1
|
Werner N, Frasheri I, Heck K, Scalia C, Pitchika V, Summer B, Ern C, Heym R, Schwendicke F, Bumm CV, Folwaczny M. A Study Into Systemic and Oral Levels of Proinflammatory Biomarkers Associated With Endpoints After Active Non-Surgical Periodontal Therapy. J Clin Periodontol 2024. [PMID: 39523212 DOI: 10.1111/jcpe.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
AIM To analyse whether some selected inflammatory biomarkers collected from venous blood and gingival crevicular fluid (GCF) were associated with the outcome of non-surgical periodontal therapy. MATERIALS AND METHODS Two-hundred and nine patients affected by periodontitis were enrolled in the study, who had undergone steps I and II therapy as well as a non-surgical re-instrumentation (NSRI) of periodontal pockets after 6 months. Serum (SE), plasma (PL) and GCF samples were quantitatively analysed for the following inflammatory biomarkers: active matrix metalloproteinase-8 (aMMP-8), prostaglandin E2 (PGE2) and surfactant protein D (SP-D). Therapy outcomes were evaluated using a 'treat-to-target' endpoint (T2T) at the patient level, defined as ≤ 4 sites with pocket depth ≥ 5 mm. RESULTS Patients presented with 23 ± 6 teeth (mean ± SD) at baseline. After steps I and II therapy, 41.6% of the patients reached T2T and after NSRI 47.4%. Univariate analysis identified a potential association between high levels of PL-SP-D and more favourable treatment outcomes. Multivariate binary logistic regression adjusted for sex, mean baseline probing depth, diabetes and current smoking status confirmed an independent relationship between baseline PL-SP-D and the T2T after steps I and II therapy (aOR 0.432, p = 0.011), implying that a higher level PL-SP-D at baseline is associated with a > 50% reduced risk of failing T2T. However, no such association was found for PL-SP-D and NSRI. CONCLUSION Higher baseline PL-SP-D levels might be associated with more favourable treatment outcomes after steps I and II therapy. This may be due to its role in the regulation of neutrophil function. However, further investigation is required to confirm this hypothesis. If proven, PL-SP-D could play a role as a biomarker for identifying individuals who respond differentially to primary therapy.
Collapse
Affiliation(s)
- Nils Werner
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Iris Frasheri
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katrin Heck
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carla Scalia
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vinay Pitchika
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Burkhard Summer
- Department of Dermatology and Allergology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christina Ern
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
- Private Practice
| | - Richard Heym
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
- Private Practice
| | - Falk Schwendicke
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Caspar Victor Bumm
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
- Private Practice
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
3
|
Banfi C, Piarulli F, Ragazzi E, Ghilardi S, Greco A, Lapolla A, Sartore G. Immature Surfactant Protein Type B and Surfactant Protein Type D Correlate with Coronary Heart Disease in Patients with Type 2 Diabetes. Life (Basel) 2024; 14:886. [PMID: 39063639 PMCID: PMC11277833 DOI: 10.3390/life14070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Different specific surfactant proteins (SPs) have been associated with various pathological conditions, not only of the respiratory system, but also more recently with cardiovascular diseases, such as heart failure. The aim of the present study was to evaluate the role of SP-A, SP-D, and the precursor protein of SP-B (proSP-B) in the pathogenesis of cardiovascular damage in patients affected by type 2 diabetes (T2D). METHODS The study considered 31 patients with T2D (DN group), 34 patients with both T2D and coronary heart disease (CHD) (DC group), and 30 patients without diabetes but with a diagnosis of CHD (NC group). SP-A, SP-D, and proSP-B concentrations were determined in plasma samples, and were statistically compared using parametric and multivariate methods. RESULTS Higher plasma concentrations of SP-D and proSP-B were found in patients affected by both T2D and CHD (DC group), and in patients with CHD without diabetes (NC group), in comparison to T2D patients (DN group). A significant correlation, both with linear regression (r = 0.3565, p = 0.001) and Principal Component Analysis (PCA), was found between the plasma levels of SP-D and proSP-B in the overall cohort of patients. No differences in SP-A were observed among the three groups of subjects. CONCLUSION The present study extends the knowledge on the role of plasma SPs' levels as possible indicators of the risk of CHD being linked to T2D disease progression.
Collapse
Affiliation(s)
- Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.G.); (A.G.)
| | - Francesco Piarulli
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (F.P.); (A.L.); (G.S.)
| | - Eugenio Ragazzi
- Studium Patavinum, University of Padova, 35122 Padova, Italy;
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.G.); (A.G.)
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.G.); (A.G.)
| | - Annunziata Lapolla
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (F.P.); (A.L.); (G.S.)
| | - Giovanni Sartore
- Department of Medicine-DIMED, University of Padova, 35122 Padova, Italy; (F.P.); (A.L.); (G.S.)
| |
Collapse
|
4
|
Eligini S, Savini C, Ghilardi S, Mallia A, Vieceli Dalla Sega F, Fortini F, Mikus E, Munno M, Modafferi G, Agostoni P, Tremoli E, Banfi C. Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis. Int J Mol Sci 2024; 25:6418. [PMID: 38928127 PMCID: PMC11204170 DOI: 10.3390/ijms25126418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Valvular disease is a complex pathological condition that impacts countless individuals around the globe. Due to limited treatments, it is crucial to understand its mechanisms to identify new targets. Valve disease may result in pulmonary venous hypertension, which is linked to compromised functioning of the alveolar and capillary membranes and hindered gas exchange. Nonetheless, the correlation between surfactant proteins (SPs) and valve disease remains unexplored. A total of 44 patients were enrolled in this study, with 36 undergoing aortic valve replacement and 8 needing a second aortic valve substitution due to bioprosthetic valve degeneration. Ten healthy subjects were also included. The results showed that patients who underwent both the first valve replacement and the second surgery had significantly higher levels of immature SP-B (proSP-B) compared to control subjects. The levels of the extra-lung collectin SP-D were higher in patients who needed a second surgery due to bioprosthetic valve degeneration, while SP-A levels remained unchanged. The research also showed that there was no reciprocal relationship between inflammation and SP-D as the levels of inflammatory mediators did not differ between groups. The present study demonstrates that circulating proSP-B serves as a reliable marker of alveolar-capillary membrane damage in patients with valvular heart disease.
Collapse
Affiliation(s)
- Sonia Eligini
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Carlo Savini
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
- Dipartimento di Scienze Mediche e Chirurgiche, Alma Mater Studiorum, Università di Bologna, 40126 Bologna, Italy
| | - Stefania Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Francesco Vieceli Dalla Sega
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Francesca Fortini
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Elisa Mikus
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Marco Munno
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| | - Piergiuseppe Agostoni
- Heart Failure Unit, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Department of Clinical and Community Sciences, University of Milan, 20122 Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care and Research, 48033 Cotignola, Italy; (C.S.); (F.V.D.S.); (F.F.); (E.M.); (E.T.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (S.E.); (S.G.); (A.M.); (M.M.); (G.M.)
| |
Collapse
|
5
|
Ali MJ. Etiopathogenesis of primary acquired nasolacrimal duct obstruction (PANDO). Prog Retin Eye Res 2023; 96:101193. [PMID: 37394093 DOI: 10.1016/j.preteyeres.2023.101193] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Primary acquired nasolacrimal duct obstruction, or PANDO, is a common adult lacrimal drainage disorder. The current treatment modality of dacryocystorhinostomy to bypass the obstructed nasolacrimal duct has excellent outcomes. However, the understanding of the disease etiopathogenesis needs to be revisited. There are not many studies that specifically assessed any hypothesis or ones that convincingly put forth the presumed or confirmed interpretations regarding the PANDO pathogenesis or the mechanisms or pathways involved therein. Histopathological evidence points to recurrent inflammation of the nasolacrimal duct, subsequent fibrosis, and the resultant obstruction. The disease etiopathogenesis is considered multifactorial. Several implicated suspects include anatomical narrowing of the bony nasolacrimal duct, vascular factors, local hormonal imbalance, microbial influence, nasal abnormalities, autonomic dysregulation, surfactants, lysosomal dysfunction, gastroesophageal reflux, tear proteins, and deranged local host defenses. The present work reviewed the literature on the etiopathogenesis of primary acquired nasolacrimal duct obstruction (PANDO) to gain insights into the present state of the understanding and the high-value translational implications of precisely decoding the disease etiology.
Collapse
Affiliation(s)
- Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India.
| |
Collapse
|
6
|
Crocker CE, Sharmeen R, Tran TT, Khan AM, Li W, Alcorn JL. Surfactant protein a attenuates generalized and localized neuroinflammation in neonatal mice. Brain Res 2023; 1807:148308. [PMID: 36871846 PMCID: PMC10065943 DOI: 10.1016/j.brainres.2023.148308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Surfactant protein A (SP-A) has important roles in innate immunity and modulation of pulmonary and extrapulmonary inflammation. Given SP-A has been detected in rat and human brain, we sought to determine if SP-A has a role in modulating inflammation in the neonatal mouse brain. Neonatal wildtype (WT) and SP-A-deficient (SP-A-/-) mice were subjected to three models of brain inflammation: systemic sepsis, intraventricular hemorrhage (IVH) and hypoxic-ischemic encephalopathy (HIE). Following each intervention, RNA was isolated from brain tissue and expression of cytokine and SP-A mRNA was determined by real-time quantitative RT-PCR analysis. In the sepsis model, expression of most cytokine mRNAs was significantly increased in brains of WT and SP-A-/- mice with significantly greater expression of all cytokine mRNA levels in SP-A-/- mice compared to WT. In the IVH model, expression of all cytokine mRNAs was significantly increased in WT and SP-A-/- mice and levels of most cytokine mRNAs were significantly increased in SP-A-/- mice compared to WT. In the HIE model, only TNF-α mRNA levels were significantly increased in WT brain tissue while all pro-inflammtory cytokine mRNAs were significantly increased in SP-A-/- mice, and all pro-inflammatory cytokine mRNA levels were significantly higher in SP-A-/- mice compared to WT. SP-A mRNA was not detectable in brain tissue of adult WT mice nor in WT neonates subjected to these models. These results suggest that SP-A-/- neonatal mice subjected to models of neuroinflammation are more susceptible to both generalized and localized neuroinflammation compared to WT mice, thus supporting the hypothesis that SP-A attenuates inflammation in neonatal mouse brain.
Collapse
Affiliation(s)
- Caroline E Crocker
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Romana Sharmeen
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Thu T Tran
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Amir M Khan
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wen Li
- Division of Clinical and Translational Sciences, Department of Internal Medicine, the University of Texas McGovern Medical School at Houston, Houston, TX 77030, USA; Biostatistics/Epidemiology/Research Design Component, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joseph L Alcorn
- Division of Neonatology, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Pediatric Research Center, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Jiang H, Zhang Y, Hu G, Shang X, Ming J, Deng M, Li Y, Ma Y, Liu S, Zhou Y. Innate/Inflammatory Bioregulation of Surfactant Protein D Alleviates Rat Osteoarthritis by Inhibiting Toll-Like Receptor 4 Signaling. Front Immunol 2022; 13:913901. [PMID: 35865531 PMCID: PMC9294227 DOI: 10.3389/fimmu.2022.913901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a deteriorating disease of cartilage tissues mainly characterized as low-grade inflammation of the joint. Innate immune molecule surfactant protein D (SP-D) is a member of collectin family of collagenous Ca2+-dependent defense lectins and plays a vital role in the inflammatory and innate immune responses. The present study investigated the SP-D-mediated innate/inflammatory bioregulation in OA and explored the underlying molecular mechanism. Transcriptome analysis revealed that SP-D regulated genes were strongly enriched in the inflammatory response, immune response, cellular response to lipopolysaccharide (LPS), PI3K-Akt signaling, Toll-like receptor (TLR) signaling, and extracellular matrix (ECM)-receptor interaction pathways. Knockdown of the SP-D gene by the recombinant adeno-associated virus promoted the macrophage specific markers of CD68, F4/80 and TLR4 in the articular cartilage in vivo. SP-D alleviated the infiltration of synovial macrophages and neutrophils, and inhibited TLR4, TNF-α and the phosphorylation of PI3K, Akt and NF-κB p65 in cartilage. SP-D suppressed cartilage degeneration, inflammatory and immune responses in the rat OA model, whilst TAK-242 strengthened this improvement. In in vitro conditions, SP-D pre-treatment inhibited LPS-induced overproduction of inflammation-correlated cytokines such as IL-1β and TNF-α, and suppressed the overexpression of TLR4, MD-2 and NLRP3. SP-D prevented the LPS-induced degradation of ECM by down-regulating MMP-13 and up-regulating collagen II. Blocking of TLR4 by TAK-242 further enhanced these manifestations. We also demonstrated that SP-D binds to the TLR4/MD-2 complex to suppress TLR4-mediated PI3K/Akt and NF-κB signaling activation in chondrocytes. Taken together, these findings indicate that SP-D has chondroprotective properties dependent on TLR4-mediated PI3K/Akt and NF-κB signaling and that SP-D has an optimal bioregulatory effect on the inflammatory and innate responses in OA.
Collapse
Affiliation(s)
- Huanyu Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Geliang Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaobin Shang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianghua Ming
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqing Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yan Zhou,
| |
Collapse
|
8
|
Shi XF, He X, Sun ZR, Wang JX, Gu YH, Xie YB, Duo J. Different expression of circulating microRNA profile and plasma SP-D in Tibetan COPD patients. Sci Rep 2022; 12:3388. [PMID: 35232961 PMCID: PMC8888752 DOI: 10.1038/s41598-022-05592-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
COPD is the fourth leading cause of mortality, and is predicted to be the third leading cause of death worldwide by 2020. But few studies on Tibetan COPD of China. This study identifies distinctive miRNA signatures in Tibetan COPD patients from Tibetan healthy subjects that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, a total of 210 differentially expressed miRNAs were screened. Analysis of the functions of target genes of differentially expressed miRNAs via GO enrichment analysis revealed that they mainly influenced guanyl-nucleotide exchange factor activity, cell morphogenesis and the positive regulation of GTPase activity. KEGG pathway enrichment analysis showed that these target genes were mainly enriched in signaling by NGF, Axon guidance, developmental biology, ubiquitin mediated proteolysis, and PDGF signaling pathways. MiR-106-5p and miR-486-5p expression was validated in the complete cohort. Age, plasma miR-106-5p, miR-486-5p, SP-D protein levels, and SP-D mRNA level were also determined to be correlated with FEV1%Pred, and may as the risk factors of Tibetan COPD. The combination of plasma miR-106-5p, miR-486-5p and SP-D mRNA expression may be the best model to assist the diagnosis of Tibetan COPD.
Collapse
Affiliation(s)
- Xue-Feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Xiang He
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Ze-Rui Sun
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Jian-Xiang Wang
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - Yu-Hai Gu
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China
| | - You-Bang Xie
- Department of Hematology and Rheumatology, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China.
| | - Jie Duo
- Department of Respiratory Medicine, Qinghai Provincial People's Hospital, Xining, Qinghai, 810007, People's Republic of China.
| |
Collapse
|
9
|
Pan C, Ning Y, Jia Y, Cheng S, Wen Y, Yang X, Meng P, Li C, Zhang H, Chen Y, Zhang J, Zhang Z, Zhang F. Transcriptome-wide association study identified candidate genes associated with gut microbiota. Gut Pathog 2021; 13:74. [PMID: 34922623 PMCID: PMC8684646 DOI: 10.1186/s13099-021-00474-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/07/2021] [Indexed: 01/18/2023] Open
Abstract
Background Gut microbiota is closely associated with host health and disease occurrence. Host genetic factor plays an important role in shaping gut microbial communities. The specific mechanism of host-regulated gene expression affecting gut microbiota has not been elucidated yet. Here we conducted a transcriptome-wide association study (TWAS) for gut microbiota by leveraging expression imputation from large-scale GWAS data sets. Results TWAS detected multiple tissue-specific candidate genes for gut microbiota, such as FUT2 for genus Bifidobacterium in transverse colon (PPERM.ANL = 1.68 × 10–3) and SFTPD for an unclassified genus of Proteobacteria in transverse colon (PPERM.ANL = 5.69 × 10–3). Fine mapping replicated 3 candidate genes in TWAS, such as HELLS for Streptococcus (PIP = 0.685) in sigmoid colon, ANO7 for Erysipelotrichaceae (PIP = 0.449) in sigmoid colon. Functional analyses detected 94 significant GO terms and 11 pathways for various taxa in total, such as GO_NUCLEOSIDE_DIPHOSPHATASE_ACTIVITY for Butyrivibrio (FDR P = 1.30 × 10–4), KEGG_RENIN_ANGIOTENSIN_SYSTEM for Anaerostipes (FDR P = 3.16 × 10–2). Literature search results showed 12 genes prioritized by TWAS were associated with 12 diseases. For instance, SFTPD for an unclassified genus of Proteobacteria was related to atherosclerosis, and FUT2 for Bifidobacterium was associated with Crohn’s disease. Conclusions Our study results provided novel insights for understanding the genetic mechanism of gut microbiota, and attempted to provide clues for revealing the influence of genetic factors on gut microbiota for the occurrence and development of diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00474-w.
Collapse
Affiliation(s)
- Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yujie Ning
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, National Health Commission of the People's Republic of China, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 71006, China.
| |
Collapse
|
10
|
Shi X, Huang H, Zhou M, Liu Y, Wu H, Dai M. Paeonol Attenuated Vascular Fibrosis Through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner. Front Pharmacol 2021; 12:765482. [PMID: 34880759 PMCID: PMC8646048 DOI: 10.3389/fphar.2021.765482] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Paeonol (Pae) is a natural phenolic compound isolated from Cortex Moutan, which exhibits anti-atherosclerosis (AS) effects. Our previous work demonstrated that gut microbiota plays an important role during AS treatment as it affects the efficacy of Pae. However, the mechanism of Pae in protecting against vascular fibrosis as related to gut microbiota has yet to be elucidated. Objective: To investigate the antifibrosis effect of Pae on AS mice and demonstrate the underlying gut microbiota-dependent mechanism. Methods: ApoE-/- mice were fed with high-fat diet (HFD) to replicate the AS model. H&E and Masson staining were used to observe the plaque formation and collagen deposition. Short-chain fatty acid (SCFA) production was analyzed through LC-MS/MS. The frequency of immune cells in spleen was phenotyped by flow cytometry. The mRNA expression of aortic inflammatory cytokines was detected by qRT-PCR. The protein expression of LOX and fibrosis-related indicators were examined by western blot. Results: Pae restricted the development of AS and collagen deposition. Notably, the antifibrosis effect of Pae was achieved by regulating the gut microbiota. LC-MS/MS data indicated that the level of SCFAs was increased in caecum contents. Additionally, Pae administration selectively upregulated the frequency of regulatory T (Treg) cells as well as downregulated the ratio of T helper type 17 (Th17) cells in the spleen of AS mice, improving the Treg/Th17 balance. In addition, as expected, Pae intervention can significantly downregulate the levels of proinflammatory cytokines IL-1β, IL-6, TNF-α, and IL-17 in the aorta, and upregulate the levels of anti-inflammatory factor IL-10, a marker of Treg cells. Finally, Pae's intervention in the gut microbiota resulted in the restoration of the balance of Treg/Th17, which indirectly downregulated the protein expression level of LOX and fibrosis-related indicators (MMP-2/9 and collagen I/III). Conclusion: Pae attenuated vascular fibrosis in a gut microbiota-dependent manner. The underlying protective mechanism was associated with the improved Treg/Th17 balance in spleen mediated through the increased microbiota-derived SCFA production. Collectively, our results demonstrated the role of Pae as a potential gut microbiota modulator to prevent and treat AS.
Collapse
Affiliation(s)
- Xiaoyan Shi
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Hanwen Huang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Min Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Yarong Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Hongfei Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Key Laboratory for Research and Development of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
11
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
12
|
Li D, Pan L, Zhang X, Jiang Z. Lower Oligomeric Form of Surfactant Protein D in Murine Acute Lung Injury Induces M1 Subtype Macrophages Through Calreticulin/p38 MAPK Signaling Pathway. Front Immunol 2021; 12:687506. [PMID: 34484184 PMCID: PMC8415422 DOI: 10.3389/fimmu.2021.687506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein D (SP-D) plays an important role in innate and adaptive immune responses. In this study, we found that the expression of total and de-oligomerized SP-D was significantly elevated in mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI). To investigate the role of the lower oligomeric form of SP-D in the pathogenesis of ALI, we treated bone marrow-derived macrophages (BMDMs) with ALI-derived bronchoalveolar lavage (BAL) and found that SP-D in ALI BAL predominantly bound to calreticulin (CALR) on macrophages, subsequently increasing the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and expression of interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, IL-10, and CD80. However, anti-SP-D (aSP-D) and anti-calreticulin (aCALR) pretreatment reversed the SP-D binding and activation of macrophages induced by ALI BAL or de-oligomerized recombinant murine SP-D (rSP-D). Lack of signal transducer and activator of transcription (STAT)6 in STAT6-/- macrophages resulted in resistance to suppression by aCALR. Further studies in an ALI mouse model showed that blockade of pulmonary SP-D by intratracheal (i.t.), but not intraperitoneal (i.p.), administration of aSP-D attenuated the severity of ALI, accompanied by lower neutrophil infiltrates and expression of IL-1beta and IL-6. Furthermore, i.t. administration of de-oligomerized rSP-D exacerbated the severity of ALI in association with more pro-inflammatory CD45+Siglec-F(-) M1 subtype macrophages and production of IL-6, TNF-alpha, IL-1beta, and IL-18. The results indicated that SP-D in the lungs of murine ALI was de-oligomerized and participated in the pathogenesis of ALI by predominantly binding to CALR on macrophages and subsequently activating the pro-inflammatory downstream signaling pathway. Targeting de-oligomerized SP-D is a promising therapeutic strategy for the treatment of ALI and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Dandan Li
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Linyue Pan
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoju Zhang
- Department of Pulmonary and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhilong Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Logette E, Lorin C, Favreau C, Oshurko E, Coggan JS, Casalegno F, Sy MF, Monney C, Bertschy M, Delattre E, Fonta PA, Krepl J, Schmidt S, Keller D, Kerrien S, Scantamburlo E, Kaufmann AK, Markram H. A Machine-Generated View of the Role of Blood Glucose Levels in the Severity of COVID-19. Front Public Health 2021; 9:695139. [PMID: 34395368 PMCID: PMC8356061 DOI: 10.3389/fpubh.2021.695139] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 started spreading toward the end of 2019 causing COVID-19, a disease that reached pandemic proportions among the human population within months. The reasons for the spectrum of differences in the severity of the disease across the population, and in particular why the disease affects more severely the aging population and those with specific preconditions are unclear. We developed machine learning models to mine 240,000 scientific articles openly accessible in the CORD-19 database, and constructed knowledge graphs to synthesize the extracted information and navigate the collective knowledge in an attempt to search for a potential common underlying reason for disease severity. The machine-driven framework we developed repeatedly pointed to elevated blood glucose as a key facilitator in the progression of COVID-19. Indeed, when we systematically retraced the steps of the SARS-CoV-2 infection, we found evidence linking elevated glucose to each major step of the life-cycle of the virus, progression of the disease, and presentation of symptoms. Specifically, elevations of glucose provide ideal conditions for the virus to evade and weaken the first level of the immune defense system in the lungs, gain access to deep alveolar cells, bind to the ACE2 receptor and enter the pulmonary cells, accelerate replication of the virus within cells increasing cell death and inducing an pulmonary inflammatory response, which overwhelms an already weakened innate immune system to trigger an avalanche of systemic infections, inflammation and cell damage, a cytokine storm and thrombotic events. We tested the feasibility of the hypothesis by manually reviewing the literature referenced by the machine-generated synthesis, reconstructing atomistically the virus at the surface of the pulmonary airways, and performing quantitative computational modeling of the effects of glucose levels on the infection process. We conclude that elevation in glucose levels can facilitate the progression of the disease through multiple mechanisms and can explain much of the differences in disease severity seen across the population. The study provides diagnostic considerations, new areas of research and potential treatments, and cautions on treatment strategies and critical care conditions that induce elevations in blood glucose levels.
Collapse
Affiliation(s)
- Emmanuelle Logette
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Henry Markram
- Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| |
Collapse
|
14
|
Zhang C, Cheng Y, Liu F, Ma J, Wang G. A community study of the risk for obstructive sleep apnea and respiratory inflammation in an adult Chinese population. Postgrad Med 2021; 133:531-540. [PMID: 33851902 DOI: 10.1080/00325481.2021.1914466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Objectives: We aimed to investigate the relationship between obstructive sleep apnea (OSA) risk and respiratory inflammation evaluated by the exhaled breath condensate (EBC) interleukin-6 (IL-6) and plasma surfactant protein-D (SP-D), based on the Berlin questionnaire (BQ) screening values in an adult, urban community in Beijing, China.Methods: Volunteers aged >40 years were recruited from the Shichahai community of central Beijing (Registration number: NCT04832711). Their general information and disease history were recorded. OSA risk was assessed using the BQ. IL-6 in EBC and plasma SP-D were d etected by enzyme-linked immunoassay through specimens collected while fasting. The differences in IL-6 and SP-D values between high-risk and low-risk groups for OSA were compared, and the factors affecting their values were analyzed.Results: Among 1,239 participants, 18.8% of participants were in the high-risk group. There were more participants with higher body mass index, chronic hypertension, coronary heart disease, and diabetes in the high-risk group than in the low-risk group (P < 0.05). There were no significant differences in EBC IL-6 and plasma SP-D between the high- and low-OSA risk groups (p > 0.05). After adjustment for age, sex and chronic comorbidities, multivariate logistic regression showed that there was no correlation between risk of OSA and IL-6 in EBC. However, the risk of OSA (odds ratio [OR] [95% CI]: 1.69 [1.15,2.48]; β = 0.522) and BMI (OR [95%CI]: 0.94 [0.91,0.98]; β = -0.061) were independently associated with plasma SP-D level (p < 0.05 for both). Stratification analysis showed that OSA risk were independently associated with plasma SP-D levels in participants <65 years, or men, or participants with BMI<25.Conclusion: This study showed that plasma SP-D, an inflammation biomarker, was associated with risk of OSA and BMI in a Chinese central urban community.The relationship between the risk of OSA and respiratory inflammation in community populations needs to be further evaluated.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- The Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Feng Liu
- The Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jing Ma
- The Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- The Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Xu J, Shi J, Cai X, Huang S, Li G, Xu Y. [ Fuxinfang improves hypoxia-induced injury of human aortic endothelial cells by regulating c-Fos-NR4A1-p38 pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:200-209. [PMID: 33624592 DOI: 10.12122/j.issn.1673-4254.2021.02.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the molecular mechanism of Fuxinfang for improving injury of human aortic endothelial progenitor cells (HAECs). OBJECTIVE Serum samples were collected from male SD rats treated with Fuxinfang (n=8) or saline (n= 5). HAECs cultured in normoxia or hypoxic condition (2% O2) were treated with serum from normal rats or with diluted serum (1% and 10%) from rats treated with Fuxinfang. The differentially expressed genes (DEGs) between Fuxinfang-treated and control cells were detected using high-throughput sequencing to screen the target DEGs that participated in arterial endothelial cell injury and underwent changes in response to both hypoxia and Fuxinfang treatment. AmiGo and String databases were used to infer the interactions among the target genes, and the expressions of the genes were analyzed in HAECs with different treatments using enzyme-linked immunosorbent assay (ELISA) and Western blotting. OBJECTIVE HAECs cultured in hypoxia did not show obvious changes in cell morphology or expressions of hypoxia-related factors in response to treatment with 1% or 10% serum from Fuxinfang-treated rats. The results of high-throughput sequencing showed a total of 7134 DEGs (4205 up-regulated and 2929 down-regulated genes) in HAECs in hypoxia model group and 762 DEGs (305 upregulated and 457 down-regulated genes) in Fuxinfang-treated HAECs. Analysis of AmiGo and String databases and the constructed protein-protein interaction network identified c-Fos, NR4A1, and p38MAPK as the target genes. The results of ELISA and Western blotting showed that the expressions of c-Fos, NR4A1, p38MAPK and pp38MAPK increased significantly in cells with hypoxic exposure (P < 0.05); treatment with the serum containing Fuxinfang significantly reduced the expression levels of c-Fos, NR4A1 and p-p38MAPK in hypoxic HAECs in a concentration-dependent manner (P < 0.05). OBJECTIVE The serum from Fuxinfang-treated rats can concentration-dependently inhibit the expressions of the DEGs occurring in hypoxia. Fuxinfang improves hypoxic injuries of HAECs possibly by down-regulating the expression of c-Fos to inhibit NR4A1 expression and suppressing hypoxia-induced p38 phosphorylation.
Collapse
Affiliation(s)
- J Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - J Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - X Cai
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - S Huang
- Shanghai Pudong TCM Hospital Luoshan Branch, Shanghai 200136, China
| | - G Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Y Xu
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| |
Collapse
|
16
|
Li X, Guo D, Zhou H, Hu Y, Fang X, Chen Y. Pro-inflammatory Mediators and Oxidative Stress: Therapeutic Markers for Recurrent Angina Pectoris after Coronary Artery Stenting in Elderly Patients. Curr Vasc Pharmacol 2021; 19:643-654. [PMID: 33511935 DOI: 10.2174/1570161119666210129142707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 01/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pro-inflammatory mediators and oxidative stress are related to severity of angina pectoris in patients with coronary heart disease. OBJECTIVE We evaluated the effects of pro-inflammatory mediators and oxidative stress on recurrent angina pectoris after coronary artery stenting in elderly patients. METHODS We determined the expression levels of malondialdehyde (MDA), acrolein (ACR), tumour necrosis factor-α (TNF-α), toll-like receptor 4 (TLR4), superoxide dismutase 3 (SOD3), paraoxonase-1 (PON-1), stromal cell-derived factor-1α (SDF-1α) and endothelial progenitor cells (EPCs) in elderly patients with recurrent angina pectoris after coronary artery stenting. RESULTS Levels of MDA, ACR, TNF-α and TLR4 were significantly increased (p<0.001), and levels of SOD3, PON-1, SDF-1α and EPCs were significantly decreased (p<0.001) in the elderly patients with recurrent angina pectoris after coronary artery stenting. MDA, ACR, TNF-α and TLR4 as markers of oxidative stress and pro-inflammatory mediators may have suppressed SOD3, PON-1, SDF-1α and EPCs as markers of anti-oxidative stress/anti-inflammatory responses. Oxidative stress and pro-inflammatory mediators were important factors involved in recurrent angina pectoris of elderly patients after coronary artery stenting. CONCLUSION Oxidative stress and pro-inflammatory mediators could be considered as potential non-invasive prognostic, predictive and therapeutic biomarkers for stable recurrent angina and recurrent unstable angina in the elderly patients after coronary artery stenting.
Collapse
Affiliation(s)
- Xia Li
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002. China
| | - Dianxuan Guo
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002. China
| | - Hualan Zhou
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002. China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002. China
| | - Xiang Fang
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002. China
| | - Ying Chen
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002. China
| |
Collapse
|
17
|
Yuan H, Gao Z, Lu X, Hu F. Role of collectin-11 in innate defence against uropathogenic Escherichia coli infection. Innate Immun 2020; 27:50-60. [PMID: 33241978 PMCID: PMC7780352 DOI: 10.1177/1753425920974766] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Classical collectins (surfactant protein A and D) play a significant role in innate immunity and host defence in uropathogenic Escherichia coli (UPEC)-induced urinary tract infection (UTI). However, the functions of collectin-11 (CL-11) with respect to UPEC and UTI remain largely unexplored. This study aimed to investigate the effect of CL-11 on UPEC and its role in UTI. We further examined its modulatory effect on inflammatory reactions in proximal tubular epithelial cells (PTECs). The present study provides evidence for the effect of CL-11 on the growth, agglutination, binding, epithelial adhesion and invasion of UPEC. We found increased basal levels of phosphorylated p38 MAPK and human cytokine homologue (keratinocyte-derived chemokine) expression in CL-11 knockdown PTECs. Furthermore, signal regulatory protein α blockade reversed the increased basal levels of inflammation associated with CL-11 knockdown in PTECs. Additionally, CL-11 knockdown effectively inhibited UPEC-induced p38 MAPK phosphorylation and cytokine production in PTECs. These were further inhibited by CD91 blockade. We conclude that CL-11 functions as a mediator of innate immunity via direct antibacterial roles as well as dual modulatory roles in UPEC-induced inflammatory responses during UTI. Thus, the study findings suggest a possible function for CL-11 in defence against UTI.
Collapse
Affiliation(s)
- Hai Yuan
- Department of Nephrology, 74731Xiangyang Central Hospital, Affiliated Hospital of 118302Hubei University of Arts and Science, PR China
| | - Zhao Gao
- Department of Nephrology, 74731Xiangyang Central Hospital, Affiliated Hospital of 118302Hubei University of Arts and Science, PR China
| | - Xiaohan Lu
- Department of Nephrology, 74731Xiangyang Central Hospital, Affiliated Hospital of 118302Hubei University of Arts and Science, PR China
| | - Fengqi Hu
- Department of Nephrology, 74731Xiangyang Central Hospital, Affiliated Hospital of 118302Hubei University of Arts and Science, PR China
| |
Collapse
|
18
|
Madan T, Kishore U. Surfactant Protein D Recognizes Multiple Fungal Ligands: A Key Step to Initiate and Intensify the Anti-fungal Host Defense. Front Cell Infect Microbiol 2020; 10:229. [PMID: 32547959 PMCID: PMC7272678 DOI: 10.3389/fcimb.2020.00229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
With limited therapeutic options and associated severe adverse effects, fungal infections are a serious threat to human health. Innate immune response mediated by pattern recognition proteins is integral to host defense against fungi. A soluble pattern recognition protein, Surfactant protein D (SP-D), plays an important role in immune surveillance to detect and eliminate human pathogens. SP-D exerts its immunomodulatory activity via direct interaction with several receptors on the epithelial cells lining the mucosal tracts, as well as on innate and adaptive immune cells. Being a C-type lectin, SP-D shows calcium- and sugar-dependent interactions with several glycosylated ligands present on fungal cell walls. The interactome includes cell wall polysaccharides such as 1,3-β-D-glucan, 1,6-β-D-glucan, Galactosaminogalactan Galactomannan, Glucuronoxylomannan, Mannoprotein 1, and glycosylated proteins such as gp45, gp55, major surface glycoprotein complex (gpA). Recently, binding of a recombinant fragment of human SP-D to melanin on the dormant conidia of Aspergillus fumigatus was demonstrated that was not inhibited by sugars, suggesting a likely protein-protein interaction. Interactions of the ligands on the fungal spores with the oligomeric forms of full-length SP-D resulted in formation of spore-aggregates, increased uptake by phagocytes and rapid clearance besides a direct fungicidal effect against C. albicans. Exogenous administration of SP-D showed significant therapeutic potential in murine models of allergic and invasive mycoses. Altered susceptibility of SP-D gene-deficient mice to various fungal infections emphasized relevance of SP-D as an important sentinel of anti-fungal immunity. Levels of SP-D in the serum or lung lavage were significantly altered in the murine models and patients of fungal infections and allergies. Here, we review the cell wall ligands of clinically relevant fungal pathogens and allergens that are recognized by SP-D and their impact on the host defense. Elucidation of the molecular interactions between innate immune humoral such as SP-D and fungal pathogens would facilitate the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
19
|
Potential Therapeutic Anti-Inflammatory and Immunomodulatory Effects of Dihydroflavones, Flavones, and Flavonols. Molecules 2020; 25:molecules25041017. [PMID: 32102475 PMCID: PMC7070238 DOI: 10.3390/molecules25041017] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/19/2020] [Accepted: 02/22/2020] [Indexed: 12/31/2022] Open
Abstract
Systemic inflammation, circulating immune cell activation, and endothelial cell damage play a critical role in vascular pathogenesis. Flavonoids have shown anti-inflammatory effects. In this study, we investigated the effects of different flavonoids on the production of pro-inflammatory interleukin (IL) 1β, 6, and 8, and tumor necrosis factor α (TNF-α), in peripheral blood cells. Methods: We studied the whole blood from 36 healthy donors. Lipopolysaccharide (LPS)-stimulated (0.5 μg/mL) whole-blood aliquots were incubated in the presence or absence of different concentrations of quercetin, rutin, naringenin, naringin, diosmetin, and diosmin for 6 h. Cultures were centrifuged and the supernatant was collected in order to measure IL-1β, TNF-α, IL-6, and IL-8 production using specific immunoassay techniques. This production was significantly inhibited by quercetin, naringenin, naringin, and diosmetin, but in no case by rutin or diosmin. Flavonoids exert different effects, maybe due to the differences between aglycons and glucosides present in their chemical structures. However, these studies suggest that quercetin, naringenin, naringin, and diosmetin could have a potential therapeutic effect in the inflammatory process of cardiovascular disease.
Collapse
|