1
|
Xu K, Zhao X, He Y, Guo H, Zhang Y. Stem cell-derived exosomes for ischemic stroke: a conventional and network meta-analysis based on animal models. Front Pharmacol 2024; 15:1481617. [PMID: 39508049 PMCID: PMC11537945 DOI: 10.3389/fphar.2024.1481617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024] Open
Abstract
Objective We aimed to evaluate the efficacy of stem cell-derived exosomes for treating ischemic stroke and to screen for the optimal administration strategy. Methods We searched PubMed, Web of Science, Embase, Cochrane Library, and Scopus databases for relevant studies published from their inception to 31 December 2023. Conventional and network meta-analyses of the routes of administration, types, and immune compatibility of stem cell-derived exosomes were performed using the cerebral infarct volume (%) and modified neurological severity score (mNSS) as outcome indicators. Results A total of 38 randomized controlled animal experiments were included. Conventional meta-analysis showed that compared with the negative control group: intravenous administration significantly reduced the cerebral infarct volume (%) and mNSS; intranasal administration significantly reduced the cerebral infarct volume (%); and intracerebral administration significantly reduced the mNSS. Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos), bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos), dental pulp stem cell-derived exosomes (DPSC-Exos) and neural stem cell-derived exosomes (NSC-Exos) significantly reduced the cerebral infarct volume (%) and mNSS; Endothelial progenitor cell-derived exosomes (EPC-Exos), embryonic stem cell-derived exosomes (ESC-Exos), induced pluripotent stem cell-derived exosomes (iPSC-Exos) and neural progenitor cell-derived exosomes (NPC-Exos) significantly reduced the cerebral infarct volume (%); Umbilical cord mesenchymal stem cell-derived exosomes (UCMSC-Exos) significantly reduced the mNSS; and there was no significant difference between urogenital stem cell-derived exosomes (USC-Exos) and negative controls. Engineered modified exosomes had better efficacy than unmodified exosomes. Both allogeneic and xenogeneic stem cell-derived exosomes significantly reduced the cerebral infarct volume (%) and the mNSS. The network meta-analysis showed that intravenous administration was the best route of administration for reducing the cerebral infarct volume (%) and mNSS. Among the 10 types of stem cell-derived exosomes that were administered intravenously, BMSC-Exos were the best type for reducing the cerebral infarct volume (%) and the mNSS. Allogeneic exosomes had the best efficacy in reducing the cerebral infarct volume (%), whereas xenogeneic stem cell-derived exosomes had the best efficacy in reducing the mNSS. Conclusion This meta-analysis, by integrating the available evidence, revealed that intravenous administration is the best route of administration, that BMSC-Exos are the best exosome type, that allogeneic exosomes have the best efficacy in reducing the cerebral infarct volume (%), and that xenogeneic exosomes have the best efficacy in reducing mNSS, which can provide options for preclinical studies. In the future, more high-quality randomized controlled animal experiments, especially direct comparative evidence, are needed to determine the optimal administration strategy for stem cell-derived exosomes for ischemic stroke. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42024497333, PROSPERO, CRD42024497333.
Collapse
Affiliation(s)
- Kangli Xu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaohui Zhao
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuxuan He
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hongxin Guo
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
3
|
Parsonidis P, Mamagkaki A, Papasotiriou I. CTLs, NK cells and NK-derived EVs against breast cancer. Hum Immunol 2023:S0198-8859(23)00042-3. [PMID: 36925436 DOI: 10.1016/j.humimm.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Patients with advanced stage breast cancer need novel therapies. New potential treatments have been developed, such as adoptive cellular therapies and alternative cell-free immunotherapies. The goal of this study was to assess the cytotoxicity of three of the patient-derived immune components, CTLs, NK cells and NK-derived EVs, and evaluate the potential for the development of novel therapy against breast cancer. CTLs were activated against MUC-1 antigen. The in vitro cytotoxic activity of three components was assessed with flow cytometry and in vivo study revealed the efficacy of adoptive cell therapy. Overall, CTLs exhibited the highest cytotoxicity against spheroids of MCF7 breast adenocarcinoma, reaching in all cases higher than double the percentage of NK cells' cytotoxicity. NK-derived EVs exhibited the lowest effect against MCF7 spheroids comparing to the two cell populations. MUC-1 specific CTLs were evaluated with adoptive cell therapy mice study and appeared to be well tolerable and moderately efficacious. More studies need to be performed with CTLs to evaluate safety and efficacy in order to assess their clinical potential, while NK cells and NK-derived EVs are promising candidates that require more experiments to enhance their cytotoxicity.
Collapse
|
4
|
Mariotti J, Magri F, Giordano L, De Philippis C, Sarina B, Mannina D, Taurino D, Santoro A, Bramanti S. EASIX predicts non-relapse mortality after haploidentical transplantation with post-transplant cyclophosphamide. Bone Marrow Transplant 2023; 58:247-256. [PMID: 36414698 DOI: 10.1038/s41409-022-01874-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Endothelial Activation and Stress Index (EASIX) is a prognostic score reflecting endothelial damage. It can identify cohorts of patients at higher risk of non-relapse mortality (NRM) after allogeneic stem cell transplantation (SCT) from a matched-related or -unrelated donor. No data are available in the setting of haploidentical-SCT with post-transplant cyclophosphamide (PT-Cy). We retrospectively analyzed the role of EASIX score in a cohort of 266 patients receiving Haplo-SCT with PT-Cy at our center. By a decision-tree model, 1-year NRM was 16% vs. 29% and overall survival was 59% vs. 32%, respectively, for patients with a pre-transplant EASIX (EASIX-PRE) <0.8 vs. ≥0.8 (p < 0.001). By multivariable analysis, EASIX-PRE was an independent predictor of NRM (hazard ratio [HR] 2.43, p < 0.001) and overall survival (HR: 1.64, p = 0.011). EASIX-PRE did not predict patients at higher risk of developing acute graft-versus-host disease (GVHD) but was an independent predictor of 1-year NRM (3.2 cutoff, HR 6.61, p = 0.002; <3.2 vs. ≥3.2: 10% vs. 56%, p < 0.001) in patients developing acute GVHD. EASIX score can also represent an important tool to predict mortality in the setting of Haplo-SCT with PT-Cy. It may help to make therapeutic decisions both before the transplant and at the onset of acute GVHD.
Collapse
Affiliation(s)
- Jacopo Mariotti
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy.
| | - Filippo Magri
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Laura Giordano
- Biostatistics Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Chiara De Philippis
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Barbara Sarina
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Daniele Mannina
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Daniela Taurino
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Armando Santoro
- Biostatistics Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| | - Stefania Bramanti
- BMT and Cell Therapy Unit, Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, Rozzano, Italy
| |
Collapse
|
5
|
Lia G, Di Vito C, Bruno S, Tapparo M, Brunello L, Santoro A, Mariotti J, Bramanti S, Zaghi E, Calvi M, Comba L, Fascì M, Giaccone L, Camussi G, Boyle EM, Castagna L, Evangelista A, Mavilio D, Bruno B. Extracellular Vesicles as Biomarkers of Acute Graft-vs.-Host Disease After Haploidentical Stem Cell Transplantation and Post-Transplant Cyclophosphamide. Front Immunol 2022; 12:816231. [PMID: 35145514 PMCID: PMC8821147 DOI: 10.3389/fimmu.2021.816231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Even with high-dose post-transplant cyclophosphamide (PT-Cy) which was initially introduced for graft-versus-host disease (GvHD) prevention in the setting of HLA-haploidentical transplantation, both acute and chronic GvHDs remain a major clinical challenge. Despite improvements in the understanding of the pathogenesis of both acute and chronic GvHDs, reliable biomarkers that predict their onset have yet to be identified. We recently studied the potential correlation between extracellular vesicles (EVs) and the onset of acute (a)GvHD in transplant recipients from related and unrelated donors. In the present study, we further investigated the role of the expression profile of membrane proteins and their microRNA (miRNA) cargo (miRNA100, miRNA155, and miRNA194) in predicting the onset of aGvHD in haploidentical transplant recipients with PT-Cy. Thirty-two consecutive patients were included. We evaluated the expression profile of EVs, by flow cytometry, and their miRNA cargo, by real-time PCR, at baseline, prior, and at different time points following transplant. Using logistic regression and Cox proportional hazard models, a significant association between expression profiles of antigens such as CD146, CD31, CD140a, CD120a, CD26, CD144, and CD30 on EVs, and their miRNA cargo with the onset of aGvHD was observed. Moreover, we also investigated a potential correlation between EV expression profile and cargo with plasma biomarkers (e.g., ST2, sTNFR1, and REG3a) that had been associated with aGVHD previously. This analysis showed that the combination of CD146, sTNFR1, and miR100 or miR194 strongly correlated with the onset of aGvHD (AUROC >0.975). A large prospective multicenter study is currently in progress to validate our findings.
Collapse
Affiliation(s)
- Giuseppe Lia
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Stefania Bruno
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Tapparo
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lucia Brunello
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Armando Santoro
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Bramanti
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Michela Calvi
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Lorenzo Comba
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Martina Fascì
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Division of Hematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Eileen M. Boyle
- Division of Hematology and Medical Oncology, New York University Grossman School of Medicine, Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
| | - Luca Castagna
- Bone Marrow Transplant Unit, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Andrea Evangelista
- Clinical Epidemiology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Division of Hematology and Medical Oncology, New York University Grossman School of Medicine, Perlmutter Cancer Center, New York University (NYU) Langone Health, New York, NY, United States
- *Correspondence: Benedetto Bruno,
| |
Collapse
|
6
|
St-Denis-Bissonnette F, Khoury R, Mediratta K, El-Sahli S, Wang L, Lavoie JR. Applications of Extracellular Vesicles in Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:451. [PMID: 35053616 PMCID: PMC8773485 DOI: 10.3390/cancers14020451] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and refractory subtype of breast cancer, often occurring in younger patients with poor clinical prognosis. Given the current lack of specific targets for effective intervention, the development of better treatment strategies remains an unmet medical need. Over the last decade, the field of extracellular vesicles (EVs) has grown tremendously, offering immense potential for clinical diagnosis/prognosis and therapeutic applications. While TNBC-EVs have been shown to play an important role in tumorigenesis, chemoresistance and metastasis, they could be repurposed as potential biomarkers for TNBC diagnosis and prognosis. Furthermore, EVs from various cell types can be utilized as nanoscale drug delivery systems (NDDS) for TNBC treatment. Remarkably, EVs generated from specific immune cell subsets have been shown to delay solid tumour growth and reduce tumour burden, suggesting a new immunotherapy approach for TNBC. Intrinsically, EVs can cross the blood-brain barrier (BBB), which holds great potential to treat the brain metastases diagnosed in one third of TNBC patients that remains a substantial clinical challenge. In this review, we present the most recent applications of EVs in TNBC as diagnostic/prognostic biomarkers, nanoscale drug delivery systems and immunotherapeutic agents, as well as discuss the associated challenges and future directions of EVs in cancer immunotherapy.
Collapse
Affiliation(s)
- Frederic St-Denis-Bissonnette
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Rachil Khoury
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Jessie R. Lavoie
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (F.S.-D.-B.); (R.K.); (K.M.); (S.E.-S.)
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
7
|
Strojny W, Kwiecińska K, Hałubiec P, Kowalczyk W, Miklusiak K, Łazarczyk A, Skoczeń S. Analysis of Peripheral Blood Mononuclear Cells Gene Expression Highlights the Role of Extracellular Vesicles in the Immune Response following Hematopoietic Stem Cell Transplantation in Children. Genes (Basel) 2021; 12:genes12122008. [PMID: 34946957 PMCID: PMC8701260 DOI: 10.3390/genes12122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an effective treatment method used in many neoplastic and non-neoplastic diseases that affect the bone marrow, blood cells, and immune system. The procedure is associated with a risk of adverse events, mostly related to the immune response after transplantation. The aim of our research was to identify genes, processes and cellular entities involved in the variety of changes occurring after allogeneic HSCT in children by performing a whole genome expression assessment together with pathway enrichment analysis. We conducted a prospective study of 27 patients (aged 1.5–18 years) qualified for allogenic HSCT. Blood samples were obtained before HSCT and 6 months after the procedure. Microarrays were used to analyze gene expressions in peripheral blood mononuclear cells. This was followed by Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein–protein interaction (PPI) analysis using bioinformatic tools. We found 139 differentially expressed genes (DEGs) of which 91 were upregulated and 48 were downregulated. “Blood microparticle”, “extracellular exosome”, “B-cell receptor signaling pathway”, “complement activation” and “antigen binding” were among GO terms found to be significantly enriched. The PPI analysis identified 16 hub genes. Our results provide insight into a broad spectrum of epigenetic changes that occur after HSCT. In particular, they further highlight the importance of extracellular vesicles (exosomes and microparticles) in the post-HSCT immune response.
Collapse
Affiliation(s)
- Wojciech Strojny
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.S.); (K.K.)
| | - Kinga Kwiecińska
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.S.); (K.K.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Przemysław Hałubiec
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (W.K.); (K.M.); (A.Ł.)
| | - Wojciech Kowalczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (W.K.); (K.M.); (A.Ł.)
| | - Karol Miklusiak
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (W.K.); (K.M.); (A.Ł.)
| | - Agnieszka Łazarczyk
- Student Scientific Group of Pediatric Oncology and Hematology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.H.); (W.K.); (K.M.); (A.Ł.)
| | - Szymon Skoczeń
- Department of Pediatric Oncology and Hematology, University Children’s Hospital of Krakow, 30-663 Krakow, Poland; (W.S.); (K.K.)
- Department of Pediatric Oncology and Hematology, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland
- Correspondence: ; Tel.: +48-503523785
| |
Collapse
|
8
|
Tokarz-Deptuła B, Palma J, Baraniecki Ł, Stosik M, Kołacz R, Deptuła W. What Function Do Platelets Play in Inflammation and Bacterial and Viral Infections? Front Immunol 2021; 12:770436. [PMID: 34970260 PMCID: PMC8713818 DOI: 10.3389/fimmu.2021.770436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The article presents the function of platelets in inflammation as well as in bacterial and viral infections, which are the result of their reaction with the endovascular environment, including cells of damaged vascular endothelium and cells of the immune system. This role of platelets is conditioned by biologically active substances present in their granules and in their specific structures - EV (extracellular vesicles).
Collapse
Affiliation(s)
| | - Joanna Palma
- Department of Biochemical Sciences, Pomeranian Medical University, Szczecin, Poland
| | | | - Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | - Roman Kołacz
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
9
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
10
|
Sun X, He Q, Yang J, Wang A, Zhang F, Qiu H, Zhou K, Wang P, Ding X, Yuan X, Li H, Zhang Y, Song X. Preventive and Therapeutic Effects of a Novel JAK Inhibitor SHR0302 in Acute Graft-Versus-Host Disease. Cell Transplant 2021; 30:9636897211033778. [PMID: 34269100 PMCID: PMC8287347 DOI: 10.1177/09636897211033778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is one of the most common complications
of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Janus kinase
(JAK) inhibitors are considered as reliable and promising agents for patients
with aGVHD. The prophylactic and therapeutic effects of SHR0302, a novel JAK
inhibitor, were evaluated in aGVHD mouse models. The overall survival (OS),
progression-free survival (PFS), bodyweight of mice, GVHD scores were observed
and recorded. The bone marrow and spleen samples of diseased model mice or
peripheral blood of patients were analyzed. SHR0302 could prevent and reverse
aGVHD in mouse models with preserving graft-versus-tumor effect. Functionally,
SHR0302 improved the OS and PFS, restored bodyweight, reduced GVHD scores, and
reduced immune cells infiltrated in target tissues. SHR0302 treatment also
enhanced the hematopoietic reconstruction compared to the control group.
Mechanistically, our results suggested that SHR0302 could inhibit the activation
of T cells and modulate the differentiation of helper T (Th) cells by reducing
Th1 and increasing regulatory T (Treg) cells. In addition, SHR0302 decreased the
expression of chemokine receptor CXCR3 on donor T cells and the secretion of
cytokines or chemokines including interleukin (IL)-6, interferon γ (IFN-γ),
tumor necrosis factor α (TNF-α), CXCL10, etc. thereby destroying the
IFN-γ/CXCR3/CXCL10 axis which promotes the progression of GVHD. Besides, SHR0302
decreased the phosphorylation of JAK and its downstream STATs, AKT and ERK1/2,
which ultimately regulated the activation, proliferation, and differentiation of
lymphocytes. Experiments on primary cells from aGVHD patients also confirmed the
results. In summary, our results indicated that JAK inhibitor SHR0302 might be
used as a novel agent for patients with aGVHD.
Collapse
Affiliation(s)
- Xi Sun
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiaomei He
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Andi Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Pengran Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodan Ding
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiujie Yuan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huajun Li
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| |
Collapse
|
11
|
Role of Extracellular Vesicles in Placental Inflammation and Local Immune Balance. Mediators Inflamm 2021; 2021:5558048. [PMID: 34239366 PMCID: PMC8235987 DOI: 10.1155/2021/5558048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
Background Pregnancy maintenance depends on the formation of normal placentas accompanied by trophoblast invasion and vascular remodeling. Various types of cells, such as trophoblasts, endothelial cells, immune cells, mesenchymal stem cells (MSCs), and adipocytes, mediate cell-to-cell interactions through soluble factors to maintain normal placental development. Extracellular vesicles (EVs) are diverse nanosized to microsized membrane-bound particles released from various cells. EVs contain tens to thousands of different RNA, proteins, small molecules, DNA fragments, and bioactive lipids. EV-derived microRNAs (miRNAs) and proteins regulate inflammation and trophoblast invasion in the placental microenvironment. Maternal-fetal communication through EV can regulate the key signaling pathways involved in pregnancy maintenance, from implantation to immune regulation. Therefore, EVs and the encapsulating factors play important roles in pregnancy, some of which might be potential biomarkers. Conclusion In this review, we have summarized published studies about the EVs in the placentation and pregnancy-related diseases. By summarizing the role of EVs and their delivering active molecules in pregnancy-related diseases, it provides novel insight into the diagnosis and treatment of diseases.
Collapse
|
12
|
Crippa S, Santi L, Berti M, De Ponti G, Bernardo ME. Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 2021; 9:663316. [PMID: 34017834 PMCID: PMC8129582 DOI: 10.3389/fcell.2021.663316] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Overall, the human organism requires the production of ∼1 trillion new blood cells per day. Such goal is achieved via hematopoiesis occurring within the bone marrow (BM) under the tight regulation of hematopoietic stem and progenitor cell (HSPC) homeostasis made by the BM microenvironment. The BM niche is defined by the close interactions of HSPCs and non-hematopoietic cells of different origin, which control the maintenance of HSPCs and orchestrate hematopoiesis in response to the body’s requirements. The activity of the BM niche is regulated by specific signaling pathways in physiological conditions and in case of stress, including the one induced by the HSPC transplantation (HSCT) procedures. HSCT is the curative option for several hematological and non-hematological diseases, despite being associated with early and late complications, mainly due to a low level of HSPC engraftment, impaired hematopoietic recovery, immune-mediated graft rejection, and graft-versus-host disease (GvHD) in case of allogenic transplant. Mesenchymal stromal cells (MSCs) are key elements of the BM niche, regulating HSPC homeostasis by direct contact and secreting several paracrine factors. In this review, we will explore the several mechanisms through which MSCs impact on the supportive activity of the BM niche and regulate HSPC homeostasis. We will further discuss how the growing understanding of such mechanisms have impacted, under a clinical point of view, on the transplantation field. In more recent years, these results have instructed the design of clinical trials to ameliorate the outcome of HSCT, especially in the allogenic setting, and when low doses of HSPCs were available for transplantation.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Centro Ricerca M. Tettamanti, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute San Raffaele, Faculty of Medicine, Milan, Italy
| |
Collapse
|
13
|
Giaccone L, Faraci DG, Butera S, Lia G, Di Vito C, Gabrielli G, Cerrano M, Mariotti J, Dellacasa C, Felicetti F, Brignardello E, Mavilio D, Bruno B. Biomarkers for acute and chronic graft versus host disease: state of the art. Expert Rev Hematol 2020; 14:79-96. [PMID: 33297779 DOI: 10.1080/17474086.2021.1860001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Despite significant advances in treatment and prevention, graft-versus-host disease (GVHD) still represents the main cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation. Thus, considerable research efforts have been made to find and validate reliable biomarkers for diagnosis, prognosis, and risk stratification of GVHD. AREAS COVERED In this review the most recent evidences on different types of biomarkers studied for GVHD, such as genetic, plasmatic, cellular markers, and those associated with microbiome, were summarized. A comprehensive search of peer-review literature was performed in PubMed including meta-analysis, preclinical and clinical trials, using the terms: cellular and plasma biomarkers, graft-versus-host disease, cytokines, and allogeneic hematopoietic stem cell transplantation. EXPERT OPINION In the near future, several validated biomarkers will be available to help clinicians in the diagnosis of GVHD, the identification of patients at high risk of GVHD development and in patients' stratification according to its severity. Then, immunosuppressive treatment could be tailored to each patient's real needs. However, more efforts are needed to achieve this goal. Although most of the proposed biomarkers currently lack validation with large-scale clinical data, their study led to improved knowledge of the biological basis of GVHD, and ultimately to implementation of GHVD treatment.
Collapse
Affiliation(s)
- Luisa Giaccone
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Danilo Giuseppe Faraci
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Sara Butera
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Giuseppe Lia
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Giulia Gabrielli
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Marco Cerrano
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| | - Jacopo Mariotti
- Bone Marrow Transplant Unit, Humanitas Clinical and Research Center, IRCCS , Rozzano, Italy
| | - Chiara Dellacasa
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy
| | - Francesco Felicetti
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Enrico Brignardello
- Transition Unit for Childhood Cancer Survivors, A.O.U. Città Della Salute E Della Scienza Di Torino , University of Torino , Torino, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine (Biometra), University of Milan , Milan, Italy
| | - Benedetto Bruno
- Department of Oncology/Hematology, Stem Cell Transplant Program, A.O.U. Città Della Salute E Della Scienza Di Torino, Presidio Molinette , Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino , Torino, Italy
| |
Collapse
|
14
|
Gupta M, Tieu A, Slobodian M, Shorr R, Burger D, Lalu MM, Allan DS. Preclinical Studies of MSC-Derived Extracellular Vesicles to Treat or Prevent Graft Versus Host Disease: a Systematic Review of the Literature. Stem Cell Rev Rep 2020; 17:332-340. [PMID: 33159616 PMCID: PMC7648545 DOI: 10.1007/s12015-020-10058-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Treating and preventing graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplant (HCT) remains a significant challenge. The use of mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) appears promising and a systematic review of preclinical studies is needed to accelerate the design of translational studies. METHODS We identified 4 eligible studies from a systematic review performed on December 1, 2018. In brief, eligible studies included the treatment or prevention of GVHD in animal models and the use of MSC-EVs. Study design and outcome data were extracted and reporting was evaluated using the SYRCLE tool to identify potential bias. RESULTS Two studies assessed the efficacy of MSC-EVs in treatment of GVHD and 2 studies address prevention. Mice treated with MSC-EVs showed improved median survival, GVHD clinical scores and histology scores as compared to untreated mice with GVHD. Prophylactic treatment with MSC-EVs attenuated GVHD severity and improved median survival as compared to no treatment or saline. CONCLUSION Our systematic review provides important insight regarding the potential of MSC-EVs to treat or prevent GVHD. Although few studies were identified, improved survival and attenuated histologic findings of GVHD were observed in mice after MSC-EV administration for the treatment and prevention of GVHD. Dosing of EVs and route of administration remain inconsistent, however, and scalability of EV isolation for clinical studies remains a challenge. Standardized outcome reporting is needed to pool results for metanalysis. Graphical abstract.
Collapse
Affiliation(s)
- Manika Gupta
- Department of Medicine (Blood and Marrow Transplantation), The Ottawa Hospital, 501 Smyth Rd, Box 704, Ottawa, ON, K1H 8L6, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alvin Tieu
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mitchell Slobodian
- Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Risa Shorr
- Library Services, The Ottawa Hospital, Ottawa, ON, Canada
| | - Dylan Burger
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Chronic Disease Programs, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Manoj M Lalu
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David S Allan
- Department of Medicine (Blood and Marrow Transplantation), The Ottawa Hospital, 501 Smyth Rd, Box 704, Ottawa, ON, K1H 8L6, Canada. .,Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. .,Clinical Epidemiology, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Preciado S, Muntión S, Sánchez-Guijo F. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles. Stem Cells 2020; 39:26-32. [PMID: 32985054 DOI: 10.1002/stem.3278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
The therapeutic effects of mesenchymal stromal cells (MSCs) in graft failure or poor graft function after allogenic hematopoietic stem cell transplantation (HSCT) are currently undergoing clinical evaluation. MSCs exert their functions, at least partially, through the secretion of extracellular vesicles (MSC-EVs). The available information on the biological potential of MSC-EVs to improve hematopoietic function, both in in vitro studies and in reported preclinical models, focusing on the possible mechanisms of these effects are summarized in the current review. The potential advantages of EVs over MSCs are also discussed, as well as the limitations and uncertainties in terms of isolation, characterization, mechanism of action in this setting, and industrial scalability that should be addressed for their potential clinical application.
Collapse
Affiliation(s)
- Silvia Preciado
- Área de Terapia Celular y Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel and CIBERONC, ISCIII, Madrid, Spain
| | - Sandra Muntión
- Área de Terapia Celular y Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel and CIBERONC, ISCIII, Madrid, Spain
| | - Fermín Sánchez-Guijo
- Área de Terapia Celular y Servicio de Hematología, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain.,Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Salamanca, Spain.,RETIC TerCel and CIBERONC, ISCIII, Madrid, Spain.,Centro de Investigación del Cáncer y Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
16
|
Cerrano M, Castella B, Lia G, Olivi M, Faraci DG, Butera S, Martella F, Scaldaferri M, Cattel F, Boccadoro M, Massaia M, Ferrero D, Bruno B, Giaccone L. Immunomodulatory and clinical effects of daratumumab in T-cell acute lymphoblastic leukaemia. Br J Haematol 2020; 191:e28-e32. [PMID: 32686081 DOI: 10.1111/bjh.16960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marco Cerrano
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Giuseppe Lia
- Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Olivi
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Danilo G Faraci
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sara Butera
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Martella
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matilde Scaldaferri
- SC Farmacia, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Francesco Cattel
- SC Farmacia, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy
| | - Mario Boccadoro
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Dario Ferrero
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Benedetto Bruno
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Division of Haematology, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Presidio Molinette, Torino, Italy.,Division of Haematology, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|