1
|
Ponomarev AV, Shubina IZ, Sokolova ZA, Baryshnikova MA, Kosorukov VS. Transplantable Murine Tumors in the Studies of Peptide Antitumor Vaccines. Oncol Rev 2024; 17:12189. [PMID: 38260723 PMCID: PMC10800450 DOI: 10.3389/or.2023.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Numerous studies have shown that antitumor vaccines based on synthetic peptides are safe and can induce both CD8+ and CD4+ tumor-specific T cell responses. However, clinical results are still scarce, and such approach to antitumor treatment has not gained a wide implication, yet. Recently, particular advances have been achieved due to tumor sequencing and the search for immunogenic neoantigens caused by mutations. One of the most important issues for peptide vaccines, along with the choice of optimal adjuvants and vaccination regimens, is the search for effective target antigens. Extensive studies of peptide vaccines, including those on murine models, are required to reveal the effective vaccine constructs. The review presents transplantable murine tumors with the detected peptides that showed antitumor efficacy as a vaccine compound.
Collapse
|
2
|
Alanine-based spacers promote an efficient antigen processing and presentation in neoantigen polypeptide vaccines. Cancer Immunol Immunother 2023:10.1007/s00262-023-03409-3. [PMID: 36820900 DOI: 10.1007/s00262-023-03409-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/12/2023] [Indexed: 02/24/2023]
Abstract
Neoantigens are tumor-specific antigens that are mostly particular for each patient. Since the immune system is able to mount a specific immune response against these neoantigens, they are a promising tool for the development of therapeutic personalized cancer vaccines. Neoantigens must be presented to T cells by antigen presenting cells (APC) in the context of MHC-I or MHC-II molecules. Therefore, the strategy of vaccine delivery may have a major impact on the magnitude and quality of T cell responses. Neoantigen-based vaccines are frequently administered as a pool of individual synthetic peptides that induce mainly CD4+ T cell responses. MHC-I-mediated presentation and the elicitation of CD8+ T cell responses may be improved using DNA or RNA sequences that code for a unique long polypeptide that concatenates the different neoantigens spaced by linker sequences. When administered this way, the selection of the spacer between neoantigens is of special interest, as it might influence the processing and presentation of the right peptides by APCs. Here, we evaluate the impact of such linker regions on the MHC-I-dependent antigen presentation using an in vitro assay that assesses the MHC-I presentation of SIINFEKL, a H-2 Kb-restricted OVA peptide. Our results show that spacers used to generate epitope concatenates have a large impact on the efficiency of neoantigen processing and presentation by MHC-I molecules; in contrast, the peptide position and the flanking regions have a minimal impact. Moreover, linkers based on alanine residues promote a more efficient peptide presentation than the commonly used GGGS linker.
Collapse
|
3
|
Butkovich N, Tucker JA, Ramirez A, Li E, Meli VS, Nelson EL, Wang SW. Nanoparticle vaccines can be designed to induce pDC support of mDCs for increased antigen display. Biomater Sci 2023; 11:596-610. [PMID: 36476811 PMCID: PMC10775882 DOI: 10.1039/d2bm01132h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer vaccine immunotherapy facilitates the immune system's recognition of tumor-associated antigens, and the biomolecular design of these vaccines using nanoparticles is one important approach towards obtaining strong anti-tumor responses. Following activation of dendritic cells (DCs), a robust CD8+ T cell-mediated adaptive immune response is critical for tumor elimination. While the role of efficient antigen-presenting myeloid DCs (mDCs) is conventionally attributed towards vaccine efficacy, participation by highly cytokine-producing plasmacytoid DCs (pDCs) is less understood and is often overlooked. We examined vaccines based on the E2 protein nanoparticle platform that delivered encapsulated TLR9 agonist bacterial-like DNA (CpG1826 or CpG1018) or TLR7 agonist viral ssRNA to determine their efficacy over free agonists in activating both mDCs and pDCs for antigen presentation. Although mDCs were only activated by nanoparticle-encapsulated TLR9 agonists, pDCs were activated by all the individually tested constructs, and CpG1826 was shown to induce pDC cytokine production. Transfer of secreted factors from pDCs that were stimulated with a vaccine formulation comprising peptide antigen and CpG1826 enhanced mDC display of the antigen, particularly when delivered in nanoparticles. Only when treated with nanoparticle-conjugated vaccine could pDCs secrete factors to induce antigen display on naïve mDCs. These results reveal that pDCs can aid mDCs, highlighting the importance of activating both pDCs and mDCs in designing effective cancer vaccines, and demonstrate the advantage of using nanoparticle-based vaccine delivery.
Collapse
Affiliation(s)
- Nina Butkovich
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| | - Jo Anne Tucker
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - Aaron Ramirez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| | - Enya Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| | - Vijaykumar S Meli
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Edward L Nelson
- Department of Medicine, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
| | - Szu-Wen Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
- Institute for Immunology, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines (Basel) 2022; 10:vaccines10020196. [PMID: 35214655 PMCID: PMC8877108 DOI: 10.3390/vaccines10020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.
Collapse
|
5
|
Gu YM, Zhuo Y, Chen LQ, Yuan Y. The Clinical Application of Neoantigens in Esophageal Cancer. Front Oncol 2021; 11:703517. [PMID: 34386424 PMCID: PMC8353328 DOI: 10.3389/fonc.2021.703517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023] Open
Abstract
Esophageal cancer (EC) is a common malignant tumor with poor prognosis, and current treatments for patients with advanced EC remain unsatisfactory. Recently, immunotherapy has been recognized as a new and promising approach for various tumors. EC cells present a high tumor mutation burden and harbor abundant tumor antigens, including tumor-associated antigens and tumor-specific antigens. The latter, also referred to as neoantigens, are immunogenic mutated peptides presented by major histocompatibility complex class I molecules. While current genomics and bioinformatics technologies have greatly facilitated the identification of tumor neoantigens, identifying individual neoantigens systematically for successful therapies remains a challenging problem. Owing to the initiation of strong, specific tumor-killing cytotoxic T cell responses, neoantigens are emerging as promising targets to develop personalized treatment and have triggered the development of cancer vaccines, adoptive T cell therapies, and combination therapies. This review aims to give a current understanding of the clinical application of neoantigens in EC and provide direction for future investigation.
Collapse
Affiliation(s)
- Yi-Min Gu
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhuo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Cancer Vaccines: Antigen Selection Strategy. Vaccines (Basel) 2021; 9:vaccines9020085. [PMID: 33503926 PMCID: PMC7911511 DOI: 10.3390/vaccines9020085] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Unlike traditional cancer therapies, cancer vaccines (CVs) harness a high specificity of the host’s immunity to kill tumor cells. CVs can train and bolster the patient’s immune system to recognize and eliminate malignant cells by enhancing immune cells’ identification of antigens expressed on cancer cells. Various features of antigens like immunogenicity and avidity influence the efficacy of CVs. Therefore, the choice and application of antigens play a critical role in establishing and developing CVs. Tumor-associated antigens (TAAs), a group of proteins expressed at elevated levels in tumor cells but lower levels in healthy normal cells, have been well-studied and developed in CVs. However, immunological tolerance, HLA restriction, and adverse events are major obstacles that threaten TAA-based CVs’ efficacy due to the “self-protein” characteristic of TAAs. As “abnormal proteins” that are completely absent from normal cells, tumor-specific antigens (TSAs) can trigger a robust immune response against tumor cells with high specificity and without going through central tolerance, contributing to cancer vaccine development feasibility. In this review, we focus on the unique features of TAAs and TSAs and their application in vaccines, summarizing their performance in preclinical and clinical trials.
Collapse
|
7
|
Tsai SJ, Amerman A, Jewell CM. Altering Antigen Charge to Control Self-Assembly and Processing of Immune Signals During Cancer Vaccination. Front Immunol 2021; 11:613830. [PMID: 33488621 PMCID: PMC7815530 DOI: 10.3389/fimmu.2020.613830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
Biomaterial delivery systems offer unique potential to improve cancer vaccines by offering targeted delivery and modularity to address disease heterogeneity. Here, we develop a simple platform using a conserved human melanoma peptide antigen (Trp2) modified with cationic arginine residues that condenses an anionic toll-like receptor agonist (TLRa), CpG, into polyplex-like nanoparticles. We reasoned that these structures could offer several useful features for immunotherapy – such as tunable loading, co-delivery of immune cues, and cargo protection – while eliminating the need for synthetic polymers or other complicating delivery systems. We demonstrate that Trp2/CpG polyplexes can readily form over a range of Trp2:CpG ratios and improve antigen uptake by primary antigen presenting cells. We show antigen loading can be tuned by interchanging Trp2 peptides with defined charges and numbers of arginine residues. Notably, these polyplexes with greater antigen loading enhance the functionality of Trp-2 specific T cells and in a mouse melanoma model, decrease tumor burden and improve survival. This work highlights opportunities to control the biophysical properties of nanostructured materials built from immune signals to enhance immunotherapy, without the added complexity or background immune effects often associated with synthetic carriers.
Collapse
Affiliation(s)
- Shannon J Tsai
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Allie Amerman
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.,Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, United States.,United States Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, United States.,Department of Microbiology and Immunology, University of Maryland Medical School, Baltimore, MD, United States.,Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, United States
| |
Collapse
|
8
|
Wu B, Liu H, Cai H, Tao W, Wang G, Shi X, Chen H, Li R. Vaccine targeting TNF epitope 1-14 do not suppress host defense against Mycobacterium bovis Bacillus Calmette-Guérin infection. Int J Biol Macromol 2020; 169:371-383. [PMID: 33347929 DOI: 10.1016/j.ijbiomac.2020.12.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Anti-TNF inhibitors are efficacious in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA), Crohn's disease (CD), juvenile idiopathic arthritis (JIA), and ankylosing spondylitis (AS). However, more and more clinical case reports revealed that anti-TNF inhibitors could increase the risk of viral, fungal, and bacterial (especially intracellular) infection. In this study, based on Immune Epitope Database (IEDB) online B cell epitope prediction and the knowledge of TNF three dimensional (3D) structure we developed a novel vaccine (DTNF114-TNF114) that targeting TNF epitope 1-14, which produced antibodies only partially binding to trans-membrane TNF (tmTNF), therefore partially sparing tmTNF-TNFR1/2 interaction. Immunization with DTNF114-TNF114 significantly protected and prolonged the survival rate of mice challenged with lipopolysaccharide (LPS); and in the mCherry expressing Mycobacterium bovis Bacillus Calmette-Guérin (mCherry-BCG) infection model, DTNF114-TNF114 immunization significantly decreased soluble TNF (solTNF) level in serum, meanwhile did not suppress host immunity against infection. Thus, this novel and infection concern-free vaccine provides a potential alternative or supplement to currently clinically used anti-TNF inhibitors.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Weihong Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Gengchong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Xiaohui Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
9
|
Lee KL, Schlom J, Hamilton DH. Combination therapies utilizing neoepitope-targeted vaccines. Cancer Immunol Immunother 2020; 70:875-885. [PMID: 33033852 PMCID: PMC7979579 DOI: 10.1007/s00262-020-02729-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Clinical successes have been achieved with checkpoint blockade therapy, which facilitates the function of T cells recognizing tumor-specific mutations known as neoepitopes. It is a reasonable hypothesis that therapeutic cancer vaccines targeting neoepitopes uniquely expressed by a patient’s tumor would prove to be an effective therapeutic strategy. With the advent of high-throughput next generation sequencing, it is now possible to rapidly identify these tumor-specific mutations and produce therapeutic vaccines targeting these patient-specific neoepitopes. However, initial reports suggest that when used as a monotherapy, neoepitope-targeted vaccines are not always sufficient to induce clinical responses in some patients. Therefore, research has now turned to investigating neoepitope vaccines in combination with other cancer therapies, both immune and non-immune, to improve their clinical efficacies.
Collapse
Affiliation(s)
- Karin L Lee
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Duane H Hamilton
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
10
|
Gopanenko AV, Kosobokova EN, Kosorukov VS. Main Strategies for the Identification of Neoantigens. Cancers (Basel) 2020; 12:E2879. [PMID: 33036391 PMCID: PMC7600129 DOI: 10.3390/cancers12102879] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/24/2022] Open
Abstract
Genetic instability of tumors leads to the appearance of numerous tumor-specific somatic mutations that could potentially result in the production of mutated peptides that are presented on the cell surface by the MHC molecules. Peptides of this kind are commonly called neoantigens. Their presence on the cell surface specifically distinguishes tumors from healthy tissues. This feature makes neoantigens a promising target for immunotherapy. The rapid evolution of high-throughput genomics and proteomics makes it possible to implement these techniques in clinical practice. In particular, they provide useful tools for the investigation of neoantigens. The most valuable genomic approach to this problem is whole-exome sequencing coupled with RNA-seq. High-throughput mass-spectrometry is another option for direct identification of MHC-bound peptides, which is capable of revealing the entire MHC-bound peptidome. Finally, structure-based predictions could significantly improve the understanding of physicochemical and structural features that affect the immunogenicity of peptides. The development of pipelines combining such tools could improve the accuracy of the peptide selection process and decrease the required time. Here we present a review of the main existing approaches to investigating the neoantigens and suggest a possible ideal pipeline that takes into account all modern trends in the context of neoantigen discovery.
Collapse
Affiliation(s)
| | | | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (A.V.G.); (E.N.K.)
| |
Collapse
|
11
|
Stifter K, Dekhtiarenko I, Krieger J, Tissot AC, Seufferlein T, Wagner M, Schirmbeck R. A tumor-specific neoepitope expressed in homologous/self or heterologous/viral antigens induced comparable effector CD8 + T-cell responses by DNA vaccination. Vaccine 2020; 38:3711-3719. [PMID: 32278524 DOI: 10.1016/j.vaccine.2020.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/06/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
Abstract
Somatic mutations in tumors often generate neoproteins that contain MHC-I-binding neoepitopes. Little is known if and how efficient tumor-specific neoantigens activate CD8+ T cells. Here, we asked whether a de novo generated neoepitope, encoded either within an otherwise conserved and ubiquitously expressed self-antigen or in a chimeric HBV core antigen expression platform, providing heterologous helper functions, induces CD8+ T cells in C57Bl/6J mice by DNA immunization. For it, we chose an established Db/Sp244-252/R251H neoepitope generated in the murine Endophilin-B2/SH3GLB2 (EndoB2-Sp) protein by a single amino acid exchange. We showed that a single injection of EndoB2-Sp expression vectors efficiently primed dimer/pentamer+, IFN-γ+ and cytolytic Db/Sp244-252/R251H-specific effector CD8+ T cells in C57Bl/6J mice. Priming of Db/Sp244-252/R251H-specific CD8+ T cells proceeded independent from CD4+ T-cell help in MHC-II-deficient Aα-/- mice. As compared to the homologous EndoB2-Sp vaccine, the selective expression of the Db/Sp244-252/R251H neoepitope in chimeric particle-forming and assembly-deficient HBV core antigens induced comparable frequencies Db/Sp244-252/R251H-specific CD8+ T cells with the same cytolytic effector phenotype. The homologous EndoB2 carrier, but not the nine-residue neoepitope presented on chimeric HBV core particles, induced EndoB2-specific IgG antibody responses. The HBV core expression platform is thus an attractive option to selectively induce neoepitope-specific effector CD8+ T cells by DNA vaccination. These novel findings have practical implications for the design of heterologous/self and heterologous/viral cancer vaccines that prime and/or activate neoepitope-specific CD8+ T cells.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Iryna Dekhtiarenko
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Zürich, Schlieren, Switzerland
| | - Jana Krieger
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Alain Charles Tissot
- Roche Pharma Research and Early Development, Therapeutic Modalities, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH; Nonnenwald 2, 82377 Penzberg, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Hospital, Albert Einstein Allee 23, 89081 Ulm, Germany.
| |
Collapse
|
12
|
Wang Y, Zhang H, Jiao B, Nie J, Li X, Wang W, Wang H. The Roles of Alternative Splicing in Tumor-immune Cell Interactions. Anticancer Agents Med Chem 2020; 20:729-740. [PMID: 32560607 PMCID: PMC8388066 DOI: 10.2174/1568009620666200619123725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
Alternative splicing (AS) plays a significant role in the hallmarks of cancer and can provide neoantigens for immunotherapy. Here, we summarize recent advances in immune system associated tumor specific-antigens (TSAs) produced by AS. We further discuss the regulating mechanisms involved in AS-mediated innate and adaptive immune responses and the anti-tumoral and protumoral roles in different types of cancer. For example, ULBP1_RI, MLL5Δ21spe, NKp44-1Δ5, MHC-IΔ7, CD200SΔ1, 2, PVR α/β/γ/δ and IL-33 variants 1/2/3 act as regulators in solid tumors and IPAK4-L and, FOXP1ΔN100 exhibit functions in hematological cancers.
Collapse
Affiliation(s)
| | - Honglei Zhang
- Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: ; and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail:
| | - Baowei Jiao
- Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: ; and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail:
| | - Jianyun Nie
- Address correspondence to these authors at Kunming Institute of Zoology, Chinese Academy of Sciences; 32 Jiaochang E. Road, Kunming, Yunnan, China; Tel: +86-871-68191706; E-mail: ; and Department of Breast Cancer, Third Affiliated Hospital, Kunming Medical University, 519 Kunzhou Road, Kunming, Yunnan, China; Tel: +86-13608815577; E-mail:
| | | | | | | |
Collapse
|