1
|
Szczawińska-Popłonyk A, Ciesielska W, Konarczak M, Opanowski J, Orska A, Wróblewska J, Szczepankiewicz A. Immunogenetic Landscape in Pediatric Common Variable Immunodeficiency. Int J Mol Sci 2024; 25:9999. [PMID: 39337487 PMCID: PMC11432681 DOI: 10.3390/ijms25189999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic antibody deficiency, characterized by heterogeneous genetic, immunological, and clinical phenotypes. It is no longer conceived as a sole disease but as an umbrella diagnosis comprising a spectrum of clinical conditions, with defects in antibody biosynthesis as their common denominator and complex pathways determining B and T cell developmental impairments due to genetic defects of many receptors and ligands, activating and co-stimulatory molecules, and intracellular signaling molecules. Consequently, these genetic variants may affect crucial immunological processes of antigen presentation, antibody class switch recombination, antibody affinity maturation, and somatic hypermutation. While infections are the most common features of pediatric CVID, variants in genes linked to antibody production defects play a role in pathomechanisms of immune dysregulation with autoimmunity, allergy, and lymphoproliferation reflecting the diversity of the immunogenetic underpinnings of CVID. Herein, we have reviewed the aspects of genetics in CVID, including the monogenic, digenic, and polygenic models of inheritance exemplified by a spectrum of genes relevant to CVID pathophysiology. We have also briefly discussed the epigenetic mechanisms associated with micro RNA, DNA methylation, chromatin reorganization, and histone protein modification processes as background for CVID development.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| | - Wiktoria Ciesielska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Marta Konarczak
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Jakub Opanowski
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Orska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Julia Wróblewska
- Student Scientific Society, Poznan University of Medical Sciences, 60-572 Poznań, Poland
| | - Aleksandra Szczepankiewicz
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznań, Poland
| |
Collapse
|
2
|
Ameratunga R, Longhurst H, Leung E, Steele R, Lehnert K, Woon ST. Limitations in the clinical utility of vaccine challenge responses in the evaluation of primary antibody deficiency including Common Variable Immunodeficiency Disorders. Clin Immunol 2024; 266:110320. [PMID: 39025346 DOI: 10.1016/j.clim.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Vaccine challenge responses are an integral component in the diagnostic evaluation of patients with primary antibody deficiency, including Common Variable Immunodeficiency Disorders (CVID). There are no studies of vaccine challenge responses in primary hypogammaglobulinemia patients not accepted for subcutaneous/intravenous immunoglobulin (SCIG/IVIG) replacement compared to those accepted for such treatment. Vaccine challenge responses in patients enrolled in two long-term prospective cohorts, the New Zealand Hypogammaglobulinemia Study (NZHS) and the New Zealand CVID study (NZCS), were compared in this analysis. Almost all patients in the more severely affected SCIG/IVIG treatment group achieved protective antibody levels to tetanus toxoid and H. influenzae type B (HIB). Although there was a highly significant statistical difference in vaccine responses to HIB, tetanus and diphtheria toxoids, there was substantial overlap in both groups. In contrast, there was no significant difference in Pneumococcal Polysaccharide antibody responses to Pneumovax® (PPV23). This analysis illustrates the limitations of evaluating vaccine challenge responses in patients with primary hypogammaglobulinemia to establish the diagnosis of CVID and in making decisions to treat with SCIG/IVIG. The conclusion from this study is that patients with symptoms attributable to primary hypogammaglobulinemia with reduced IgG should not be denied SCIG/IVIG if they have normal vaccine responses.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand.
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Centre for Brain Research, Faculty of Health and Medical Sciences, University of Auckland, Symonds St, Auckland 1010, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010 Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Park Rd, Grafton Auckland 1010, New Zealand
| |
Collapse
|
3
|
Buso H, Discardi C, Bez P, Muscianisi F, Ceccato J, Milito C, Firinu D, Landini N, Jones MG, Felice C, Rattazzi M, Scarpa R, Cinetto F. Sarcoidosis versus Granulomatous and Lymphocytic Interstitial Lung Disease in Common Variable Immunodeficiency: A Comparative Review. Biomedicines 2024; 12:1503. [PMID: 39062076 PMCID: PMC11275071 DOI: 10.3390/biomedicines12071503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcoidosis and Granulomatous and Lymphocytic Interstitial Lung Diseases (GLILD) are two rare entities primarily characterised by the development of Interstitial Lung Disease (ILD) in the context of systemic immune dysregulation. These two conditions partially share the immunological background and pathologic findings, with granuloma as the main common feature. In this narrative review, we performed a careful comparison between sarcoidosis and GLILD, with an overview of their main similarities and differences, starting from a clinical perspective and ending with a deeper look at the immunopathogenesis and possible target therapies. Sarcoidosis occurs in immunocompetent individuals, whereas GLILD occurs in patients affected by common variable immunodeficiency (CVID). Moreover, peculiar extrapulmonary manifestations and radiological and histological features may help distinguish the two diseases. Despite that, common pathogenetic pathways have been suggested and both these disorders can cause progressive impairment of lung function and variable systemic granulomatous and non-granulomatous complications, leading to significant morbidity, reduced quality of life, and survival. Due to the rarity of these conditions and the extreme clinical variability, there are still many open questions concerning their pathogenesis, natural history, and optimal management. However, if studied in parallel, these two entities might benefit from each other, leading to a better understanding of their pathogenesis and to more tailored treatment approaches.
Collapse
Affiliation(s)
- Helena Buso
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Claudia Discardi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Patrick Bez
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Muscianisi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Jessica Ceccato
- Haematology and Clinical Immunology Unit, Department of Medicine (DIMED), University of Padova, 35124 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35131 Padova, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Nicholas Landini
- Department of Radiological, Oncological and Pathological Sciences, Policlinico Umberto I Hospital, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Mark G. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 YD, UK;
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Carla Felice
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Marcello Rattazzi
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Riccardo Scarpa
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| | - Francesco Cinetto
- Rare Diseases Referral Center, Internal Medicine 1, Department of Medicine (DIMED), AULSS2 Marca Trevigiana, Ca’ Foncello Hospital, University of Padova, 35124 Padova, Italy (C.F.); (M.R.); (R.S.); (F.C.)
| |
Collapse
|
4
|
Ameratunga R, Woon ST, Leung E, Lea E, Chan L, Mehrtens J, Longhurst HJ, Steele R, Lehnert K, Lindsay K. The autoimmune rheumatological presentation of Common Variable Immunodeficiency Disorders with an overview of genetic testing. Semin Arthritis Rheum 2024; 65:152387. [PMID: 38330740 DOI: 10.1016/j.semarthrit.2024.152387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Primary immunodeficiency Disorders (PIDS) are rare, mostly monogenetic conditions which can present to a number of specialties. Although infections predominate in most PIDs, some individuals can manifest autoimmune or inflammatory sequelae as their initial clinical presentation. Identifying patients with PIDs can be challenging, as some can present later in life. This is often seen in patients with Common Variable Immunodeficiency Disorders (CVID), where symptoms can begin in the sixth or even seventh decades of life. Some patients with PIDs including CVID can initially present to rheumatologists with autoimmune musculoskeletal manifestations. It is imperative for these patients to be identified promptly as immunosuppression could lead to life-threatening opportunistic infections in these immunocompromised individuals. These risks could be mitigated by prior treatment with subcutaneous or intravenous (SCIG/IVIG) immunoglobulin replacement or prophylactic antibiotics. Importantly, many of these disorders have an underlying genetic defect. Individualized treatments may be available for the specific mutation, which may obviate or mitigate the need for hazardous broad-spectrum immunosuppression. Identification of the genetic defect has profound implications not only for the patient but also for affected family members, who may be at risk of symptomatic disease following an environmental trigger such as a viral infection. Finally, there may be clinical clues to the underlying PID, such as recurrent infections, the early presentation of severe or multiple autoimmune disorders, as well as a relevant family history. Early referral to a clinical immunologist will facilitate appropriate diagnostic evaluation and institution of treatment such as SCIG/IVIG immunoglobulin replacement. This review comprises three sections; an overview of PIDs, focusing on CVID, secondly genetic testing of PIDs and finally the clinical presentation of these disorders to rheumatologists.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - James Mehrtens
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary J Longhurst
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Lindsay
- Department of Clinical immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| |
Collapse
|
5
|
Remiker A, Bolling K, Verbsky J. Common Variable Immunodeficiency. Med Clin North Am 2024; 108:107-121. [PMID: 37951645 DOI: 10.1016/j.mcna.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common primary immune deficiency characterized by impaired production of specific immunoglobulin. The clinical manifestations are heterogeneous including acquisition of recurrent bacterial infections after a period of wellness, lymphoproliferation, autoimmunity, pulmonary disease, liver disease, enteropathy, granulomas, and an increased risk of malignancy. The etiology of CVID is largely unknown, with a considerable number of patients having an underlying genetic defect causing immune dysregulation. The antibody deficiency found in CVID is treated with lifelong immunoglobulin therapy, which is preventative of the majority of infections when given regularly.
Collapse
Affiliation(s)
- Allison Remiker
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA.
| | - Kristina Bolling
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| | - James Verbsky
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA; Division of Rheumatology, Department of Pediatrics, Medical College of Wisconsin, and Children's Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
6
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Longhurst H, Steele R, Snell R, Lehnert K. Challenges for gene editing in common variable immunodeficiency disorders: Current and future prospects. Clin Immunol 2024; 258:109854. [PMID: 38013164 DOI: 10.1016/j.clim.2023.109854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 11/29/2023]
Abstract
The original CRISPR Cas9 gene editing system and subsequent innovations offers unprecedented opportunities to correct severe genetic defects including those causing Primary Immunodeficiencies (PIDs). Common Variable Immunodeficiency Disorders (CVID) are the most frequent symptomatic PID in adults and children. Unlike many other PIDs, patients meeting CVID criteria do not have a definable genetic defect and cannot be considered to have an inborn error of immunity (IEI). Patients with a CVID phenotype carrying a causative mutation are deemed to have a CVID-like disorder consequent to an IEI. Patients from consanguineous families often have highly penetrant early-onset autosomal recessive forms of CVID-like disorders. Individuals from non-consanguineous families may have autosomal dominant CVID-like disorders with variable penetrance and expressivity. This essay explores the potential clinical utility as well as the current limitations and risks of gene editing including collateral genotoxicity. In the immediate future the main application of this technology is likely to be the in vitro investigation of epigenetic and polygenic mechanisms, which are likely to underlie many cases of CVID and CVID-like disorders. In the longer-term, the CRISPR Cas9 system and other gene-based therapies could be utilized to treat CVID-like disorders, where the underlying IEI is known.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton 1010, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Russell Snell
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- Maurice Wilkins Centre, Applied Translational Genetics, School of Biological Sciences, University of Auckland, Symonds St, Auckland, New Zealand; Applied Translational Genetics, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
8
|
Ameratunga R, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Lehnert K, Longhurst H. Selective IgA Deficiency May Be an Underrecognized Risk Factor for Severe COVID-19. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:181-186. [PMID: 36241155 PMCID: PMC9554200 DOI: 10.1016/j.jaip.2022.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
SARS-CoV-2, the agent responsible for COVID-19, has wreaked havoc around the globe. Hundreds of millions of individuals have been infected and well over six million have died from COVID-19. Many COVID-19 survivors have ongoing physical and psychiatric morbidity, which will remain for the rest of their lives. Early in the pandemic, it became apparent that older individuals and those with comorbidities including obesity, diabetes mellitus, coronary artery disease, hypertension, and renal and pulmonary disease were at increased risk of adverse outcomes. It is also clear that some immunodeficient patients, such as those with innate or T cell-immune defects, are at greater risk from COVID-19. Selective IgA deficiency (sIgAD) is generally regarded as a mild disorder in which most patients are asymptomatic because of redundancy in protective immune mechanisms. Recent data indicate that patients with sIgAD may be at high risk of severe COVID-19. SARS-CoV-2 gains entry primarily through the upper respiratory tract mucosa, where IgA has a critical protective role. This may underlie the vulnerability of sIgAD patients to adverse outcomes from COVID-19. This perspective highlights the need for ongoing research into mucosal immunity to improve COVID-19 treatments for patients with sIgAD.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Euphemia Leung
- Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand,Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Edward Lea
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Caroline Allan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand
| | - Richard Steele
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Klaus Lehnert
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Grafton, Auckland, New Zealand,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
"Common variable immunodeficiency: Challenges for diagnosis". J Immunol Methods 2022; 509:113342. [PMID: 36027932 DOI: 10.1016/j.jim.2022.113342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Common variable immunodeficiency is a heterogeneous condition characterized by B cell dysfunction with reduced serum immunoglobulin levels and a highly variable spectrum of clinical manifestations ranging from recurrent infections to autoimmune disease. The diagnosis of CVID is often challenging due to the diverse clinical presentation of patients and the existence of multiple diagnostic criteria without a universally adopted consensus. Laboratory evaluation to assist with diagnosis currently includes serum immunoglobulin testing, immunophenotyping, assessment of vaccine response, and genetic testing. Additional emerging techniques include investigation of the B cell repertoire and the use of machine learning algorithms. Advances in our understanding of common variable immunodeficiency will ultimately contribute to earlier diagnosis and novel interventions with the goal of improving prognosis for these patients.
Collapse
|
10
|
The pediatric common variable immunodeficiency - from genetics to therapy: a review. Eur J Pediatr 2022; 181:1371-1383. [PMID: 34939152 PMCID: PMC8964589 DOI: 10.1007/s00431-021-04287-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/20/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
UNLABELLED Common variable immunodeficiency (CVID) is the most prevalent antibody deficiency, characterized by remarkable genetic, immunological, and clinical heterogeneity. The diagnosis of pediatric CVID is challenging due to the immaturity of the immune response and sustained actively developing antibody affinity to antigens and immunological memory that may overlap with the inborn error of immunity. Significant progress has been recently done in the field of immunogenetics, yet a paucity of experimental and clinical studies on different systemic manifestations and immunological features of CVID in children may contribute to a delayed diagnosis and therapy. In this review, we aimed at defining the variable epidemiological, etiological, and clinical aspects of pediatric CVID with special emphasis on predominating infectious and non-infectious phenotypes in affected children. CONCLUSION While pediatric CVID is a multifaceted and notorious disease, increasing the pediatricians' awareness of this disease entity and preventing the diagnostic and therapeutic delay are needed, thereby improving the prognosis and survival of pediatric CVID patients. WHAT IS KNOWN • CVID is an umbrella diagnosis characterized by complex pathophysiology with an antibody deficiency as a common denominator. • It is a multifaceted disease characterized by marked genetic, immunological, and clinical heterogeneity.. WHAT IS NEW • The diagnosis of pediatric CVID is challenging due to the immaturity of innate and adaptive immune response. • Increasing the pediatricians' awareness of CVID for the early disease recognition, timely therapeutic intervention, and improving the prognosis is needed.
Collapse
|
11
|
Ameratunga R, Longhurst H, Lehnert K, Steele R, Edwards ESJ, Woon ST. Are All Primary Immunodeficiency Disorders Inborn Errors of Immunity? Front Immunol 2021; 12:706796. [PMID: 34367167 PMCID: PMC8335567 DOI: 10.3389/fimmu.2021.706796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland Hospital, Auckland, New Zealand.,Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Emily S J Edwards
- B Cell Differentiation Laboratory, Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| |
Collapse
|
12
|
Ameratunga R, Longhurst H, Steele R, Woon ST. Comparison of Diagnostic Criteria for Common Variable Immunodeficiency Disorders (CVID) in the New Zealand CVID Cohort Study. Clin Rev Allergy Immunol 2021; 61:236-244. [PMID: 34236581 DOI: 10.1007/s12016-021-08860-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 11/28/2022]
Abstract
Common variable immunodeficiency disorders (CVID) are the most frequent symptomatic primary immune deficiencies in adults and children. In addition to recurrent and severe infections, patients with CVID are susceptible to autoimmune and inflammatory complications. The aetiologies of these uncommon conditions are, by definition, unknown. When the causes of complex disorders are uncertain, diagnostic criteria may offer valuable guidance to the management of patients. Over the last two decades, there have been four sets of diagnostic criteria for CVID in use. The original 1999 European Society for Immunodeficiencies and Pan-American Society for Immunodeficiency (ESID/PAGID) criteria are less commonly used than the three newer criteria: Ameratunga et al (Clin Exp Immunol 174:203-211, 2013), ESID (J Allergy Clin Immunol Pract, 2019) and ICON (J Allergy Clin Immunol Pract 4:38-59, 2016) criteria. The primary aim of the present study was to compare the utility of diagnostic criteria in a well-characterised cohort of CVID patients. The New Zealand CVID cohort study (NZCS) commenced in 2006 and currently comprises one hundred and thirteen patients, which represents approximately 70% of all known CVID patients in NZ. Many patients have been on subcutaneous or intravenous (SCIG/IVIG) immunoglobulin treatment for decades. Patients were given a clinical diagnosis of CVID as most were diagnosed before the advent of newer diagnostic criteria. Application of the three commonly used CVID diagnostic criteria to the NZCS showed relative sensitivities as follows: Ameratunga et al (Clin Exp Immunol 174:203-211, 2013), possible and probable CVID, 88.7%; ESID (J Allergy Clin Immunol Pract, 2019), 48.3%; and ICON (J Allergy Clin Immunol Pract 4:38-59, 2016), 47.1%. These differences were mostly due to the low rates of diagnostic vaccination challenges in patients prior to commencing SCIG/IVIG treatment and mirror similar findings in CVID cohorts from Denmark and Finland. Application of the Ameratunga et al (Clin Exp Immunol 174:203-211, 2013) CVID diagnostic criteria to patients on SCIG/IVIG may obviate the need to stop treatment for vaccine studies, to confirm the diagnosis.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand. .,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand. .,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand.
| | - Hilary Longhurst
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Ameratunga R, Jordan A, Cavadino A, Ameratunga S, Hills T, Steele R, Hurst M, McGettigan B, Chua I, Brewerton M, Kennedy N, Koopmans W, Ahn Y, Barker R, Allan C, Storey P, Slade C, Baker A, Huang L, Woon ST. Bronchiectasis is associated with delayed diagnosis and adverse outcomes in the New Zealand Common Variable Immunodeficiency Disorders cohort study. Clin Exp Immunol 2021; 204:352-360. [PMID: 33755987 DOI: 10.1111/cei.13595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Common variable immunodeficiency disorders (CVID) are multi-system disorders where target organ damage is mediated by infective, autoimmune and inflammatory processes. Bronchiectasis is probably the most common disabling complication of CVID. The risk factors for bronchiectasis in CVID patients are incompletely understood. The New Zealand CVID study (NZCS) is a nationwide longitudinal observational study of adults, which commenced in 2006. In this analysis, the prevalence and risk factors for bronchiectasis were examined in the NZCS. After informed consent, clinical and demographic data were obtained with an interviewer-assisted questionnaire. Linked electronic clinical records and laboratory results were also reviewed. Statistical methods were applied to determine if variables such as early-onset disease, delay in diagnosis and increased numbers of infections were associated with greater risk of bronchiectasis. One hundred and seven adult patients with a diagnosis of CVID are currently enrolled in the NZCS, comprising approximately 70% of patients known to have CVID in New Zealand. Fifty patients (46·7%) had radiologically proven bronchiectasis. This study has shown that patients with compared to those without bronchiectasis have an increased mortality at a younger age. CVID patients with bronchiectasis had a greater number of severe infections consequent to early-onset disease and delayed diagnosis. Indigenous Māori have a high prevalence of CVID and a much greater burden of bronchiectasis compared to New Zealand Europeans. Diagnostic latency has not improved during the study period. Exposure to large numbers of infections because of early-onset disease and delayed diagnosis was associated with an increased risk of bronchiectasis. Earlier diagnosis and treatment of CVID may reduce the risk of bronchiectasis and premature death in some patients.
Collapse
Affiliation(s)
- R Ameratunga
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - A Jordan
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - A Cavadino
- School of Population Health, University of Auckland, Auckland, New Zealand
| | - S Ameratunga
- School of Population Health, University of Auckland, Auckland, New Zealand.,Population Health Directorate, Counties Manukau Health, Auckland, New Zealand
| | - T Hills
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Steele
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - M Hurst
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - B McGettigan
- Department of Clinical Immunology, Fiona Stanley Hospital, Perth, WA, Australia
| | - I Chua
- Department of Clinical Immunology, Christchurch Hospital, Christchurch, New Zealand
| | - M Brewerton
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - N Kennedy
- Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - W Koopmans
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - Y Ahn
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - R Barker
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - C Allan
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - P Storey
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - C Slade
- Walter and Eliza Hall Institute, Melbourne, VIC, Australia
| | - A Baker
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand
| | - L Huang
- Department of Virology and Immunology, Auckland City Hospital, Auckland, New Zealand
| | - S-T Woon
- Department of Clinical Immunology, Auckland City Hospital, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Ameratunga R, Allan C, Lehnert K, Woon ST. Perspective: Application of the American College of Medical Genetics Variant Interpretation Criteria to Common Variable Immunodeficiency Disorders. Clin Rev Allergy Immunol 2021; 61:226-235. [PMID: 33818703 DOI: 10.1007/s12016-020-08828-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Common variable immunodeficiency disorders (CVIDs) are rare primary immunodeficiency diseases (PIDs) mostly associated with late onset antibody failure leading to immune system failure. Patients with CVID are predisposed to disabling complications such as bronchiectasis and systemic autoimmunity. In recent years a large number of genetic defects have become associated with these disorders. Patients with a causative mutation are deemed to have CVID-like disorders, while those with mutations predisposing to or modifying disease severity remain within the spectrum of CVID as defined by current diagnostic criteria. Next-generation sequencing (NGS) allows simultaneous analysis of multiple genes. Potential mutations identified from NGS are commonly evaluated with the American College of Medical Genetics (ACMG) variant interpretation criteria to determine their pathogenicity (causality). Patients with CVID and CVID-like disorders have marked genetic, allelic, and phenotypic heterogeneity. Although all patients with a CVID phenotype should undergo genetic testing, the complexity of the genetics associated with these disorders is challenging. Variants of unknown significance (VUS) remain a significant barrier to realising the full potential of NGS in CVID and CVID-like disorders. Here we explore the nuances of applying the ACMG criteria to patients with CVID and CVID-like disorders. Close collaboration between the clinician, bioinformatics, and genetics professionals will improve the diagnostic yield from genetic testing and reduce the frequency of VUS.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Clinical Immunology, Auckland City Hospital, Auckland, 1010, New Zealand. .,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand.
| | - Caroline Allan
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland City Hospital, Auckland, 1010, New Zealand.,Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
15
|
Drabe CH, Marvig RL, Borgwardt L, Lundgren JD, Maquart HVH, Katzenstein TL, Helleberg M. Case Report: Hyper IgM Syndrome Identified by Whole Genome Sequencing in a Young Syrian Man Presenting With Atypical, Severe and Recurrent Mucosal Leishmaniasis. Front Immunol 2020; 11:567856. [PMID: 33013931 PMCID: PMC7516301 DOI: 10.3389/fimmu.2020.567856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
A previously healthy 19-year-old Syrian man presented with atypical and severe mucosal leishmaniasis caused by Leishmania tropica. During a 2-year period, he had three severe relapses despite various treatment strategies, including liposomal amphotericin B and Miltefosine. Because of the unusual clinical presentation, potential underlying immunodeficiency was investigated. Normal T and NK cell counts were found. The B cell count was slightly elevated at 0.7 × 109 cells/L (0.09 × 109 to 0.57 × 109 cells/L), but the proportions of memory and isotype switched memory B cells were severely diminished IgG levels were low, at 309 mg/dL (610-1490 mg/dL). The initial IgM and IgA levels were within normal range, but the IgA levels decreased to 57 mg/dL (70-430 mg/dL) during follow up. Common variable immunodeficiency (CVID) was initially suspected, because the immunological results of low IgG and IgA, low switched memory B cells, no profound T cell deficiency found and absence of secondary cause of hypogammaglobulinemia were compatible with this diagnosis (ESID 2019). However, the highly unusual and severe clinical presentation of L. tropica is not suggestive of B-cell deficiency or CVID. Eventually a pathogenic nonsense variant in the CD40 ligand gene [p.(Arg11∗)] was identified by whole genome sequencing, thus enabling the diagnosis of X-linked hyper IgM syndrome. This case illustrates and supports the potential for the use of whole genome sequencing in accurate diagnosis of primary immunodeficiencies.
Collapse
Affiliation(s)
- Camilla Heldbjerg Drabe
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D. Lundgren
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, PERSIMUNE, Centre of Excellence for Personalised Medicine of Infectious Complications in Immune Deficiency, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Terese Lea Katzenstein
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Marie Helleberg
- Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, PERSIMUNE, Centre of Excellence for Personalised Medicine of Infectious Complications in Immune Deficiency, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
16
|
Sacco KA, Stack M, Notarangelo LD. Targeted pharmacologic immunomodulation for inborn errors of immunity. Br J Clin Pharmacol 2020; 88:2500-2508. [PMID: 32738057 DOI: 10.1111/bcp.14509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Inborn errors of immunity consist of over 400 known single gene disorders that may manifest with infection susceptibility, autoimmunity, autoinflammation, hypersensitivity and cancer predisposition. Most patients are treated symptomatically with immunoglobulin replacement, prophylactic antimicrobials or broad immunosuppression pertaining to their disease phenotype. Other than haematopoietic stem cell transplantation, the aforementioned treatments do little to alter disease morbidity or mortality. Further, many patients may not be transplant candidates. In this review, we describe monogenic disorders affecting leucocyte migration, disorders of immune synapse formation and dysregulation of immune cell signal transduction. We highlight the use of off-label small molecules and biologics mechanistically targeted to altered disease pathophysiology of such diseases.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| | - Michael Stack
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| |
Collapse
|
17
|
Moazzami B, Mohayeji Nasrabadi MA, Abolhassani H, Olbrich P, Azizi G, Shirzadi R, Modaresi M, Sohani M, Delavari S, Shahkarami S, Yazdani R, Aghamohammadi A. Comprehensive assessment of respiratory complications in patients with common variable immunodeficiency. Ann Allergy Asthma Immunol 2020; 124:505-511.e3. [PMID: 32007567 DOI: 10.1016/j.anai.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is a heterogeneous group of disorders, characterized by recurrent upper and lower respiratory tract infections and some noninfectious clinical complications. OBJECTIVE To provide a detailed evaluation of respiratory presentations and complications in a cohort of Iranian patients with CVID. METHODS A retrospective cohort study was conducted on 245 CVID patients who were recorded in the Iranian primary immunodeficiency disorders registry network. Respiratory manifestations were evaluated by reviewing clinical hospital records, immunologic findings, pulmonary function tests (PFT), and high-resolution computed tomography (HRCT) scans. RESULTS Most of the patients (n = 208, 85.2%) had experienced at least 1 episode of acute respiratory manifestation, and pneumonia was observed in 31.6 % (n = 77) of cases as a first disease manifestation. During the follow-up, pneumonia, sinusitis, and otitis media were documented in 166 (68.6%), 125 (51.2%), and 103 (42.6%) cases, respectively. Abnormal PFT measurements were documented in 53.8% of patients. Among these patients, 21.5% showed restrictive changes, whereas 18.4% of patients showed an obstructive pattern. Bronchiectasis was the most frequent radiological finding, confirmed in 27.2% of patients. Patients with bronchiectasis were older at the time of immunodeficiency diagnosis (P < .001) and had longer diagnosis delay (P < .001) when compared with patients without bronchiectasis. CONCLUSION This study highlights the importance of monitoring the respiratory tract system even in asymptomatic patients. Pulmonary function tests and CT scans are the most commonly used techniques aiming to identify these patients early, aiming to reduce the rate of long-term respiratory complications.
Collapse
Affiliation(s)
- Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Ali Mohayeji Nasrabadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Olbrich
- Sección de Infectología e Inmunopatología, Unidad de Pediatría, Hospital Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rohola Shirzadi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Modaresi
- Department of Pediatric Pulmonary and Sleep Medicine, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|