1
|
Ling AL, Solomon IH, Landivar AM, Nakashima H, Woods JK, Santos A, Masud N, Fell G, Mo X, Yilmaz AS, Grant J, Zhang A, Bernstock JD, Torio E, Ito H, Liu J, Shono N, Nowicki MO, Triggs D, Halloran P, Piranlioglu R, Soni H, Stopa B, Bi WL, Peruzzi P, Chen E, Malinowski SW, Prabhu MC, Zeng Y, Carlisle A, Rodig SJ, Wen PY, Lee EQ, Nayak L, Chukwueke U, Gonzalez Castro LN, Dumont SD, Batchelor T, Kittelberger K, Tikhonova E, Miheecheva N, Tabakov D, Shin N, Gorbacheva A, Shumskiy A, Frenkel F, Aguilar-Cordova E, Aguilar LK, Krisky D, Wechuck J, Manzanera A, Matheny C, Tak PP, Barone F, Kovarsky D, Tirosh I, Suvà ML, Wucherpfennig KW, Ligon K, Reardon DA, Chiocca EA. Clinical trial links oncolytic immunoactivation to survival in glioblastoma. Nature 2023; 623:157-166. [PMID: 37853118 PMCID: PMC10620094 DOI: 10.1038/s41586-023-06623-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/07/2023] [Indexed: 10/20/2023]
Abstract
Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).
Collapse
Affiliation(s)
- Alexander L Ling
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Isaac H Solomon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ana Montalvo Landivar
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andres Santos
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nafisa Masud
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Geoffrey Fell
- Department of Biostatistics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Ayse S Yilmaz
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - James Grant
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Abigail Zhang
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua D Bernstock
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Erickson Torio
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Hirotaka Ito
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Junfeng Liu
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Naoyuki Shono
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Michal O Nowicki
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Daniel Triggs
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Halloran
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Raziye Piranlioglu
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Himanshu Soni
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Brittany Stopa
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Pierpaolo Peruzzi
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ethan Chen
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Seth W Malinowski
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael C Prabhu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yu Zeng
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anne Carlisle
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Scott J Rodig
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick Y Wen
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eudocia Quant Lee
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lakshmi Nayak
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ugonma Chukwueke
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sydney D Dumont
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel Kovarsky
- Department of Molecular Cell Biology, Weizmann Institute of Medical Sciences, Tel Aviv, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Medical Sciences, Tel Aviv, Israel
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Keith Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David A Reardon
- Center for Neuro-oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Gao X, Michel K, Griese M. Interstitial Lung Disease in Immunocompromised Children. Diagnostics (Basel) 2022; 13:diagnostics13010064. [PMID: 36611354 PMCID: PMC9818431 DOI: 10.3390/diagnostics13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The range of pulmonary complications beyond infections in pediatric immunocompromised patients is broad but not well characterized. Our goal was to assess the spectrum of disorders with a focus on interstitial lung diseases (ILD) in immunodeficient patients. METHODS We reviewed 217 immunocompromised children attending a specialized pneumology service during a period of 23 years. We assigned molecular diagnoses where possible and categorized the underlying immunological conditions into inborn errors of immunity or secondary immunodeficiencies according to the IUIS and the pulmonary conditions according to the chILD-EU classification system. RESULTS Among a wide array of conditions, opportunistic and chronic infections were the most frequent. ILD had a 40% prevalence. Of these children, 89% had a CT available, and 66% had a lung biopsy, which supported the diagnosis of ILD in 95% of cases. Histology was often lymphocyte predominant with the histo-pattern of granulomatous and lymphocytic interstitial lung disease (GLILD), follicular bronchiolitis or lymphocytic interstitial pneumonitis. Of interest, DIP, PAP and NSIP were also diagnosed. ILD was detected in several immunological disorders not yet associated with ILD. CONCLUSIONS Specialized pneumological expertise is necessary to manage the full spectrum of respiratory complications in pediatric immunocompromised patients.
Collapse
Affiliation(s)
| | | | - Matthias Griese
- Correspondence: ; Tel.: +49-89-4400-57870; Fax: +49-89-4400-57872
| |
Collapse
|
3
|
Sultan M, Adawi M, Kol N, McCourt B, Adawi I, Baram L, Tal N, Werner L, Lev A, Snapper SB, Barel O, Konnikova L, Somech R, Shouval DS. RIPK1 mutations causing infantile-onset IBD with inflammatory and fistulizing features. Front Immunol 2022; 13:1041315. [PMID: 36466854 PMCID: PMC9716469 DOI: 10.3389/fimmu.2022.1041315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/04/2022] [Indexed: 08/13/2023] Open
Abstract
PURPOSE Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is an important regulator of necroptosis and inflammatory responses. We present the clinical features, genetic analysis and immune work-up of two patients with infantile-onset inflammatory bowel disease (IBD) resulting from RIPK1 mutations. METHODS Whole exome and Sanger sequencing was performed in two IBD patients. Mass cytometry time of flight (CyTOF) was conducted for in-depth immunophenotyping on one of the patient's peripheral blood mononuclear cells, and compared to control subjects and patients with Crohn's disease. RESULTS The patients presented with severe colitis and perianal fistulas in the first months of life, without severe/atypical infections. Genetic studies identified pathogenic genetic variants in RIPK1 (Patient 1, A c.1934C>T missense mutation in Exon 11; Patient 2, c.580G>A missense mutation residing in Exon 4). Protein modeling demonstrated that the mutation in Patient 1 displaces a water molecule, potentially disrupting the local environment, and the mutation in Patient 2 may lead to disruption of the packing and conformation of the kinase domain. Immunofluorescence RIPK1 staining in rectal biopsies demonstrated no expression for Patient 1 and minimal expression for Patient 2, compared to controls and patients with active Crohn's disease. Using CyTOF unbiased clustering analysis, we identified peripheral immune dysregulation in one of these patients, characterized by an increase in IFNγ CD8+ T cells along with a decrease in monocytes, dendritic cells and B cells. Moreover, RIPK1-deficient patient's immune cells exhibited decreased IL-6 production in response to lipopolysaccharide (LPS) across multiple cell types including T cells, B cells and innate immune cells. CONCLUSIONS Mutations in RIPK1 should be considered in very young patients presenting with colitis and perianal fistulas. Given RIPK1's role in inflammasome activation, but also in epithelial cells, it is unclear whether IL1 blockade or allogeneic hematopoietic stem cell transplantation can suppress or cure the hyper-inflammatory response in these patients. Additional studies in humans are required to better define the role of RIPK1 in regulating intestinal immune responses, and how treatment can be optimized for patients with RIPK1 deficiency.
Collapse
Affiliation(s)
- Mutaz Sultan
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, Jerusalem, Palestine
| | - Mohammad Adawi
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, Jerusalem, Palestine
| | - Nitzan Kol
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Wohl Institute of Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Blake McCourt
- Department of Pediatrics, Yale Medical School, New Haven, CT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, United States
| | - Ihda Adawi
- Department of Pediatrics, Faculty of Medicine, Makassed Hospital, Al-Quds University, Jerusalem, Palestine
| | - Liran Baram
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| | - Noa Tal
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| | - Lael Werner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| | - Atar Lev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Department Ward A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Scott B. Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ortal Barel
- The Genomic Unit, Sheba Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
- Wohl Institute of Translational Medicine, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Human and Translational Immunology, Yale Medical School, New Haven, CT, United States
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Immunology Service, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Department Ward A, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Dror S. Shouval
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children’s Medical Center of Israel, Petah Tiqwa, Israel
| |
Collapse
|
4
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
5
|
Cullen JN, Martin J, Vilella AJ, Treeful A, Sargan D, Bradley A, Friedenberg SG. Development and application of a next-generation sequencing protocol and bioinformatics pipeline for the comprehensive analysis of the canine immunoglobulin repertoire. PLoS One 2022; 17:e0270710. [PMID: 35802654 PMCID: PMC9269486 DOI: 10.1371/journal.pone.0270710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Profiling the adaptive immune repertoire using next generation sequencing (NGS) has become common in human medicine, showing promise in characterizing clonal expansion of B cell clones through analysis of B cell receptors (BCRs) in patients with lymphoid malignancies. In contrast, most work evaluating BCR repertoires in dogs has employed traditional PCR-based approaches analyzing the IGH locus only. The objectives of this study were to: (1) describe a novel NGS protocol to evaluate canine BCRs; (2) develop a bioinformatics pipeline for processing canine BCR sequencing data; and (3) apply these methods to derive insights into BCR repertoires of healthy dogs and dogs undergoing treatment for B-cell lymphoma. RNA from peripheral blood mononuclear cells of healthy dogs (n = 25) and dogs newly diagnosed with intermediate-to-large B-cell lymphoma (n = 18) with intent to pursue chemotherapy was isolated, converted into cDNA and sequenced by NGS. The BCR repertoires were identified and quantified using a novel analysis pipeline. The IGK repertoires of the healthy dogs were far less diverse compared to IGL which, as with IGH, was highly diverse. Strong biases at key positions within the CDR3 sequence were identified within the healthy dog BCR repertoire. For a subset of the dogs with B-cell lymphoma, clonal expansion of specific IGH sequences pre-treatment and reduction post-treatment was observed. The degree of expansion and reduction correlated with the clinical outcome in this subset. Future studies employing these techniques may improve disease monitoring, provide earlier recognition of disease progression, and ultimately lead to more targeted therapeutics.
Collapse
Affiliation(s)
- Jonah N. Cullen
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - Jolyon Martin
- Wellcome Trust Genome Campus, Hinxton, Saffron Walden, United Kingdom
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Albert J. Vilella
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
| | - Amy Treeful
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
| | - David Sargan
- Department of Veterinary Medicine, Madingley Road, Cambridge, United Kingdom
| | - Allan Bradley
- Wellcome Trust Genome Campus, Hinxton, Saffron Walden, United Kingdom
- PetMedix Ltd, Glenn Berge Building, Babraham Research Campus, Cambridge, United Kingdom
- Department of Medicine, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Steven G. Friedenberg
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
6
|
Krovi SH, Kuchroo VK. Activation pathways that drive CD4 + T cells to break tolerance in autoimmune diseases . Immunol Rev 2022; 307:161-190. [PMID: 35142369 PMCID: PMC9255211 DOI: 10.1111/imr.13071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022]
Abstract
Autoimmune diseases are characterized by dysfunctional immune systems that misrecognize self as non-self and cause tissue destruction. Several cell types have been implicated in triggering and sustaining disease. Due to a strong association of major histocompatibility complex II (MHC-II) proteins with various autoimmune diseases, CD4+ T lymphocytes have been thoroughly investigated for their roles in dictating disease course. CD4+ T cell activation is a coordinated process that requires three distinct signals: Signal 1, which is mediated by antigen recognition on MHC-II molecules; Signal 2, which boosts signal 1 in a costimulatory manner; and Signal 3, which helps to differentiate the activated cells into functionally relevant subsets. These signals are disrupted during autoimmunity and prompt CD4+ T cells to break tolerance. Herein, we review our current understanding of how each of the three signals plays a role in three different autoimmune diseases and highlight the genetic polymorphisms that predispose individuals to autoimmunity. We also discuss the drawbacks of existing therapies and how they can be addressed to achieve lasting tolerance in patients.
Collapse
Affiliation(s)
- Sai Harsha Krovi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Li J, Bi H. The effect and mechanism of cypermethrin-induced hippocampal neurotoxicity as determined by network pharmacology analysis and experimental validation. Bioengineered 2021; 12:9279-9289. [PMID: 34714723 PMCID: PMC8810029 DOI: 10.1080/21655979.2021.2000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cypermethrin (CMN) is a widely used artificial synthetic pesticide that causes neurotoxicity in the hippocampus. However, the underlying toxicological targets and mechanisms remain unclear. In this study, network pharmacology analysis and in vitro models were integrated to investigate the effect and mechanism of CMN-induced hippocampal neurotoxicity. A total of 88 targets of CMN-induced hippocampal neurotoxicity were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analyses suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate underlying mechanism, the top 10 hub targets (Akt1, Tnf, Ptgs2, Casp3, Igf1, Sirt1, Jun, Cat, Il10, and Bcl2l1) were screened. Furthermore, cell viability and lactate dehydrogenase (LDH) assays demonstrated that CMN was toxic to HT22 cells in a time- and dose-dependent manner. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining revealed that treatment with CMN increased the proportion of apoptotic cells. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that CMN altered the mRNA expression levels of most of the hub targets, with the exceptions of Igf1 and Jun. The results demonstrated that multiple targets and signaling pathways were involved in CMN-induced hippocampal neurotoxicity. These findings provided reference values for subsequent studies of the toxicological mechanism of CMN.
Collapse
Affiliation(s)
- Jianan Li
- KeyLaboratory of Environment and Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Foth S, Völkel S, Bauersachs D, Zemlin M, Skevaki C. T Cell Repertoire During Ontogeny and Characteristics in Inflammatory Disorders in Adults and Childhood. Front Immunol 2021; 11:611573. [PMID: 33633732 PMCID: PMC7899981 DOI: 10.3389/fimmu.2020.611573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first day of life, a newborn has to deal with various pathogens from the environment. While passive immune protection is provided by diaplacental maternal antibodies, the development of cellular immunity is ongoing. A mature immune system should be able not only to defend against pathogens, but should also be able to differentiate between self- and non-self-antigens. Dysregulation in the development of cellular immunity can lead to severe disorders like immunodeficiency, autoimmunity and chronic inflammation. In this review, we explain the role of T cell immunity in antigen detection and summarize the characteristics of a mature TCR repertoire as well as the current state of knowledge about the development of the TCR repertoire in ontogenesis. In addition, methods of assessments are outlined, with a focus on the advantages and disadvantages of advanced methods such as next generation sequencing. Subsequently, we provide an overview of various disorders occuring in early childhood like immunodeficiencies, autoimmunity, allergic diseases and chronic infections and outline known changes in the TCR repertoire. Finally, we summarize the latest findings and discuss current research gaps as well as potential future developments.
Collapse
Affiliation(s)
- Svenja Foth
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Sara Völkel
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Daniel Bauersachs
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical School, Homburg, Germany
| | - Chrysanthi Skevaki
- German Center for Lung Research (DZL), Institute of Laboratory Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
9
|
Ziv A, Werner L, Konnikova L, Awad A, Jeske T, Hastreiter M, Mitsialis V, Stauber T, Wall S, Kotlarz D, Klein C, Snapper SB, Tzfati Y, Weiss B, Somech R, Shouval DS. An RTEL1 Mutation Links to Infantile-Onset Ulcerative Colitis and Severe Immunodeficiency. J Clin Immunol 2020; 40:1010-1019. [PMID: 32710398 DOI: 10.1007/s10875-020-00829-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE More than 50 different monogenic disorders causing inflammatory bowel disease (IBD) have been identified. Our goal was to characterize the clinical phenotype, genetic workup, and immunologic alterations in an Ashkenazi Jewish patient that presented during infancy with ulcerative colitis and unique clinical manifestations. METHODS Immune workup and whole-exome sequencing were performed, along with Sanger sequencing for confirmation. Next-generation sequencing of the TCRB and IgH was conducted for immune repertoire analysis. Telomere length was evaluated by in-gel hybridization assay. Mass cytometry was performed on patient's peripheral blood mononuclear cells, and compared with control subjects and patients with UC. RESULTS The patient presented in infancy with failure to thrive and dysmorphic features, consistent with a diagnosis of dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. Severe ulcerative colitis manifested in the first year of life and proceeded to the development of a primary immunodeficiency, presenting as Pneumocystis jiroveci pneumonia and hypogammaglobulinemia. Genetic studies identified a deleterious homozygous C.3791G>A missense mutation in the helicase regulator of telomere elongation 1 (RTEL1), leading to short telomeres in the index patient. Immune repertoire studies showed polyclonal T and B cell receptor distribution, while mass cytometry analysis demonstrated marked immunological alterations, including a predominance of naïve T cells, paucity of B cells, and a decrease in various innate immune subsets. CONCLUSIONS RTEL1 mutations are associated with significant alterations in immune landscape and can manifest with infantile-onset IBD. A high index of suspicion is required in Ashkenazi Jewish families where the carriage rate of the C.3791G>A variant is high.
Collapse
Affiliation(s)
- Alma Ziv
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lael Werner
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liza Konnikova
- Division of Newborn Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aya Awad
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tim Jeske
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Hastreiter
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa Mitsialis
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tali Stauber
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Sarah Wall
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Raz Somech
- Pediatric Department A, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Immunology Service, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
- Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Zeng H, Huang Y, Chen L, Li H, Ma X. Exploration and validation of the effects of robust co-expressed immune-related genes on immune infiltration patterns and prognosis in laryngeal cancer. Int Immunopharmacol 2020; 85:106622. [PMID: 32485354 DOI: 10.1016/j.intimp.2020.106622] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Laryngeal cancer is a common malignant tumor that originates from the larynx, yet its molecular mechanisms have not been thoroughly explored. The purpose of this study was to identify and evaluate immune-related genes in laryngeal cancer through gene co-expression networks, which may serve as biomarkers for its immunotherapy. METHODS We applied ESTIMATE to evaluate the immune-infiltration landscape of tumor microenvironment. The co-expression networks were constructed by weighted gene co expression network analysis (WGCNA) and compared with the existing human immune related genes (IRGs) to determine the co-expressed IRGs. GSVA combined with CIBERSORT and ssGSEA illustrated the correlation of hub genes and immune infiltration patterns. TIDE algorithm and Subclass mapping evaluated the function of hub genes in predicting immune function and immunotherapeutic sensitivity. The pRRophetic was employed in the sensitivity prediction of chemotherapeutic drugs. RESULTS A total of 23 co-expressed IRGs were identified and showed robust expression characteristics. These genes were significantly related to immune infiltration patterns, immune function and sensitivity prediction of immunotherapy and chemotherapeutic drugs for laryngeal cancer patients. Genetic alteration in somatic mutation level and related pathways were also revealed. CONCLUSION The 23 co-expressed IRGs may act as immunotherapeutic biomarkers and potential therapeutic targets for laryngeal cancer with certain expression robustness. The molecular mechanisms deserve further investigation, which will guide clinical treatment in the future.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yeqian Huang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; West China School of Medicine, West China Hospital, Sichuan University, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Li
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; West China School of Medicine, West China Hospital, Sichuan University, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|