiff, CF14 4XW, UK.
| | - Patricia R.S. Rodrigues
- Project Sepsis, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Summia Zaher
- Project Sepsis, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK,Department of Obstetrics & Gynaecology, University Hospital of Wales, Cardiff, CF14 4XW, UK
| | - Luke C. Davies
- Project Sepsis, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK,Biomedical Sciences Unit, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Peter Ghazal
- Project Sepsis, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK,Corresponding author. Systems Immunity Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
7
|
Parker SE, Bellingham MC, Woodruff TM. Complement drives circuit modulation in the adult brain. Prog Neurobiol 2022; 214:102282. [DOI: 10.1016/j.pneurobio.2022.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/24/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022]
|
8
|
Cavalli S, Lonati PA, Gerosa M, Caporali R, Cimaz R, Chighizola CB. Beyond Systemic Lupus Erythematosus and Anti-Phospholipid Syndrome: The Relevance of Complement From Pathogenesis to Pregnancy Outcome in Other Systemic Rheumatologic Diseases. Front Pharmacol 2022; 13:841785. [PMID: 35242041 PMCID: PMC8886148 DOI: 10.3389/fphar.2022.841785] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Evidence about the relevance of the complement system, a highly conserved constituent of the innate immunity response that orchestrates the elimination of pathogens and the inflammatory processes, has been recently accumulated in many different rheumatologic conditions. In rheumatoid arthritis, complement, mainly the classical pathway, contributes to tissue damage especially in seropositive subjects, with complement activation occurring in the joint. Data about complement pathways in psoriatic arthritis are dated and poorly consistent; among patients with Sjögren syndrome, hypocomplementemia exerts a prognostic role, identifying patients at risk of extra-glandular manifestations. Hints about complement involvement in systemic sclerosis have been recently raised, following the evidence of complement deposition in affected skin and in renal samples from patients with scleroderma renal crisis. In vasculitides, complement plays a dual role: on one hand, stimulation of neutrophils with anti-neutrophil cytoplasmic antibodies (ANCA) results in the activation of the alternative pathway, on the other, C5a induces translocation of ANCA antigens, favouring the detrimental role of antibodies. Complement deposition in the kidneys identifies patients with more aggressive renal disease; patients with active disease display low serum levels of C3 and C4. Even though in dermatomyositis sC5b-9 deposits are invariably present in affected muscles, data on C3 and C4 fluctuation during disease course are scarce. C3 and C1q serum levels have been explored as potential markers of disease activity in Takayasu arteritis, whereas data in Behçet disease are limited to in vitro observations. Pregnancies in women with rheumatologic conditions are still burdened by a higher rate of pregnancy complications, thus the early identification of women at risk would be invaluable. A fine-tuning of complement activation is required from a physiological progression of pregnancy, from pre-implantation stages, through placentation to labour. Complement deregulation has been implicated in several pregnancy complications, such as recurrent abortion, eclampsia and premature birth; low complement levels have been shown to reliably identify women at risk of complications. Given its physiologic role in orchestrating pregnancy progression and its involvement as pathogenic effector in several rheumatologic conditions, complement system is an attractive candidate biomarker to stratify the obstetric risk among women with rheumatologic conditions.
Collapse
Affiliation(s)
- Silvia Cavalli
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Paola Adele Lonati
- Experimental Laboratory of Immunorheumatological Researches, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Italy
| | - Maria Gerosa
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Clinical Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Rolando Cimaz
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Pediatric Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| | - Cecilia Beatrice Chighizola
- Department of Clinical Sciences and Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, University of Milan, Milan, Italy.,Pediatric Rheumatology Unit, ASST G. Pini & CTO, Milan, Italy
| |
Collapse
|
9
|
Ramanjaneya M, Diboun I, Rizwana N, Dajani Y, Ahmed L, Butler AE, Almarzooqi TA, Shahata M, Al Bader MK, Elgassim E, Burjaq H, Atkin SL, Abou-Samra AB, Elrayess MA. Elevated Adipsin and Reduced C5a Levels in the Maternal Serum and Follicular Fluid During Implantation Are Associated With Successful Pregnancy in Obese Women. Front Endocrinol (Lausanne) 2022; 13:918320. [PMID: 35909516 PMCID: PMC9326155 DOI: 10.3389/fendo.2022.918320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Complement factors mediate the recruitment and activation of immune cells and are associated with metabolic changes during pregnancy. The aim of this study was to determine whether complement factors in the maternal serum and follicular fluid (FF) are associated with in vitro fertilization (IVF) outcomes in overweight/obese women. METHODS Forty overweight/obese (BMI = 30.8 ± 5.2 kg/m2) female patients, 33.6 ± 6.3 years old, undergoing IVF treatment for unexplained infertility were recruited. Baseline demographic information, including biochemical hormonal, metabolic, and inflammatory markers, and pregnancy outcome, was collected. Levels of 14 complement markers (C2, C4b, C5, C5a, C9, adipsin, mannose-binding lectin, C1q, C3, C3b/iC3b, C4, factor B, factor H, and properdin) were assessed in the serum and FF and compared to IVF outcome, inflammatory, and metabolic markers using multivariate and univariate models. RESULTS Out of 40 IVF cycles, 14 (35%) resulted in pregnancy. Compared to women with failed pregnancies, women with successful pregnancies had higher levels of adipsin in the serum and FF (p = 0.01) but lower C5a levels (p = 0.05). Serum adipsin levels were positively correlated with circulating levels of vitamin D (R = 0.5, p = 0.02), glucagon (R = 0.4, p = 0.03), leptin (R = 0.4, p = 0.01), resistin (R = 0.4, p = 0.02), and visfatin (R = 0.4, p = 0.02), but negatively correlated with total protein (R = -0.5, p = 0.03). Higher numbers of top-quality embryos were associated with increased levels of C3, properdin, C1q, factors H and B, C4, and adipsin, but with reduced C2 and C5a levels (p ≤ 0.01). CONCLUSIONS Higher adipsin and lower C5a levels in the maternal serum during implantation are potential markers of successful outcome in obese women undergoing IVF-assisted pregnancies.
Collapse
Affiliation(s)
- Manjunath Ramanjaneya
- Qatar Metabolic Institute, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Najeha Rizwana
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | | | | | | | - Thoraya Ali Almarzooqi
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Mohammed Shahata
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Moza Khalaf Al Bader
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | - Hasan Burjaq
- Obstetrics and Gynecology Department, Women’s Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
- *Correspondence: Mohamed A. Elrayess,
| |
Collapse
|
10
|
Gurung S, Greening DW, Rai A, Poh QH, Evans J, Salamonsen LA. The proteomes of endometrial stromal cell-derived extracellular vesicles following a decidualizing stimulus define the cells' potential for decidualization success. Mol Hum Reprod 2021; 27:6370708. [PMID: 34524461 DOI: 10.1093/molehr/gaab057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.
Collapse
Affiliation(s)
- Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash Health, Monash University, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Small RNA expression and miRNA modification dynamics in human oocytes and early embryos. Genome Res 2021; 31:1474-1485. [PMID: 34340992 PMCID: PMC8327922 DOI: 10.1101/gr.268193.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Small noncoding RNAs (sRNAs) play important roles during the oocyte-to-embryo transition (OET), when the maternal phenotype is reprogrammed and the embryo genome is gradually activated. The transcriptional program driving early human development has been studied with the focus mainly on protein-coding RNAs, and expression dynamics of sRNAs remain largely unexplored. We profiled sRNAs in human oocytes and early embryos using an RNA-sequencing (RNA-seq) method suitable for low inputs of material. We show that OET in humans is temporally coupled with the transition from predominant expression of oocyte short piRNAs (os-piRNAs) in oocytes, to activation of microRNA (miRNA) expression in cleavage stage embryos. Additionally, 3′ mono- and oligoadenylation of miRNAs is markedly increased in zygotes. We hypothesize that this may modulate the function or stability of maternal miRNAs, some of which are retained throughout the first cell divisions in embryos. This study is the first of its kind elucidating the dynamics of sRNA expression and miRNA modification along a continuous trajectory of early human development and provides a valuable data set for in-depth interpretative analyses.
Collapse
|
12
|
Girardi G, Lingo JJ, Fleming SD, Regal JF. Essential Role of Complement in Pregnancy: From Implantation to Parturition and Beyond. Front Immunol 2020; 11:1681. [PMID: 32849586 PMCID: PMC7411130 DOI: 10.3389/fimmu.2020.01681] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The complement cascade was identified over 100 years ago, yet investigation of its role in pregnancy remains an area of intense research. Complement inhibitors at the maternal-fetal interface prevent inappropriate complement activation to protect the fetus. However, this versatile proteolytic cascade also favorably influences numerous stages of pregnancy, including implantation, fetal development, and labor. Inappropriate complement activation in pregnancy can have adverse lifelong sequelae for both mother and child. This review summarizes the current understanding of complement activation during all stages of pregnancy. In addition, consequences of complement dysregulation during adverse pregnancy outcomes from miscarriage, preeclampsia, and pre-term birth are examined. Finally, future research directions into complement activation during pregnancy are considered.
Collapse
Affiliation(s)
- Guillermina Girardi
- Department of Basic Medical Sciences, College of Medicine, Member of QU Health, Qatar University, Doha, Qatar
| | - Joshua J Lingo
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Jean F Regal
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|