1
|
Yan Y, Gao Y, Kumar G, Fang Q, Yan H, Zhang N, Zhang Y, Song L, Li J, Zheng Y, Zhang N, Zhang P, Ma C. Exosomal MicroRNAs modulate the cognitive function in fasudil treated APPswe/PSEN1dE9 transgenic (APP/PS1) mice model of Alzheimer's disease. Metab Brain Dis 2024; 39:1335-1351. [PMID: 39088109 PMCID: PMC11513711 DOI: 10.1007/s11011-024-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is characterized by cognitive decline stemming from the accumulation of beta-amyloid (Aβ) plaques and the propagation of tau pathology through synapses. Exosomes, crucial mediators in neuronal development, maintenance, and intercellular communication, have gained attention in AD research. Yet, the molecular mechanisms involving exosomal miRNAs in AD remain elusive. In this study, we treated APPswe/PSEN1dE9 transgenic (APP/PS1) mice, a model for AD, with either vehicle (ADNS) or fasudil (ADF), while C57BL/6 (control) mice received vehicle (WT). Cognitive function was evaluated using the Y-maze test, and AD pathology was confirmed through immunostaining and western blot analysis of Aβ plaques and phosphorylated tau. Exosomal RNAs were extracted, sequenced, and analyzed from each mouse group. Our findings revealed that fasudil treatment improved cognitive function in AD mice, as evidenced by increased spontaneous alternation in the Y-maze test and reduced Aβ plaque load and phosphorylated tau protein expression in the hippocampus. Analysis of exosomal miRNAs identified three miRNAs (mmu-let-7i-5p, mmu-miR-19a-3p, mmu-miR-451a) common to both ADNS vs ADF and WT vs ADNS groups. Utilizing miRTarBase software, we predicted and analyzed target genes associated with these miRNAs. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of miRNA target genes indicated that mmu-miR-19a-3p and mmu-miR-451a are implicated in signal transduction, immune response, cellular communication, and nervous system pathways. Specifically, mmu-miR-19a-3p targeted genes involved in the sphingolipid signaling pathway, such as Pten and Tnf, while mmu-miR-451a targeted Nsmaf, Gnai3, and Akt3. Moreover, mmu-miR-451a targeted Myc in signaling pathways regulating the pluripotency of stem cells. In conclusion, fasudil treatment enhanced cognitive function by modulating exosomal MicroRNAs, particularly mmu-miR-451a and mmu-miR-19a-3p. These miRNAs hold promise as potential biomarkers and therapeutic targets for novel AD treatments.
Collapse
Affiliation(s)
- Yuqing Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
| | - Ye Gao
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong.
| | - Qingli Fang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Hailong Yan
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Nianping Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Yuna Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Jiehui Li
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Yucheng Zheng
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Nan Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Peijun Zhang
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple, Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Taiyuan, China.
| |
Collapse
|
2
|
Guo Y, Wang S, Li L, Zhang H, Chen X, Huang Z, Liu Y. Immunoproteasome Subunit Low Molecular Mass Peptide 2 (LMP2) Deficiency Ameliorates LPS/Aβ 1-42-Induced Neuroinflammation. Mol Neurobiol 2024; 61:28-41. [PMID: 37568045 DOI: 10.1007/s12035-023-03564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Low molecular mass peptide 2 (LMP2) is the β1i subunit of immunoproteasome (iP) which plays a key role in neuroinflammatory responses, and inhibition of iP exhibits a high neuroprotective action against neurodegenerative diseases. Since neuroinflammation has been shown to be involved in the development and progression of Alzheimer's disease (AD), the aim of this study was to evaluate the anti-inflammatory role of LMP2 deficiency in AD in vivo and in vitro. Here, we found that LMP2 was upregulated in the brains of 5 × FAD and APP/PS1 mice and increased with age in C57/BL6 mice. We showed that the lack of LMP2 significantly decreased NLRP3 expression and downstream cytokine release in microglia, resulting in partially blocking Aβ1-42- or LPS-induced inflammation in vivo and in vitro, which ameliorated cognitive deficits in aged rats and D-galactose + Aβ1-42-treated rats. These results suggest that LMP2 contributes to the regulation of LPS-or Aβ-driven innate immune responses by diminishing NLRP3 expression and clarify that inhibition of iP function may mediate the inflammatory-related cognitive phenotype.
Collapse
Affiliation(s)
- Yueting Guo
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Shiyi Wang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Li Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou City, 350122, Fujian Province, China
- Department of Cell Biology and Genetics of Basic Medical Sciences, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Hengce Zhang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Xiaoyang Chen
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Zihan Huang
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China
| | - Yingchun Liu
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University/School of Basic Medical Science, Fujian Medical University, Fuzhou City, 350122, Fujian Province, China.
| |
Collapse
|
3
|
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P, Jiang X. Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 2023; 52:111. [PMID: 37800614 PMCID: PMC10558228 DOI: 10.3892/ijmm.2023.5314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
Collapse
Affiliation(s)
| | | | - Ruifeng Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Qing Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Lin Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Pengjuan Xu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
4
|
Morgan D, Berggren KL, Spiess CD, Smith HM, Tejwani A, Weir SJ, Lominska CE, Thomas SM, Gan GN. Mitogen-activated protein kinase-activated protein kinase-2 (MK2) and its role in cell survival, inflammatory signaling, and migration in promoting cancer. Mol Carcinog 2021; 61:173-199. [PMID: 34559922 DOI: 10.1002/mc.23348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
Cancer and the immune system share an intimate relationship. Chronic inflammation increases the risk of cancer occurrence and can also drive inflammatory mediators into the tumor microenvironment enhancing tumor growth and survival. The p38 MAPK pathway is activated both acutely and chronically by stress, inflammatory chemokines, chronic inflammatory conditions, and cancer. These properties have led to extensive efforts to find effective drugs targeting p38, which have been unsuccessful. The immediate downstream serine/threonine kinase and substrate of p38 MAPK, mitogen-activated-protein-kinase-activated-protein-kinase-2 (MK2) protects cells against stressors by regulating the DNA damage response, transcription, protein and messenger RNA stability, and motility. The phosphorylation of downstream substrates by MK2 increases inflammatory cytokine production, drives an immune response, and contributes to wound healing. By binding directly to p38 MAPK, MK2 is responsible for the export of p38 MAPK from the nucleus which gives MK2 properties that make it unique among the large number of p38 MAPK substrates. Many of the substrates of both p38 MAPK and MK2 are separated between the cytosol and nucleus and interfering with MK2 and altering this intracellular translocation has implications for the actions of both p38 MAPK and MK2. The inhibition of MK2 has shown promise in combination with both chemotherapy and radiotherapy as a method for controlling cancer growth and metastasis in a variety of cancers. Whereas the current data are encouraging the field requires the development of selective and well tolerated drugs to target MK2 and a better understanding of its effects for effective clinical use.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, UNM School of Medicine, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Colby D Spiess
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hannah M Smith
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ajay Tejwani
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Scott J Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christopher E Lominska
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
6
|
Srivastava S, Rajopadhye R, Dey M, Singh RK. Inhibition of MK2 kinase as a potential therapeutic target to control neuroinflammation in Alzheimer's disease. Expert Opin Ther Targets 2021; 25:243-247. [PMID: 33909536 DOI: 10.1080/14728222.2021.1924151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Rohan Rajopadhye
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Mangaldeep Dey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
7
|
Jiang J, Chang X, Nie Y, Shen Y, Liang X, Peng Y, Chang M. Peripheral Administration of a Cell-Penetrating MOTS-c Analogue Enhances Memory and Attenuates Aβ 1-42- or LPS-Induced Memory Impairment through Inhibiting Neuroinflammation. ACS Chem Neurosci 2021; 12:1506-1518. [PMID: 33861582 DOI: 10.1021/acschemneuro.0c00782] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MOTS-c is a 16-amino acid mitochondrial derivative peptide reported to be involved in regulating insulin and metabolic homeostasis via the AMP activated protein kinase (AMPK). AMPK agonist AICAR has been reported to improve cognition. Previous reports also pointed out that MOTS-c may be effective as a therapeutic option toward the prevention of the aging processes. Therefore, we investigated the roles of MOTS-c in the memory recognition process. The results showed that central MOTS-c not only enhanced object and location recognition memory formation and consolidation but also ameliorated the memory deficit induced by Aβ1-42 or LPS. The memory-ameliorating effects of MOTS-c could be blocked by AMPK inhibitor dorsomorphin. Moreover, MOTS-c treatment significantly increased the phosphorylation of AMPK but not ERK, JNK, and p38 in the hippocampus. The underlying mechanism of MOTS-c neuroprotection may involve inhibiting the activation of astrocytes and microglia and production of proinflammatory cytokines. In addition, we found that peripheral administration of MOTS-c does not cross the blood-brain barrier (BBB) and plays an effect. In order to improve the brain intake of MOTS-c, we screen out (PRR)5, a cell penetrating peptides, as a carrier for MOTS-c into the brain. Then in the NOR task, intranasal or intravenous MP (cell-penetrating MOTS-c analogue) showed good memory performance on memory formation, memory consolidation, and memory impairment. Near-infrared fluorescent experiments showed the real-time biodistribution in brain after intranasal or intravenous infusion of MP. These results suggested that MOTS-c might be a new potential target for treatment of cognitive decline in AD.
Collapse
Affiliation(s)
- JinHong Jiang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
- Jiangsu Province Key Laboratory in Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xin Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | - YaoYan Nie
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | - YuXuan Shen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | - XueYa Liang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | - YaLi Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou, Gansu 730000, China
| |
Collapse
|
8
|
Hugon J, Paquet C. The PKR/P38/RIPK1 Signaling Pathway as a Therapeutic Target in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22063136. [PMID: 33808629 PMCID: PMC8003462 DOI: 10.3390/ijms22063136] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Neuropathological lesions in Alzheimer’s disease (AD) include amyloid plaques formed by the accumulation of amyloid peptides, neurofibrillary tangles made of hyperphosphorylated tau protein, synaptic and neuronal degenerations, and neuroinflammation. The cause of AD is unknown, but according to the amyloid hypothesis, amyloid oligomers could lead to the activation of kinases such as eukaryotic translation initiation factor 2-alpha kinase 2 (PKR), p38, and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), which all belong to the same stress-activated pathway. Many toxic kinase activations have been described in AD patients and in experimental models. A p38 mitogen-activated protein kinase inhibitor was recently tested in clinical trials but with unsuccessful results. The complex PKR/P38/RIPK1 (PKR/dual specificity mitogen-activated protein kinase kinase 6 (MKK6)/P38/MAP kinase-activated protein kinase 2 (MK2)/RIPK1) is highly activated in AD brains and in the brains of AD transgenic animals. To delineate the implication of this pathway in AD, we carried out a search on PubMed including PKR/MKK6/p38/MK2/RIPK1, Alzheimer, and therapeutics. The involvement of this signaling pathway in the genesis of AD lesions, including Aβ accumulations and tau phosphorylation as well as cognitive decline, is demonstrated by the reports described in this review. A future combination strategy with kinase inhibitors should be envisaged to modulate the consequences for neurons and other brain cells linked to the abnormal activation of this pathway.
Collapse
Affiliation(s)
- Jacques Hugon
- Correspondence: ; Tel.: +33-140-054-313; Fax: +33-140-054-339
| | | |
Collapse
|
9
|
Shafiq M, Jagavelu K, Iqbal H, Yadav P, Chanda D, Verma NK, Ghosh JK, Gaestel M, Hanif K. Inhibition of Mitogen-Activated Protein Kinase (MAPK)-Activated Protein Kinase 2 (MK2) is Protective in Pulmonary Hypertension. Hypertension 2021; 77:1248-1259. [PMID: 33641361 DOI: 10.1161/hypertensionaha.120.15229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Mohammad Shafiq
- From the Division of Pharmacology (M.S., K.J., K.H.), CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, Ghaziabad, India (M.S., K.J., K.H.)
| | - Kumaravelu Jagavelu
- From the Division of Pharmacology (M.S., K.J., K.H.), CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, Ghaziabad, India (M.S., K.J., K.H.)
| | - Hina Iqbal
- Department of Molecular Bio-Prospection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India (H.I., P.Y., D.C.)
| | - Pankaj Yadav
- Department of Molecular Bio-Prospection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India (H.I., P.Y., D.C.)
| | - Debabrata Chanda
- Department of Molecular Bio-Prospection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India (H.I., P.Y., D.C.)
| | - Neeraj Kumar Verma
- Division of Molecular and Structural Biology (N.K.V., J.K.G.), CSIR-Central Drug Research Institute, Lucknow, India
| | - Jimut Kanti Ghosh
- Division of Molecular and Structural Biology (N.K.V., J.K.G.), CSIR-Central Drug Research Institute, Lucknow, India
| | - Matthias Gaestel
- Institute for Zellbiochemie, Medizinische Hochschule Hannover (MHH), Hanover, Germany (M.G.)
| | - Kashif Hanif
- From the Division of Pharmacology (M.S., K.J., K.H.), CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research, Ghaziabad, India (M.S., K.J., K.H.)
| |
Collapse
|
10
|
Bian H, Wang G, Huang J, Liang L, Zheng Y, Wei Y, Wang H, Xiao L, Wang H. Dihydrolipoic acid protects against lipopolysaccharide-induced behavioral deficits and neuroinflammation via regulation of Nrf2/HO-1/NLRP3 signaling in rat. J Neuroinflammation 2020; 17:166. [PMID: 32450903 PMCID: PMC7249417 DOI: 10.1186/s12974-020-01836-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Recently, depression has been identified as a prevalent and severe mental disorder. However, the mechanisms underlying the depression risk remain elusive. The neuroinflammation and NLRP3 inflammasome activation are known to be involved in the pathology of depression. Dihydrolipoic acid (DHLA) has been reported as a strong antioxidant and exhibits anti-inflammatory properties in various diseases, albeit the direct relevance between DHLA and depression is yet unknown. The present study aimed to investigate the preventive effect and potential mechanism of DHLA in the lipopolysaccharide (LPS)-induced sickness behavior in rats. Methods Adult male Sprague–Dawley rats were utilized. LPS and DHLA were injected intraperitoneally every 2 days and daily, respectively. Fluoxetine (Flu) was injected intraperitoneally daily. PD98059, an inhibitor of ERK, was injected intraperitoneally 1 h before DHLA injection daily. Small interfering ribonucleic acid (siRNA) for nuclear factor erythroid 2-like (Nrf2) was injected into the bilateral hippocampus 14 days before the DHLA injection. Depression-like behavior tests were performed. Western blot and immunofluorescence staining detected the ERK/Nrf2/HO-1/ROS/NLRP3 pathway-related proteins. Results The DHLA and fluoxetine treatment exerted preventive effects in LPS-induced sickness behavior rats. The DHLA treatment increased the expression of ERK, Nrf2, and HO-1 but decreased the ROS generation levels and reduced the expression of NLRP3, caspase-1, and IL-1β in LPS-induced sickness behavior rats. PD98059 abolished the effects of DHLA on preventive effect as well as the levels of Nrf2 and HO-1 proteins. Similarly, Nrf2 siRNA reversed the preventive effect of DHLA administration via the decreased expression of HO-1. Conclusions These findings suggested that DHLA exerted a preventive effect via ERK/Nrf2/HO-1/ROS/NLRP3 pathway in LPS-induced sickness behavior rats. Thus, DHLA may serve as a potential therapeutic strategy for depression.
Collapse
Affiliation(s)
- Hetao Bian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China.
| | - Junjie Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Liang Liang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Yage Zheng
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Yanyan Wei
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Hui Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei, PR China
| |
Collapse
|