1
|
Li R, Li X, Zhou H, Shi Y, Wang F, Wu T, Liang J. Successful treatment of a refractory intestinal Behcet's disease with an oncology history by Vedolizumab: a case report and literature review. Front Immunol 2023; 14:1205046. [PMID: 37287984 PMCID: PMC10242066 DOI: 10.3389/fimmu.2023.1205046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Objective Behçet's Disease (BD) is an intractable systemic vasculitis. When accompanied by intestinal symptoms, the prognosis is usually poor. 5-Aminosalicylic acid (5-ASA), corticosteroids, immunosuppressive drugs, and anti-tumor necrosis factor-α (anti-TNF-α) biologics are standard therapies to induce or maintain remission for intestinal BD. However, they might not be effective in refractory cases. Safety should also be considered when patients have an oncology history. Regarding the pathogenesis of intestinal BD and the specific targeting effect of vedolizumab (VDZ) on the inflammation of the ileum tract, previous case reports suggested that VDZ might be a potential treatment for refractory intestinal BD. Methods We report a 50-year-old woman patient with intestinal BD who had oral and genital ulcers, joint pain, and intestinal involvement for about 20 years. The patient responds well to anti-TNF-α biologics but not to conventional drugs. However, biologics treatment was discontinued due to the occurrence of colon cancer. Results VDZ was intravenously administered at a dose of 300 mg at 0, 2, and 6 weeks and then every eight weeks. At the 6-month follow-up, the patient reported significant improvement in abdominal pain and arthralgia. We observed complete healing of intestinal mucosal ulcers under endoscopy. However, her oral and vulvar ulcers remained unresolved, which disappeared after adding thalidomide. Conclusion VDZ may be a safe and effective option for refractory intestinal BD patients who do not respond well to conventional treatments, especially those with an oncology history.
Collapse
Affiliation(s)
| | | | | | | | | | - Tong Wu
- *Correspondence: Tong Wu, ; Jie Liang,
| | - Jie Liang
- *Correspondence: Tong Wu, ; Jie Liang,
| |
Collapse
|
2
|
Legrand N, Salameh P, Jullien M, Chevallier P, Ferron E, David G, Devilder MC, Willem C, Gendzekhadze K, Parham P, Retière C, Gagne K. Non-Expressed Donor KIR3DL1 Alleles May Represent a Risk Factor for Relapse after T-Replete Haploidentical Hematopoietic Stem Cell Transplantation. Cancers (Basel) 2023; 15:2754. [PMID: 37345091 DOI: 10.3390/cancers15102754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
KIR3DL1 alleles are expressed at different levels on the natural killer (NK) cell surface. In particular, the non-expressed KIR3DL1*004 allele appears to be common in Caucasian populations. However, the overall distribution of non-expressed KIR3DL1 alleles and their clinical relevance after T-replete haploidentical hematopoietic stem cell transplantation (hHSCT) with post-transplant cyclophosphamide remain poorly documented in European populations. In a cohort of French blood donors (N = 278), we compared the distribution of expressed and non-expressed KIR3DL1 alleles using next-generation sequencing (NGS) technology combined with multi-color flow cytometry. We confirmed the predominance of the non-expressed KIR3DL1*004 allele. Using allele-specific constructs, the phenotype and function of the uncommon KIR3DL1*019 allotype were characterized using the Jurkat T cell line and NKL transfectants. Although poorly expressed on the NK cell surface, KIR3DL1*019 is retained within NK cells, where it induces missing self-recognition of the Bw4 epitope. Transposing our in vitro observations to a cohort of hHSCT patients (N = 186) led us to observe that non-expressed KIR3DL1 HSC grafts increased the incidence of relapse in patients with myeloid diseases. Non-expressed KIR3DL1 alleles could, therefore, influence the outcome of hHSCT.
Collapse
Affiliation(s)
- Nolwenn Legrand
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Perla Salameh
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Maxime Jullien
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- Department of Hematology Clinic, Nantes University Hospital, F-44000 Nantes, France
| | - Patrice Chevallier
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- Department of Hematology Clinic, Nantes University Hospital, F-44000 Nantes, France
| | - Enora Ferron
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Gaelle David
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Marie-Claire Devilder
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Catherine Willem
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Ketevan Gendzekhadze
- Department of Hematology and HCT, HLA Laboratory, City of Hope, Medical Center, Duarte, CA 91010, USA
| | - Peter Parham
- Department of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christelle Retière
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
| | - Katia Gagne
- Etablissement Français du Sang (EFS), F-44011 Nantes, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1307, CNRS UMR 6075, Centre de Recherche en Cancérologie et Immunologie Integrée Nantes Angers (CRCI2NA), Team 12, F-44000 Nantes, France
- LabEx IGO "Immunotherapy, Graft, Oncology", F-44000 Nantes, France
- LabEx Transplantex, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
3
|
Cheng L, Zhan H, Liu Y, Chen H, Zhang F, Zheng W, Li Y. Infectious agents and pathogenesis of Behçet's disease: An extensive review. Clin Immunol 2023; 251:109631. [PMID: 37127189 DOI: 10.1016/j.clim.2023.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Behçet's disease (BD) is a multisystemic chronic vasculitis. Sustained and enhanced immune responses were reportedly associated with active BD. Although genetic polymorphisms increase development risk, genetic factors alone cannot account for BD development, suggesting the involvement of exogenous factors. Also, how various infectious agents promote BD in high-risk populations is not fully understood. In this review, we summarized the current findings on the associations of infectious agents with BD pathogenesis. The review also highlights the potential microbial risk factors and their pathogenic role in BD progression. Interactions between genetic and infectious risk factors was also discussed. Furthermore, evidence implied that after the eradication of infectious agents, BD symptoms and recurrence decreased, thus highlighting that combined use of antibiotics may be an effective therapy for BD. Finally, we summarized the main limitation of the current related studies, providing valuable insights and a basis for future studies on BD pathogenic factors.
Collapse
Affiliation(s)
- Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Beksac M, Akin HY, Cengiz Seval G, Yurdakul Mesutoglu P, Anliacik RG, Anliacik E, Gurman G, Karaagaoglu E, Dalva K. A Novel Hypothesis: Certain KIR/Cognate Ligand Containing Genotypes Differ in Frequency Among Patients With Myeloma and Have an Effect on Age of Disease Onset. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:394-400.e1. [PMID: 36918304 DOI: 10.1016/j.clml.2023.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Natural killer (NK) cells are known to have cytotoxic effects mediated through killer immunoglobulin-like receptors (KIRs) and their cognate ligands. Role of KIRs in myeloma is yet unresolved. PATIENTS AND METHODS KIR genotypes and ligands of 204 newly diagnosed MM patients are compared with 424 healthy subjects. Statistical analysis included t-test, chi-square and binary logistic regression. RESULTS KIR ligands were significantly more (C2C2: 27.5% vs 15.1%; OR 2.128; 95% CI, 1.417-3.196; P < .001) or less (C1C2: 40.2% vs 51.9%; OR 0.623; 95% CI, 0.444-0.874; P = .006) frequent among MM. Co-occurrence of genotype AA with C2C2 was also higher in frequency among MM (OR 2.509; 95% CI, 1.171-5.378; P = .015) likewise cAB1 with C1C2 was less frequent (OR 0.553; 95% CI, 0.333-0.919; P = .021). Genotypes AA with C1C1, cAB1 with C1C2 or C1C2 alone were associated with a delay (median age: 61 [48-73]; P = .044; 62 [31-81]; P = .030 or 59 [31-85]; P = .028), but AA with C2C2 with an earlier age of onset (48 [29-77]; P = .042). In multivariate analysis including R-ISS, light chain, KIR genotype/ligands; ligand C1C2 (P = .02) and genotype AA-C1C1 (P = .037) were independently associated with age of onset ≥60. CONCLUSION C1C2 and C2C2 alone or in combination with KIR genotype (cAB1 and AA, respectively), is observed in less or higher frequency among MM cases and associated with delayed/earlier age of onset, respectively. Genotype AA-C1C1 although in similar frequency between patients and healthy subjects, is also associated with delay. To our knowledge, this is the first study demonstrating an association between KIR and MM onset age, independent from R-ISS or light chain type.
Collapse
Affiliation(s)
- Meral Beksac
- Department of Hematology, Ankara University Faculty of Medicine, Ankara, Turkey.
| | - Hasan Yalim Akin
- Department of Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | | | - Rıdvan Goksel Anliacik
- Department of Hematology, Immunogenetics Laboratory, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ezgi Anliacik
- Department of Hematology, Immunogenetics Laboratory, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Gunhan Gurman
- Department of Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ergun Karaagaoglu
- Department of Biostatistics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Klara Dalva
- Department of Hematology, Immunogenetics Laboratory, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Manole S, Rancea R, Vulturar R, Simon SP, Molnar A, Damian L. Frail Silk: Is the Hughes-Stovin Syndrome a Behçet Syndrome Subtype with Aneurysm-Involved Gene Variants? Int J Mol Sci 2023; 24:ijms24043160. [PMID: 36834577 PMCID: PMC9968083 DOI: 10.3390/ijms24043160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Hughes-Stovin syndrome is a rare disease characterized by thrombophlebitis and multiple pulmonary and/or bronchial aneurysms. The etiology and pathogenesis of HSS are incompletely known. The current consensus is that vasculitis underlies the pathogenic process, and pulmonary thrombosis follows arterial wall inflammation. As such, Hughes-Stovin syndrome may belong to the vascular cluster with lung involvement of Behçet syndrome, although oral aphtae, arthritis, and uveitis are rarely found. Behçet syndrome is a multifactorial polygenic disease with genetic, epigenetic, environmental, and mostly immunological contributors. The different Behçet syndrome phenotypes are presumably based upon different genetic determinants involving more than one pathogenic pathway. Hughes-Stovin syndrome may have common pathways with fibromuscular dysplasias and other diseases evolving with vascular aneurysms. We describe a Hughes-Stovin syndrome case fulfilling the Behçet syndrome criteria. A MYLK variant of unknown significance was detected, along with other heterozygous mutations in genes that may impact angiogenesis pathways. We discuss the possible involvement of these genetic findings, as well as other potential common determinants of Behçet/Hughes-Stovin syndrome and aneurysms in vascular Behçet syndrome. Recent advances in diagnostic techniques, including genetic testing, could help diagnose a specific Behçet syndrome subtype and other associated conditions to personalize the disease management.
Collapse
Affiliation(s)
- Simona Manole
- Department of Radiology, “Niculae Stăncioiu” Heart Institute, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Radiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Raluca Rancea
- Cardiology Department, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Molecular Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy 6, Pasteur, 400349 Cluj-Napoca, Romania
- Cognitive Neuroscience Laboratory, University Babes-Bolyai, 30, Fântânele Street, 400294 Cluj-Napoca, Romania
- Correspondence:
| | - Siao-Pin Simon
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- Discipline of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Adrian Molnar
- Department of Cardiovascular Surgery, Heart Institute “Niculae Stăncioiu”, 19-21 Calea Moților Street, 400001 Cluj-Napoca, Romania
- Department of Cardiovascular and Thoracic Surgery, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania
| | - Laura Damian
- Department of Rheumatology, Emergency Clinical County Hospital Cluj, Centre for Rare Autoimmune and Autoinflammatory Diseases (ERN-ReCONNET), 2-4 Clinicilor Street, 400347 Cluj-Napoca, Romania
- CMI Reumatologie Dr. Damian, 6-8 Petru Maior Street, 400002 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Zhang D, Zhang N, Wang Y, Zhang Q, Wang J, Yao J. Analysis of differentially expressed genes in individuals with noninfectious uveitis based on data in the gene expression omnibus database. Medicine (Baltimore) 2022; 101:e31082. [PMID: 36254061 PMCID: PMC9575823 DOI: 10.1097/md.0000000000031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Noninfectious uveitis (NIU), an intraocular inflammation caused by immune-mediated reactions to eye antigens, is associated with systemic rheumatism and several autoimmune diseases. However, the mechanisms underlying the pathogenesis of uveitis are poorly understood. Therefore, we aimed to identify differentially expressed genes (DEGs) in individuals with NIU and to explore its etiologies using bioinformatics tools. GSE66936 and GSE18781 datasets from the gene expression omnibus (GEO) database were merged and analyzed. Functional enrichment analysis was performed, and protein-protein interaction (PPI) networks were constructed. A total of 89 DEGs were identified. Gene ontology (GO) enrichment analysis identified 21 enriched gene sets. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis identified four core enriched pathways: antigen processing and expression signaling, natural killer (NK) cell-mediated cytotoxicity signaling, glutathione metabolic signal transduction, and arachidonic acid metabolism pathways. PPI network analysis revealed an active component-target network with 40 nodes and 132 edges, as well as several hub genes, including CD27, LTF, NCR3, SLC4A1, CD69, KLRB1, KIR2DL3, KIR3DL1, and GZMK. The eight potential hub genes may be associated with the risk of developing NIU. NK cell-mediated cytotoxicity signaling might be the key molecular mechanism in the occurrence and development of NIU. Our study provided new insights on NIU, its genetics, molecular pathogenesis and new therapeutic targets.
Collapse
Affiliation(s)
- Dandan Zhang
- Dalian Women and Children’s Medical Group, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Ning Zhang
- Heilongjiang University of Chinese Medicine, China
- Dalian Port Hospital
| | - Yan Wang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
- Heilongjiang University of Chinese Medicine, China
| | - Qian Zhang
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Jiadi Wang
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
| | - Jing Yao
- Heilongjiang University of Chinese Medicine, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, China
- *Correspondence: Jing Yao, No 26 Heping Road, Xiangfang District, Harbin, China (e-mail: )
| |
Collapse
|
7
|
Tarragó D, González I, González-Escribano MF. HLA-E restricted cytomegalovirus UL40 peptide polymorphism may represent a risk factor following congenital infection. BMC Genomics 2022; 23:455. [PMID: 35725386 PMCID: PMC9208114 DOI: 10.1186/s12864-022-08689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Congenital cytomegalovirus immunopathogenesis is largely unknown and multifactorial due to the complex interactions between viral, maternal, placental, and child factors. Polymorphisms in the HLA-E binding UL4015-23 peptide mimics HLA-E complexed peptides from certain HLA-A, -B, -C and -G alleles, which regulate the cellular immune response driven by natural killer-cells (NK) and CD8 + T cells. The aim of this study was to compare UL4015-23 peptides distribution in congenital CMV and the counterpart HLA Class I peptides in a healthy cohort to investigate risk factors and markers for cCMV disease. In this 10-year retrospective study, the UL40 gene was directly sequenced from 242 clinical samples from 199 cases of congenital CMV (166 children and 33 pregnant or breast feeding women). Distribution of HLA-E binding UL4015-23 peptides was analyzed and compared to those of HLA Class I observed in a cohort of 444 healthy individuals. RESULTS Nineteen different HLA-E binding UL4015-23 peptides were found. Three of them (VMAPRTLIL, VMAPRTLLL, VMAPRTLVL) were found in 88.3% of UL40 and 100% of HLA Class I of healthy individuals. In contrast, 15 of them (10.7%) were not found in HLA Class I. The VMAPRTLFL peptide was found in 1% of UL40 and all HLA-G alleles. Significant differences in peptide (VMAPRTLIL, VMAPRTLLL, VMAPRTLVL, other UL4015-23 peptides, other HLA Class I peptides) distribution between UL4015-23 from congenital CMV and HLA-A, -B, -C and -G from healthy individuals were found. CONCLUSIONS Our findings suggest that a mismatch between UL4015-23 peptides and HLA Class I peptides between children and mothers might play a role in congenital CMV disease, and it may account for differences in outcome, morbidity and sequelae.
Collapse
Affiliation(s)
- David Tarragó
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda- Pozuelo km 2, 28220 Majadahonda, Madrid, Spain.
- CIBER Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Irene González
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda- Pozuelo km 2, 28220 Majadahonda, Madrid, Spain
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To discuss clinical and pathogenic roles of HLA-B∗51 in Behçet's syndrome. RECENT FINDINGS HLA-B∗51 remains the most important genetic factor in Behçet's syndrome, despite the recent identification of several susceptibility genes. The prevalence of HLA-B∗51 has been shown to differ among phenotype-based clinical clusters in the same patient population. HLA-B∗51 shows epistatic interaction with the susceptible allele of endoplasmic reticulum aminopeptidase (ERAP)1 encoding the Hap10 allotype, which has the lowest trimming activity of the MHC-Class I binding peptides. Subsequent molecular studies have suggested that the disease-associated Hap10 allotype is implicated in the generation and selection of the disease protective or promoting peptides loading onto HLA-B∗51, although these pathogenic peptides have yet to be identified. SUMMARY HLA-B∗51 is a hallmark of Behçet's syndrome but genetic markers are not very useful in the diagnosis of Behçet's syndrome. Rather, it is considered an important factor in determining clinical phenotypes in this heterogeneous condition. The epigenetic interaction of HLA-B∗51 with ERAP1 sheds light on pathogenesis.
Collapse
Affiliation(s)
- Mitsuhiro Takeno
- Department of Allergy and Rheumatology, Nippon Medical School, Musashi Kosugi Hospital, Kanagawa, Japan
| |
Collapse
|
9
|
Dubis J, Niepiekło-Miniewska W, Jędruchniewicz N, Sobczyński M, Witkiewicz W, Zapotoczny N, Kuśnierczyk P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells 2021; 10:cells10123357. [PMID: 34943866 PMCID: PMC8699266 DOI: 10.3390/cells10123357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 11/28/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an immune-mediated disease with a genetic component. The multifactorial pathophysiology is not clear and there is still no pharmacotherapy to slow the growth of aneurysms. The signal integration of cell-surface KIRs (killer cell immunoglobulin-like receptors) with HLA (ligands, human leukocyte class I antigen molecules) modulates the activity of natural killer immune cells. The genetic diversity of the KIR/HLA system is associated with the risk of immune disorders. This study was a multivariate analysis of the association between genetic variants of KIRs, HLA ligands, clinical data and AAA formation. Genotyping was performed by single polymerase chain reaction with sequence-specific primers using commercial assays. Patients with HLA-A-Bw4 have a larger aneurysm by an average of 4 mm (p = 0.008). We observed a relationship between aneurysm diameter and BMI in patients with AAA and co-existing CAD; its shape was determined by the presence of HLA-A-Bw4. There was also a nearly 10% difference in KIR3DL1 allele frequency between the study and control groups. High expression of the cell surface receptor KIR3DL1 may protect, to some extent, against AAA. The presence of HLA-A-Bw4 may affect the rate of aneurysm growth and represents a potential regional pathogenetic risk of autoimmune injury to the aneurysmal aorta.
Collapse
Affiliation(s)
- Joanna Dubis
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland;
- Correspondence: (J.D.); (P.K.)
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
| | | | - Maciej Sobczyński
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland;
| | - Wojciech Witkiewicz
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Norbert Zapotoczny
- Department of Vascular Surgery, Regional Specialist Hospital in Wroclaw, 51-124 Wrocław, Poland; (W.W.); (N.Z.)
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland;
- Correspondence: (J.D.); (P.K.)
| |
Collapse
|
10
|
Zhou J, Wu H, Guo C, Li B, Zhou LL, Liang AB, Fu JF. A comprehensive genome-wide analysis of long non-coding RNA and mRNA expression profiles of JAK2V617F-positive classical myeloproliferative neoplasms. Bioengineered 2021; 12:10564-10586. [PMID: 34738870 PMCID: PMC8810098 DOI: 10.1080/21655979.2021.2000226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) is involved in the progression of myeloid neoplasms, but the role of lncRNAs in the JAK2V617F-positive subtype of classical myeloproliferative neoplasms (cMPNs) remains unclear. This study was conducted to clarify the expression and regulation patterns of lncRNAs in JAK2V617F-positive cMPNs, and to explore new potential carcinogenic factors of cMPNs. Bioinformatics analysis of microarray detection and wet testing verification were performed to study the expression and regulation signature of differentially expressed lncRNAs (DELs) and related genes (DEGs) in cMPNs. The expression of lncRNAs and mRNAs were observed to significantly dysregulated in JAK2V617F-positive cMPN patients compared with the normal controls. Co-expression analysis indicated that there were significant differences of the co-expression pattern of lncRNAs and mRNAs in JAK2V617F-positive cMPN patients compared to normal controls. GO and KEGG pathway analysis of DEGs and DELs showed the involvement of several pathways previously reported to regulate the pathogenesis of leukemia and cMPNs. Cis- and trans-regulation analysis of lncRNAs showed that ZNF141, DHX29, NOC2L, MAS1L, AFAP1L1, and CPN2 were significantly cis-regulated by lncRNA ENST00000356347, ENST00000456816, hsa-mir-449c, NR_026874, TCONS_00012136, uc003lqp.2, and ENST00000456816, respectively, and DELs were mostly correlated with transcription factors including CTBP2, SUZ12, REST, STAT2, and GATA4 to jointly regulate multiple target genes. In summary, expression profiles of lncRNAs and mRNAs were significantly altered in JAK2V617F-positive cMPNs, the relative signaling pathway, co-expression, cis- and trans-regulation were regulated by dysregulation of lncRNAs and several important genes, such as ITGB3, which may act as a promising carcinogenic factor, warrant further investigation.
Collapse
Affiliation(s)
- Jie Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Hao Wu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Cheng Guo
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Gastroenterology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Bing Li
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Li-Li Zhou
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Ai-Bin Liang
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| | - Jian-Fei Fu
- Tongji University School of Medicine, Shanghai, 200092, China.,Department of Hematology, Tongji Hospital of Tongji University, Shanghai, 200065, China
| |
Collapse
|
11
|
Abstract
This literature review is dedicated to the Behçet's disease - a multi-symptom, severe autoimmune condition, relatively rare among the population of the former Soviet republics, and to one of its three most frequent manifestations - uveitis.
Collapse
Affiliation(s)
| | - A A Godzenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
12
|
Abstract
Behcet's syndrome (BS) is a chronic systemic inflammatory vasculitis with a wide range of clinical manifestations including recurrent oral and genital ulcers; cutaneous lesions; and ophthalmic, neurologic, and gastrointestinal involvement. BS has a global distribution but is particularly prevalent in so-called Silk Road populations. Disease onset is usually around the third or fourth decade of life, and the sex ratio is roughly 1:1. Both environmental and genetic factors contribute to the etiology of BS, although the detailed mechanisms remain unclear. At present, there is no laboratory examination with diagnostic value for BS; therefore, a diagnosis is made based on clinical manifestations. The International Study Group diagnostic criteria published in 1990 is the most widely used and recognized, but in order to improve sensitivity, the International Criteria for Behcet's Disease is developed in 2014. Evaluating disease activity in BS is an important basis for treatment selection and monitoring, the simplified Behcet's Disease Current Activity Form (2006 version) is a well-established scoring method. Given that multiple organs are affected in BS, it must be differentiated from other diseases with similar manifestations or that may be induced by drug treatment. The goal of BS treatment is to eradicate triggers and/or aggravating factors, alleviate and control clinical symptoms, prevent and treat any damage to organs, slow disease progression, and improve the patient's quality of life. The clinical management of BS depends on the affected organs and disease severity. In this review, we summarize the current state of knowledge of BS pathogenesis and therapeutic options.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China
| | - Xu Yao
- Department of Allergy and Rheumatology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, 12 Jiangwangmiao Street, Nanjing, 210042, China.
| |
Collapse
|
13
|
Takeuchi M, Mizuki N, Ohno S. Pathogenesis of Non-Infectious Uveitis Elucidated by Recent Genetic Findings. Front Immunol 2021; 12:640473. [PMID: 33912164 PMCID: PMC8072111 DOI: 10.3389/fimmu.2021.640473] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
Uveitis is a generic term for inflammation of the uvea, which includes the iris, ciliary body, and choroid. Prevalence of underlying non-infectious uveitis varies by race and region and is a major cause of legal blindness in developed countries. Although the etiology remains unclear, the involvement of both genetic and environmental factors is considered important for the onset of many forms of non-infectious uveitis. Major histocompatibility complex (MHC) genes, which play a major role in human immune response, have been reported to be strongly associated as genetic risk factors in several forms of non-infectious uveitis. Behçet’s disease, acute anterior uveitis (AAU), and chorioretinopathy are strongly correlated with MHC class I-specific alleles. Moreover, sarcoidosis and Vogt-Koyanagi-Harada (VKH) disease are associated with MHC class II-specific alleles. These correlations can help immunogenetically classify the immune pathway involved in each form of non-infectious uveitis. Genetic studies, including recent genome-wide association studies, have identified several susceptibility genes apart from those in the MHC region. These genetic findings help define the common or specific pathogenesis of ocular inflammatory diseases by comparing the susceptibility genes of each form of non-infectious uveitis. Interestingly, genome-wide association of the interleukin (IL)23R region has been identified in many of the major forms of non-infectious uveitis, such as Behçet’s disease, ocular sarcoidosis, VKH disease, and AAU. The interleukin-23 (IL-23) receptor, encoded by IL23R, is expressed on the cell surface of Th17 cells. IL-23 is involved in the homeostasis of Th17 cells and the production of IL-17, which is an inflammatory cytokine, indicating that a Th17 immune response is a common key in the pathogenesis of non-infectious uveitis. Based on the findings from the immunogenetics of non-infectious uveitis, a personalized treatment approach based on the patient’s genetic make-up is expected.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeaki Ohno
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Rodríguez-Carrio J, Nucera V, Masala IF, Atzeni F. Behçet disease: From pathogenesis to novel therapeutic options. Pharmacol Res 2021; 167:105593. [PMID: 33826948 DOI: 10.1016/j.phrs.2021.105593] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Behçet disease (BD) is a complex, multi-systemic inflammatory condition mainly hallmarked by oral and genital ulcers which can also affect the vessels, gastrointestinal tract, central nervous system and even the axial skeleton. Without a clear classification among autoimmune or autoinflammatory conditions, BD has been recently classified as a MHC-I-opathy. BD aetiology is still obscure, but it is thought that certain microorganisms can elicit an aberrant adaptive immune response in the presence of a permissive genetic background. Altered T-cell homeostasis, mostly Th1/Th17 expansion and Treg impairment, could lead to an overactivation of the innate immunity, which underlies tissue damage and thus, signs and symptoms. Immunosuppression and/or immunomodulation are central to the BD management. A complex armamentarium ranging from classical synthetic disease-modifying antirrheumatic drugs to new-era biologic agents or small molecules is available in BD, with different therapeutic outcomes depending on disease manifestations. However, the precise disease mechanisms that underlie BD symptoms are not fully deciphered, which may limit their therapeutic potential and add a significant layer of complexity to the treatment decision-making process. The aim of the present review is to provide an exhaustive overview of the latest breakthroughs in BD pathogenesis and therapeutic options.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Valeria Nucera
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Ignazio Francesco Masala
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy; Trauma and Orthopedic Unit, Santissima Trinità Hospital, Cagliari, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
15
|
Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:340-350. [PMID: 33657268 PMCID: PMC8127548 DOI: 10.1002/iid3.416] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Human leukocyte antigen (HLA), also known as human major histocompatibility complex (MHC), is encoded by the HLA gene complex, and is currently known to have the highest gene density and the most polymorphisms among human chromosomal areas. HLA is divided into class I antigens, class II antigens, and class III antigens according to distribution and function. Classical HLA class I antigens include HLA-A, HLA-B, and HLA-C; HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR; nonclassical HLA class I and II molecules include HLA-F, E, H, X, DN, DO, and DM; and others, such as complement, are class III antigens. HLA is closely related to the body's immune response, regulation, and surveillance and is of great significance in the study of autoimmune diseases, tumor immunity, organ transplantation, and reproductive immunity. HLA is an important research topic that bridges immunology and clinical diseases. With the development of research methods and technologies, there will be more discoveries and broader prospects.
Collapse
Affiliation(s)
- Bingnan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yuanyuan Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
16
|
Cisneros E, Moraru M, Gómez-Lozano N, Muntasell A, López-Botet M, Vilches C. Haplotype-Based Analysis of KIR-Gene Profiles in a South European Population-Distribution of Standard and Variant Haplotypes, and Identification of Novel Recombinant Structures. Front Immunol 2020; 11:440. [PMID: 32256494 PMCID: PMC7089957 DOI: 10.3389/fimmu.2020.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibitory Killer-cell Immunoglobulin-like Receptors (KIR) specific for HLA class I molecules enable human natural killer cells to monitor altered antigen presentation in pathogen-infected and tumor cells. KIR genes display extensive copy-number variation and allelic polymorphism. They organize in a series of variable arrangements, designated KIR haplotypes, which derive from duplications of ancestral genes and sequence diversification through point mutation and unequal crossing-over events. Genomic studies have established the organization of multiple KIR haplotypes—many of them are fixed in most human populations, whereas variants of those have less certain distributions. Whilst KIR-gene diversity of many populations and ethnicities has been explored superficially (frequencies of individual genes and presence/absence profiles), less abundant are in-depth analyses of how such diversity emerges from KIR-haplotype structures. We characterize here the genetic diversity of KIR in a sample of 414 Spanish individuals. Using a parsimonious approach, we manage to explain all 38 observed KIR-gene profiles by homo- or heterozygous combinations of six fixed centromeric and telomeric motifs; of six variant gene arrangements characterized previously by us and others; and of two novel haplotypes never detected before in Caucasoids. Associated to the latter haplotypes, we also identified the novel transcribed KIR2DL5B*0020202 allele, and a chimeric KIR2DS2/KIR2DL3 gene (designated KIR2DL3*033) that challenges current criteria for classification and nomenclature of KIR genes and haplotypes.
Collapse
Affiliation(s)
- Elisa Cisneros
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Manuela Moraru
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Natalia Gómez-Lozano
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Carlos Vilches
- Immunogenetics and Histocompatibility, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana, Madrid, Spain
| |
Collapse
|
17
|
Charles J, Castellino FJ, Ploplis VA. Past and Present Behçet's Disease Animal Models. Curr Drug Targets 2020; 21:1652-1663. [PMID: 32682369 PMCID: PMC7746599 DOI: 10.2174/1389450121666200719010425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Behçet's disease (BD) is presumably an autoinflammatory disease of unknown etiology for which several animal models have been described over the years. Agents and methods used for the development of these models have ranged from the herpes simplex type one virus (hsv-1) pathogen to the use of transgenic mice. Other models have also been used to investigate a possible autoimmune component. Each model possesses its own unique set of benefits and shortcomings, with no one model fully being able to recapitulate the disease phenotype. Here, we review the proposed models and provide commentary on their effectiveness and usefulness in studying the disease.
Collapse
Affiliation(s)
- Jermilia Charles
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|