1
|
Meriç N, Erkan PÇ, Kocabaş F. Deciphering avian hematopoietic stem cells by surface marker screening and gene expression profiling. Mol Immunol 2024; 175:20-30. [PMID: 39288684 DOI: 10.1016/j.molimm.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Avian species have played a pivotal role in developmental hematopoiesis research, leading to numerous critical discoveries. Avian influenza, particularly the H5N1 strain, poses a significant threat to poultry and has zoonotic potential for humans. Infections often result in abnormal hematologic profiles, highlighting the complex interplay between avian diseases and hematopoiesis. Many avian diseases can suppress immune cells in the bone marrow (BM), impacting immune responses. Studying hematopoietic stem cells (HSCs) in avian BM is crucial for understanding these processes and developing effective vaccines and protection strategies for both avian and human health. METHODS This study adapted methods from mouse studies to isolate avian HSCs as Lineage-negative (Lin-) cells. These isolated cells were further identified as Lin-Sca1+c-Kit+ (LSK) and were found to be more prevalent than in control groups. RT-PCR analyses were conducted, showing that genes like MEIS1 and TSC1 were upregulated, while SIRT1, FOXO1, and AHR were downregulated in these stem cells. Screening for LSK markers revealed ten unique surface antigens in the Sca1+c-Kit+ cell populations, including highly enriched antigens such as CD178, CD227, and CD184. Additionally, studies on quail HSCs demonstrated that similar labeling techniques were effective in quail BM. RESULTS The research demonstrated that the identification of avian HSC-specific surface antigens provides valuable insights into the pathogenesis of avian influenza and other diseases, enhancing our understanding of how these diseases suppress HSC function. Notably, the upregulation of MEIS1 and TSC1 genes in LSK cells underscores their critical roles in regulating hematopoietic processes. Conversely, the downregulation of SIRT1, FOXO1, and AHR genes provides important clues about their roles in differentiation and immune response mechanisms. DISCUSSION The findings of this study deepen our understanding of the effects of avian diseases on the immune system by identifying surface markers specific to avian HSCs. The suppression of HSC function by pathogens such as influenza highlights the importance of understanding these cells in developing targeted vaccines. These results represent a significant step towards improving global health security by mitigating risks associated with avian pathogens.
Collapse
Affiliation(s)
- Neslihan Meriç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Kütahya, Türkiye.
| | - Pınar Çolakoğlu Erkan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbul, Türkiye.
| |
Collapse
|
2
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
|
3
|
Browne DJ, Miller CM, Doolan DL. Technical pitfalls when collecting, cryopreserving, thawing, and stimulating human T-cells. Front Immunol 2024; 15:1382192. [PMID: 38812513 PMCID: PMC11133553 DOI: 10.3389/fimmu.2024.1382192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The collection, cryopreservation, thawing, and culture of peripheral blood mononuclear cells (PBMCs) can profoundly influence T cell viability and immunogenicity. Gold-standard PBMC processing protocols have been developed by the Office of HIV/AIDS Network Coordination (HANC); however, these protocols are not universally observed. Herein, we have explored the current literature assessing how technical variation during PBMC processing can influence cellular viability and T cell immunogenicity, noting inconsistent findings between many of these studies. Amid the mounting concerns over scientific replicability, there is growing acknowledgement that improved methodological rigour and transparent reporting is required to facilitate independent reproducibility. This review highlights that in human T cell studies, this entails adopting stringent standardised operating procedures (SOPs) for PBMC processing. We specifically propose the use of HANC's Cross-Network PBMC Processing SOP, when collecting and cryopreserving PBMCs, and the HANC member network International Maternal Pediatric Adolescent AIDS Clinical Trials (IMPAACT) PBMC Thawing SOP when thawing PBMCs. These stringent and detailed protocols include comprehensive reporting procedures to document unavoidable technical variations, such as delayed processing times. Additionally, we make further standardisation and reporting recommendations to minimise and document variability during this critical experimental period. This review provides a detailed overview of the challenges inherent to a procedure often considered routine, highlighting the importance of carefully considering each aspect of SOPs for PBMC collection, cryopreservation, thawing, and culture to ensure accurate interpretation and comparison between studies.
Collapse
Affiliation(s)
- Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Catherine M. Miller
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Denise L. Doolan
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Zhang X, Li Y, Wang Q, Jiang C, Shan Y, Liu Y, Ma C, Guo Q, Shi C. Three-way junction structure-mediated reverse transcription-free exponential amplification reaction for pathogen RNA detection. Anal Bioanal Chem 2024; 416:3161-3171. [PMID: 38558309 DOI: 10.1007/s00216-024-05264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/27/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Since RNA is an important biomarker of many infectious pathogens, RNA detection of pathogenic organisms is crucial for disease diagnosis and environmental and food safety. By simulating the base mismatch during DNA replication, this study presents a novel three-way junction structure-mediated reverse transcription-free exponential amplification reaction (3WJ-RTF-EXPAR) for the rapid and sensitive detection of pathogen RNA. The target RNA served as a switch to initiate the reaction by forming a three-way junction (3WJ) structure with the ex-trigger strand and the ex-primer strand. The generated trigger strand could be significantly amplified through EXPAR to open the stem-loop structure of the molecular beacon to emit fluorescence signal. The proofreading activity of Vent DNA polymerase, in combination with the unique structure of 2+1 bases at the 3'-end of the ex-primer strand, could enhance the role of target RNA as a reaction switch to reduce non-specific amplification and ensure excellent specificity to differentiate target pathogen from those causing similar symptoms. Furthermore, detection of target RNA showed a detection limit of 1.0×104 copies/mL, while the time consumption was only 20 min, outperforming qRT-LAMP and qRT-PCR, the most commonly used RNA detection methods in clinical practice. All those indicates the great application prospects of this method in clinical diagnostic.
Collapse
Affiliation(s)
- Xinguang Zhang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yang Li
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qing Wang
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Chao Jiang
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yuting Shan
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yao Liu
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Biological Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao University of Science and Technology, QingdaoQingdao, 266042, China
| | - Qunqun Guo
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Qingdao University, Qingdao, 266071, People's Republic of China.
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, People's Republic of China.
- Qingdao JianMa Gene Technology Co., Ltd, Qingdao, 266114, People's Republic of China.
| |
Collapse
|
5
|
Browne DJ, Kelly AM, Brady J, Proietti C, Sarathkumara YD, Pattinson DJ, Doolan DL. Evaluating the stability of host-reference gene expression and simultaneously quantifying parasite burden and host immune responses in murine malaria. Sci Rep 2023; 13:21071. [PMID: 38030676 PMCID: PMC10687243 DOI: 10.1038/s41598-023-48066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
The efficacy of pre-erythrocytic stage malaria antigens or vaccine platforms is routinely assessed in murine models challenged with Plasmodium sporozoites. Relative liver-stage parasite burden is quantified using reverse transcription quantitative PCR (RTqPCR), which relies on constitutively expressed endogenous control reference genes. However, the stability of host-reference gene expression for RTqPCR analysis following Plasmodium challenge and immunization has not been systematically evaluated. Herein, we evaluated the stability of expression of twelve common RTqPCR reference genes in a murine model of Plasmodium yoelii sporozoite challenge and DNA-adenovirus IV 'Prime-Target' immunization. Significant changes in expression for six of twelve reference genes were shown by one-way ANOVA, when comparing gene expression levels among challenge, immunized, and naïve mice groups. These changes were attributed to parasite challenge or immunization when comparing group means using post-hoc Bonferroni corrected multiple comparison testing. Succinate dehydrogenase (SDHA) and TATA-binding protein (TBP) were identified as stable host-reference genes suitable for relative RTqPCR data normalisation, using the RefFinder package. We defined a robust threshold of 'partial-protection' with these genes and developed a strategy to simultaneously quantify matched host parasite burden and cytokine responses following immunisation or challenge. This is the first report systematically identifying reliable host reference genes for RTqPCR analysis following Plasmodium sporozoite challenge. A robust RTqPCR protocol incorporating reliable reference genes which enables simultaneous analysis of host whole-liver cytokine responses and parasite burden will significantly standardise and enhance results between international malaria vaccine efficacy studies.
Collapse
Affiliation(s)
- Daniel J Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Ashton M Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Jamie Brady
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Carla Proietti
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - Yomani D Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia
| | - David J Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Denise L Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, QLD, 4072, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia.
| |
Collapse
|
6
|
M N N, J K, S R S, Raavi V. The Role of Insulin-like Growth Factor-Axis and Mitotic Index in South Indian Neonates with Small for Gestational Age. Fetal Pediatr Pathol 2023; 42:216-226. [PMID: 35712880 DOI: 10.1080/15513815.2022.2086950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE IGF-axis and mitotic capacity of cells play a vital role in fetal growth. We compared IGF1, IGF2, and IGFBP3 protein levels, mitotic indices, IGFR1 and IGFR2 mRNA expression in appropriate for gestational age (AGA) and small for gestational age (SGA) neonates of Indian women. METHODS Cord blood (n = 80) and placental samples (n = 40) were collected from AGA and SGA neonates. Plasma IGF1, IGF2, and IGFBP3 proteins were measured by ELISA. IGFR1 and IGFR2 mRNA expression in the placenta were analyzed by qRT-PCR. Cord blood was cultured in vitro and mitotic index was obtained. RESULTS IGF1 (p = 1), and IGF2 (p = 0.69) protein levels did not differ, whereas IGFBP3 (p = 0.02) was significantly less in SGA compared to AGA neonates. Down-regulation of IGFR1 (3.9-folds) and IGFR2 (2.8-folds) mRNA and reduced mitotic index of lymphocytes was observed in SGA (p = 0.001) compared to AGA neonates. CONCLUSION Our results showed that, SGA neonates displayed down-regulated IGFR1 and IGFR2 mRNA, decreased IGFBP3 protein and mitotic index.
Collapse
Affiliation(s)
- Nithya M N
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar 563 103, Karnataka, India
| | - Krishnappa J
- Department of Paediatrics, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar 563 103, Karnataka, India
| | - Sheela S R
- Department of Obstetrics and Gynaecology, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar 563 103, Karnataka, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar 563 103, Karnataka, India
| |
Collapse
|
7
|
Sarathkumara YD, Browne DJ, Kelly AM, Pattinson DJ, Rush CM, Warner J, Proietti C, Doolan DL. The Effect of Tropical Temperatures on the Quality of RNA Extracted from Stabilized Whole-Blood Samples. Int J Mol Sci 2022; 23:ijms231810609. [PMID: 36142559 PMCID: PMC9503649 DOI: 10.3390/ijms231810609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
Whole-blood-derived transcriptional profiling is widely used in biomarker discovery, immunological research, and therapeutic development. Traditional molecular and high-throughput transcriptomic platforms, including molecular assays with quantitative PCR (qPCR) and RNA-sequencing (RNA-seq), are dependent upon high-quality and intact RNA. However, collecting high-quality RNA from field studies in remote tropical locations can be challenging due to resource restrictions and logistics of post-collection processing. The current study tested the relative performance of the two most widely used whole-blood RNA collection systems, PAXgene® and Tempus™, in optimal laboratory conditions as well as suboptimal conditions in tropical field sites, including the effects of extended storage times and high storage temperatures. We found that Tempus™ tubes maintained a slightly higher RNA quantity and integrity relative to PAXgene® tubes at suboptimal tropical conditions. Both PAXgene® and Tempus™ tubes gave similar RNA purity (A260/A280). Additionally, Tempus™ tubes preferentially maintained the stability of mRNA transcripts for two reference genes tested, Succinate dehydrogenase complex, subunit A (SDHA) and TATA-box-binding protein (TBP), even when RNA quality decreased with storage length and temperature. Both tube types preserved the rRNA transcript 18S ribosomal RNA (18S) equally. Our results suggest that Tempus™ blood RNA collection tubes are preferable to PAXgene® for whole-blood collection in suboptimal tropical conditions for RNA-based studies in resource-limited settings.
Collapse
Affiliation(s)
- Yomani D. Sarathkumara
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Daniel J. Browne
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Ashton M. Kelly
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - David J. Pattinson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Catherine M. Rush
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Jeffrey Warner
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Carla Proietti
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
| | - Denise L. Doolan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health of Medicine, James Cook University, Cairns, QLD 4878, Australia
- Correspondence:
| |
Collapse
|
8
|
Browne DJ, Kelly AM, Brady JL, Doolan DL. A high-throughput screening RT-qPCR assay for quantifying surrogate markers of immunity from PBMCs. Front Immunol 2022; 13:962220. [PMID: 36110843 PMCID: PMC9469018 DOI: 10.3389/fimmu.2022.962220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoassays that quantitate cytokines and other surrogate markers of immunity from peripheral blood mononuclear cells (PBMCs), such as flow cytometry or Enzyme-Linked Immunosorbent Spot (ELIspot), allow highly sensitive measurements of immune effector function. However, those assays consume relatively high numbers of cells and expensive reagents, precluding comprehensive analyses and high-throughput screening (HTS). To address this issue, we developed a sensitive and specific reverse transcription-quantitative PCR (RT-qPCR)-based HTS assay, specifically designed to quantify surrogate markers of immunity from very low numbers of PBMCs. We systematically evaluated the volumes and concentrations of critical reagents within the RT-qPCR protocol, miniaturizing the assay and ultimately reducing the cost by almost 90% compared to current standard practice. We assessed the suitability of this cost-optimized RT-qPCR protocol as an HTS tool and determined the assay exceeds HTS uniformity and signal variance testing standards. Furthermore, we demonstrate this technique can effectively delineate a hierarchy of responses from as little as 50,000 PBMCs stimulated with CD4+ or CD8+ T cell peptide epitopes. Finally, we establish that this HTS-optimized protocol has single-cell analytical sensitivity and a diagnostic sensitivity equivalent to detecting 1:10,000 responding cells (i.e., 100 Spot Forming Cells/106 PBMCs by ELIspot) with over 90% accuracy. We anticipate this assay will have widespread applicability in preclinical and clinical studies, especially when samples are limited, and cost is an important consideration.
Collapse
|
9
|
Xu F, Yao W, Xue Y, Sun Q, Cao C. The oncogene ABL1 regulates the inflammatory response of innate immunity via mediating TRAF6 ubiquitination. Immunobiology 2022; 227:152262. [PMID: 36049365 DOI: 10.1016/j.imbio.2022.152262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/23/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
The oncogene ABL1 plays an important role in various cancers, while its roles remain unclear in pneumonia. This study aims to investigate the roles of ABL1 in pneumonia and the underlying mechanisms. RNA sequencing was used to determine the expressions of multiple kinases in the PBMCs. A series of overexpression and knockout cell lines were constructed. Besides, an intranasal lung infection mouse model was pre-treated with asciminb. ELISAs and qPCR were used to determine the levels of target genes. In addition, STRING Interaction Network and Immunoblotting assays were used to determine the interaction between target proteins. An elevation in ABL1 was observed in the infant with Ecoli pneumonia. ABL1 was positively correlated to the levels of inflammatory cytokines and the activation of the NF-kB pathways. In vivo data demonstrated that the inhibition of ABL1 suppressed the inflammatory cytokines, reduced the lung bacterial burden, and ameliorated the lung injury score. ABL1 inhibited the phosphorylation of IκBα and p38 and regulated the ubiquitination of TRAF6. ABL1 regulates the inflammatory response in pneumonia in part by the regulation of MAPK and NF-κB pathways and TRAF6 ubiquitination.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pediatrics, Zibo Central Hospital, No.54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Wenjing Yao
- Department of Pediatrics, Zibo Central Hospital, No.54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Yuanyuan Xue
- Department of Pediatrics, Zibo Central Hospital, No.54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China
| | - Qi Sun
- Scientific Research and Foreign Cooperation Department, Zibo Central Hospital, No.54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China.
| | - Chunxia Cao
- Department of Pediatrics, Zibo Central Hospital, No.54 Gongqingtuan West Road, Zhangdian District, Zibo 255036, Shandong, China.
| |
Collapse
|
10
|
Orr R, Dennis PG, Wong Y, Browne DJ, Cooper M, Birt HWG, Lapis-Gaza HR, Pattison AB, Nelson PN. Nitrogen fertilizer rate but not form affects the severity of Fusarium wilt in banana. FRONTIERS IN PLANT SCIENCE 2022; 13:907819. [PMID: 35941941 PMCID: PMC9356348 DOI: 10.3389/fpls.2022.907819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) fertilizers are routinely applied to bananas (Musa spp.) to increase production but may exacerbate plant diseases like Fusarium wilt of banana (FWB), which is the most economically important disease. Here, we characterized the effects of N rate and form on banana plant growth, root proteome, bacterial and fungal diversity in the rhizosphere, the concentration of Fusarium oxysporum f.sp. cubense (Foc) in the soil, and the FWB severity. Banana plants (Musa subgroup ABB) were grown under greenhouse conditions in soil with ammonium or nitrate supplemented at five N rates, and with or without inoculation with Foc. The growth of non-inoculated plants was positively correlated with the N rate. In bananas inoculated with Foc, disease severity increased with the N rate, resulting in the Foc-inoculated plant growth being greatest at intermediate N rates. The abundance of Foc in the soil was weakly related to the treatment conditions and was a poor predictor of disease severity. Fungal diversity was consistently affected by Foc inoculation, while bacterial diversity was associated with changes in soil pH resulting from N addition, in particular ammonium. N rate altered the expression of host metabolic pathways associated with carbon fixation, energy usage, amino acid metabolism, and importantly stress response signaling, irrespective of inoculation or N form. Furthermore, in diseased plants, Pathogenesis-related protein 1, a key endpoint for biotic stress response and the salicylic acid defense response to biotrophic pathogens, was negatively correlated with the rate of ammonium fertilizer but not nitrate. As expected, inoculation with Foc altered the expression of a wide range of processes in the banana plant including those of defense and growth. In summary, our results indicate that the severity of FWB was negatively associated with host defenses, which was influenced by N application (particularly ammonium), and shifts in microbial communities associated with ammonium-induced acidification.
Collapse
Affiliation(s)
- Ryan Orr
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Daniel J. Browne
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Martha Cooper
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Henry W. G. Birt
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, Australia
- Department of Plant Science, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | | | | | - Paul N. Nelson
- College of Science and Engineering, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
11
|
Browne DJ, Liang F, Gartlan KH, Harris PNA, Hill GR, Corrie SR, Markey KA. OUP accepted manuscript. Lab Med 2022; 53:459-464. [PMID: 35460243 PMCID: PMC9435484 DOI: 10.1093/labmed/lmac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Objective To show the high analytical specificity of our multiplex microsphere polymerase chain reaction (mmPCR) method, which offers the simultaneous detection of both general (eg, Gram type) and specific (eg, Pseudomonas species) clinically relevant genetic targets in a single modular multiplex reaction. Materials and Methods Isolated gDNA of 16S/rRNA Sanger-sequenced and Basic Local Alignment Tool–identified bacterial and fungal isolates were selectively amplified in a custom 10-plex Luminex MagPlex-TAG microsphere-based mmPCR assay. The signal/noise ratio for each reaction was calculated from flow cytometry standard data collected on a BD LSR Fortessa II flow cytometer. Data were normalized to the no-template negative control and the signal maximum. The analytical specificity of the assay was compared to single-plex SYBR chemistry quantitative PCR. Results Both general and specific primer sets were functional in the 10-plex mmPCR. The general Gram typing and pan-fungal primers correctly identified all bacterial and fungal isolates, respectively. The species-specific and antibiotic resistance–specific primers correctly identified the species- and resistance-carrying isolates, respectively. Low-level cross-reactive signals were present in some reactions with high signal/noise primer ratios. Conclusion We found that mmPCR can simultaneously detect specific and general clinically relevant genetic targets in multiplex. These results serve as a proof-of-concept advance that highlights the potential of high multiplex mmPCR diagnostics in clinical practice. Further development of specimen-specific DNA extraction techniques is required for sensitivity testing.
Collapse
Affiliation(s)
- Daniel J Browne
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns,Australia
| | - Fang Liang
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
| | - Patrick N A Harris
- Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - Geoffrey R Hill
- Division of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Division of Hematopoietic Transplantation, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Simon R Corrie
- Department of Chemical Engineering, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash and QLD Nodes, Monash University, Clayton, Australia
| | | |
Collapse
|
12
|
Identification of Plasmodium falciparum-specific protein PIESP2 as a novel virulence factor related to cerebral malaria. Int J Biol Macromol 2021; 177:535-547. [PMID: 33631268 DOI: 10.1016/j.ijbiomac.2021.02.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023]
Abstract
Cerebral malaria (CM) is the most severe complication caused by Plasmodium falciparum infection. The pathophysiological changes caused by parasite virulence factors and the human immune response to parasites contribute to CM. To date, very few parasite virulence proteins have been found to participate in CM. Here, we employed comparative genomics analysis and identified parasite-infected erythrocyte specific protein 2 (PIESP2) to be a CM-related protein. We conducted further experimental investigations and found that PIESP2 is an immunogenic protein. PIESP2 expression begins at the early trophozoite stage and progressively increases with parasite development. Although PIESP2 proteins mainly reside within infected red blood cells (IRBCs), some of them are present on the IRBC surface at the pigmented stage. Moreover, blockage of PIESP2 by antiserum apparently inhibited the adhesion of IRBCs to brain microvascular endothelial cells (BMECs). Western blot analysis detected the binding of PIESP2 to BMECs. Transcriptional analysis revealed that the binding of PIESP2 to BMECs can increase the expression of genes involved in the inflammatory response but decrease the expression of genes related to the anchoring junction. Overall, PIESP2 might be associated with CM by mediating the sequestration of IRBCs, inducing the inflammation response, and impairing the integrity of blood-brain barrier.
Collapse
|