1
|
Tang P, Shen X, Gao J, Zhang J, Feng Y, Zhang J, Huang Z, Wang X. Distinct characteristics of BTLA/HVEM axis expression on Tregs and its impact on the expansion and attributes of Tregs in patients with active pulmonary tuberculosis. Front Cell Infect Microbiol 2024; 14:1437207. [PMID: 39386167 PMCID: PMC11461443 DOI: 10.3389/fcimb.2024.1437207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Pulmonary tuberculosis (PTB) remains one of the deadliest infectious diseases. Understanding PTB immunity is of potential value for exploring immunotherapy for treating chemotherapy-resistant PTB. CD4+CD25+Foxp3+ regulatory T cells (Tregs) are key players that impair immune responses to Mycobacteria tuberculosis (MTB). Currently, the intrinsic factors governing Treg expansion and influencing the immunosuppressive attributes of Tregs in PTB patients are far from clear. Methods Here, we employed flow cytometry to determine the frequency of Tregs and the expression of B and T lymphocyte attenuator (BTLA) and its ligand, herpesvirus entry mediator (HVEM), on Tregs in patients with active PTB. Furthermore, the expression of conventional T cells and of programmed death-ligand 1 (PD-L1) and programmed death-1 (PD-1) on Tregs in patients with active PTB was determined. We then examined the characteristics of BTLA/HVEM expression and its correlation with Treg frequency and PD-L1 and PD-1 expression on Tregs in PTB patients. Results The frequency of Tregs was increased in PTB patients and it had a relevance to PTB progression. Intriguingly, the axis of cosignal molecules, BTLA and HVEM, were both downregulated on the Tregs of PTB patients compared with healthy controls (HCs), which was the opposite of their upregulation on conventional T cells. Unexpectedly, their expression levels were positively correlated with the frequency of Tregs, respectively. These seemingly contradictory results may be interpreted as follows: the downregulation of BTLA and HVEM may alleviate BTLA/HVEM cis-interaction-mediated coinhibitory signals pressing on naïve Tregs, helping their activation, while the BTLA/HVEM axis on effector Tregs induces a costimulatory signal, promoting their expansion. Certainly, the mechanism underlying such complex effects remains to be explored. Additionally, PD-L1 and PD-1, regarded as two of the markers characterizing the immunosuppressive attributes and differentiation potential of Tregs, were upregulated on the Tregs of PTB patients. Further analysis revealed that the expression levels of BTLA and HVEM were positively correlated with the frequency of PD-1+Tregs and PD-L1+Tregs, respectively. Conclusion Our study illuminated distinct characteristics of BTLA/HVEM axis expression on Tregs and uncovered its impact on the expansion and attributes of Tregs in patients with active PTB. Therefore, blockade of the BTLA/HVEM axis may be a promising potential pathway to reduce Treg expansion for the improvement of anti-MTB immune responses.
Collapse
Affiliation(s)
- Peijun Tang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Xinghua Shen
- Department of Critical Care Medicine, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Jianling Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Zhang
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Yanjun Feng
- Department of Tuberculosis, The Fifth People’s Hospital of Suzhou, The Affiliated Infectious Disease Hospital of Soochow University, Suzhou, China
| | - Ji Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Suzhou University, Suzhou, China
| | - Ziyi Huang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuefeng Wang
- Department of Biochemistry and Molecular Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Hu X. The role of the BTLA-HVEM complex in the pathogenesis of breast cancer. Breast Cancer 2024; 31:358-370. [PMID: 38483699 DOI: 10.1007/s12282-024-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/17/2024] [Indexed: 04/26/2024]
Abstract
Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.
Collapse
Affiliation(s)
- Xue Hu
- College of Health Industry, Changchun University of Architecture and Civil Engineering, Changchun, 130000, China.
| |
Collapse
|
3
|
Hazrati A, Malekpour K, Khorramdelazad H, Rajaei S, Hashemi SM. Therapeutic and immunomodulatory potentials of mesenchymal stromal/stem cells and immune checkpoints related molecules. Biomark Res 2024; 12:35. [PMID: 38515166 PMCID: PMC10958918 DOI: 10.1186/s40364-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are used in many studies due to their therapeutic potential, including their differentiative ability and immunomodulatory properties. These cells perform their therapeutic functions by using various mechanisms, such as the production of anti-inflammatory cytokines, growth factors, direct cell-to-cell contact, extracellular vesicles (EVs) production, and mitochondrial transfer. However, mechanisms related to immune checkpoints (ICPs) and their effect on the immunomodulatory ability of MSCs are less discussed. The main function of ICPs is to prevent the initiation of unwanted responses and to regulate the immune system responses to maintain the homeostasis of these responses. ICPs are produced by various types of immune system regulatory cells, and defects in their expression and function may be associated with excessive responses that can ultimately lead to autoimmunity. Also, by expressing different types of ICPs and their ligands (ICPLs), tumor cells prevent the formation and durability of immune responses, which leads to tumors' immune escape. ICPs and ICPLs can be produced by MSCs and affect immune cell responses both through their secretion into the microenvironment or direct cell-to-cell interaction. Pre-treatment of MSCs in inflammatory conditions leads to an increase in their therapeutic potential. In addition to the effect that inflammatory environments have on the production of anti-inflammatory cytokines by MSCs, they can increase the expression of various types of ICPLs. In this review, we discuss different types of ICPLs and ICPs expressed by MSCs and their effect on their immunomodulatory and therapeutic potential.
Collapse
Affiliation(s)
- Ali Hazrati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kosar Malekpour
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Andrzejczak A, Karabon L. BTLA biology in cancer: from bench discoveries to clinical potentials. Biomark Res 2024; 12:8. [PMID: 38233898 PMCID: PMC10795259 DOI: 10.1186/s40364-024-00556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 01/19/2024] Open
Abstract
Immune checkpoints play a critical role in maintaining the delicate balance of immune activation in order to prevent potential harm caused by excessive activation, autoimmunity, or tissue damage. B and T lymphocyte attenuator (BTLA) is one of crucial checkpoint, regulating stimulatory and inhibitory signals in immune responses. Its interaction with the herpes virus entry mediator (HVEM) plays an essential role in negatively regulating immune responses, thereby preserving immune homeostasis. In cancer, abnormal cells evade immune surveillance by exploiting checkpoints like BTLA. Upregulated BTLA expression is linked to impaired anti-tumor immunity and unfavorable disease outcomes. In preclinical studies, BTLA-targeted therapies have shown improved treatment outcomes and enhanced antitumor immunity. This review aims to provide an in-depth understanding of BTLA's biology, its role in various cancers, and its potential as a prognostic factor. Additionally, it explores the latest research on BTLA blockade in cancer immunotherapy, offering hope for more effective cancer treatments.
Collapse
Affiliation(s)
- Anna Andrzejczak
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lidia Karabon
- Laboratory of Genetics and Epigenetics of Human Diseases, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
5
|
Wang C, Zou RQ, He GZ. Progress in mechanism-based diagnosis and treatment of tuberculosis comorbid with tumor. Front Immunol 2024; 15:1344821. [PMID: 38298194 PMCID: PMC10827852 DOI: 10.3389/fimmu.2024.1344821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Tuberculosis (TB) and tumor, with similarities in immune response and pathogenesis, are diseases that are prone to produce autoimmune stress response to the host immune system. With a symbiotic relationship between the two, TB can facilitate the occurrence and development of tumors, while tumor causes TB reactivation. In this review, we systematically sorted out the incidence trends and influencing factors of TB and tumor, focusing on the potential pathogenesis of TB and tumor, to provide a pathway for the co-pathogenesis of TB comorbid with tumor (TCWT). Based on this, we summarized the latest progress in the diagnosis and treatment of TCWT, and provided ideas for further exploration of clinical trials and new drug development of TCWT.
Collapse
Affiliation(s)
- Chuan Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Rong-Qi Zou
- Vice Director of Center of Sports Injury Prevention, Treatment and Rehabilitation China National Institute of Sports Medicine A2 Pangmen, Beijing, China
| | - Guo-Zhong He
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Chu J, Liu W, Hu X, Zhang H, Jiang J. P2RY13 is a prognostic biomarker and associated with immune infiltrates in renal clear cell carcinoma: A comprehensive bioinformatic study. Health Sci Rep 2023; 6:e1646. [PMID: 38045624 PMCID: PMC10691167 DOI: 10.1002/hsr2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023] Open
Abstract
Background and Aims Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of cancer with a high incidence globally. This study aimed to investigate the role of P2RY13 in the progression of ccRCC and elucidate its mechanism of action. Methods Gene Expression Omnibus and The Cancer Genome Atlas databases were used to extract gene expression profiles of ccRCC. These profiles were annotated and visualized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, as well as Gene Set Enrichment Analysis (GSEA). The STRING database was used to establish a protein-protein interaction network and to analyze the functional similarity. The GEPIA2 database was used to predict survival associated with hub genes. Meanwhile, the TIMER2.0 database was used to assess immune cell infiltration and its link with the hub genes. Immunohistochemistry (IHC) was used to determine the difference between ccRCC and adjacent normal tissue. Results We identified 272 differentially expressed genes (DEGs). GO and KEGG analyses suggested that DEGs were primarily involved in lymphocyte activation, inflammatory response, immunological effector mechanism pathways. By cytohubba, the 20 highest-scoring hub genes were screened to identify critical genes in the protein-protein interaction network linked with ccRCC. Resting dendritic cells, CD8 T cells, and activated mast cells all showed a significant positive correlation with these hub genes. Moreover, a higher immune score was associated with increased prognostic risk scores, which in turn correlated with a poorer prognosis. IHC revealed that P2RY13 was expressed at higher levels in ccRCC compared to para-cancer tissues. Conclusion Identifying the DEGs will aid in the understanding of the causes and molecular mechanisms involved in ccRCC. P2RY13 may play a pivotal role in the progression and prognosis of ccRCC, potentially driving carcinogenesis though immune system mechanisms.
Collapse
Affiliation(s)
- Jie Chu
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Wei Liu
- Department of General Family MedicineThe First People's Hospital of NeiJiangNeiJiangChina
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People's HospitalKunming Medical UniversityKunmingChina
| | - Huiling Zhang
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Jiudong Jiang
- Department of SurgeryThe First People's Hospital of ZiYangZiyangChina
| |
Collapse
|
7
|
Jang J, Kim H, Park SS, Kim M, Min YK, Jeong HO, Kim S, Hwang T, Choi DWY, Kim HJ, Song S, Kim DO, Lee S, Lee CH, Lee JW. Single-cell RNA Sequencing Reveals Novel Cellular Factors for Response to Immunosuppressive Therapy in Aplastic Anemia. Hemasphere 2023; 7:e977. [PMID: 37908861 PMCID: PMC10615405 DOI: 10.1097/hs9.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
Aplastic anemia (AA) is a lethal hematological disorder; however, its pathogenesis is not fully understood. Although immunosuppressive therapy (IST) is a major treatment option for AA, one-third of patients do not respond to IST and its resistance mechanism remains elusive. To understand AA pathogenesis and IST resistance, we performed single-cell RNA sequencing (scRNA-seq) of bone marrow (BM) from healthy controls and patients with AA at diagnosis. We found that CD34+ early-stage erythroid precursor cells and PROM1+ hematopoietic stem cells were significantly depleted in AA, which suggests that the depletion of CD34+ early-stage erythroid precursor cells and PROM1+ hematopoietic stem cells might be one of the major mechanisms for AA pathogenesis related with BM-cell hypoplasia. More importantly, we observed the significant enrichment of CD8+ T cells and T cell-activating intercellular interactions in IST responders, indicating the association between the expansion and activation of T cells and the positive response of IST in AA. Taken together, our findings represent a valuable resource offering novel insights into the cellular heterogeneity in the BM of AA and reveal potential biomarkers for IST, building the foundation for future precision therapies in AA.
Collapse
Affiliation(s)
- Jinho Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hongtae Kim
- Department of Biological Sciences, UNIST, Ulsan, Republic of Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Miok Kim
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Yong Ki Min
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Hyoung-oh Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Seunghoon Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Taejoo Hwang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - David Whee-Young Choi
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Hee-Je Kim
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sukgil Song
- Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | | | - Semin Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- Korean Genomics Center, UNIST, Ulsan, Republic of Korea
| | - Chang Hoon Lee
- Therapeutics & Biotechnology Division, Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
- Korea SCBIO Inc, Daejeon, Republic of Korea
| | - Jong Wook Lee
- Department of Hematology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mohamed AH, Obeid RA, Fadhil AA, Amir AA, Adhab ZH, Jabouri EA, Ahmad I, Alshahrani MY. BTLA and HVEM: Emerging players in the tumor microenvironment and cancer progression. Cytokine 2023; 172:156412. [PMID: 39492110 DOI: 10.1016/j.cyto.2023.156412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Immunotherapy has emerged as a revolutionary cancer treatment, particularly with the introduction of immune checkpoint inhibitors (ICIs). ICIs target specific proteins that restrain the immune system from attacking cancer cells. Prominent examples of checkpoint proteins that ICIs block include PD-1, PD-L1, and CTLA-4. The success of PD-1/L1 and CTLA-4 blockade has prompted further research on other inhibitory mechanisms that could aid in the treatment of cancer. One such mechanism is the BTLA/HVEM checkpoint, which regulates immune responses in a similar manner to CTLA-4 and PD-1. BTLA, a member of the Ig superfamily, binds to HVEM, a member of the TNF receptor superfamily. While BTLA is essential for maintaining immunological self-tolerance and preventing autoimmune diseases, overexpression of BTLA and HVEM has been observed in various malignancies such as lung, ovarian, glioblastoma, gastric cancer, and non-Hodgkin's lymphoma. The function of the BTLA/HVEM checkpoint in various malignancies has been extensively studied, revealing its significant role in immunotherapy for cancer. This review study aims to explain the BTLA/HVEM checkpoint and its functions in different types of cancers. In conclusion, the development of new immunotherapies such as ICIs has revolutionized cancer treatment. The discovery of the BTLA/HVEM checkpoint and its role in various malignancies provides opportunities for advancing cancer treatment through immunotherapy.
Collapse
Affiliation(s)
- Asma'a H Mohamed
- Intelligent Medical Systems Department, Al-Mustaqbal University College, 51001 Hilla, Babylon, Iraq
| | - Ruaa Ali Obeid
- College of Pharmacy, Department of Pharmaceutics, University of Al-Ameed, Iraq
| | | | - Ahmed Ali Amir
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Zainab H Adhab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Enaam Anad Jabouri
- Department of Medical Laboratory Technics, AlNoor University College, Nineveh, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
9
|
Sheng G, Chu H, Duan H, Wang W, Tian N, Liu D, Sun H, Sun Z. LRRC25 Inhibits IFN-γ Secretion by Microglia to Negatively Regulate Anti-Tuberculosis Immunity in Mice. Microorganisms 2023; 11:2500. [PMID: 37894158 PMCID: PMC10608824 DOI: 10.3390/microorganisms11102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Leucine-rich repeat-containing protein-25 (LRRC25) can degrade the ISG15 gene in virus-infected cells and prevent overactivation of the type Ⅰ IFN pathway. However, the role of LRRC25 in bacterial infection is still unclear. In this pursuit, the present study aimed to explore the regulatory role and mechanism of LRRC25 in microglia infected with Mycobacterium tuberculosis in a mouse model. METHODS Q-PCR, WB, and cell immunofluorescence were employed to observe the change in LRRC25 in BV2 cells infected by H37Rv. Additionally, siRNA was designed to target the LRRC25 to inhibit its expression in BV2 cells. Flow cytometry and laser confocal imaging were used to observe the infection of BV2 cells after LRRC25 silencing. Q-PCR and ELISA were used to determine the changes in IFN-γ and ISG15 in the culture supernatant of each group. RESULTS Following H37Rv infection, it was observed that the expression of LRRC25 was upregulated. Upon silencing LRRC25, the proportion of BV2 cells infected by H37Rv decreased significantly. ELISA analysis showed that IFN-γ and ISG15 levels in cell culture supernatant decreased after H37Rv infection, while they significantly increased after LRRC25 silencing. CONCLUSIONS This study provides evidence that LRRC25 is the key negative regulator of microglial anti-Mtb immunity. It exerts its function by degrading free ISG15 and inhibiting the secretion of IFN-γ, thereby improving the anti-Mtb immunity of BV2 cells.
Collapse
Affiliation(s)
- Gang Sheng
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
| | - Hongqian Chu
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
- Beijing Thoracic Tumor and Tuberculosis Institute, Beijing 100000, China;
| | - Huijuan Duan
- Beijing Thoracic Tumor and Tuberculosis Institute, Beijing 100000, China;
| | - Wenjing Wang
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
| | - Na Tian
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
| | - Dingyi Liu
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
| | - Hong Sun
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
- Beijing Thoracic Tumor and Tuberculosis Institute, Beijing 100000, China;
| | - Zhaogang Sun
- Beijing Chest Hospital Affiliated to Capital Medical University, Beijing 100000, China; (G.S.); (H.C.); (W.W.); (N.T.); (D.L.)
- Beijing Thoracic Tumor and Tuberculosis Institute, Beijing 100000, China;
| |
Collapse
|
10
|
Wang T, Peng R, Ni H, Zhong L, Zhang H, Wang T, Cheng H, Bao T, Jia X, Ling S. Effects of chemokine receptor CCR7 in the pathophysiology and clinical features of the immuno-inflammatory response in primary pterygium. Int Immunopharmacol 2023; 118:110086. [PMID: 37030121 DOI: 10.1016/j.intimp.2023.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Chemokine receptor 7 (CCR7) has been considered a critical biomarker in inflammation and the immune response; however, little is known about CCR7 in pterygia. This study aimed to investigate whether CCR7 participates in the pathogenesis of primary pterygia and how CCR7 affects the progression of pterygia. METHODS This was an experimental study. Slip-lamp photographs of 85 pterygium patients were used to measure the width, extent, and area of pterygia with computer software. Pterygium blood vessels and general ocular redness were quantitatively analyzed with a specific algorithm. The expression of CCR7 and its ligands C-C motif ligand 19 (CCL19) and C-C motif ligand 21 (CCL21) in control conjunctivae and excised pterygia collected during surgery were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. The phenotype of CCR7-expressing cells was identified by costaining for major histocompatibility complex II (MHC II), CD11b or CD11c. RESULTS The CCR7 level was significantly increased by 9.6-fold in pterygia compared with control conjunctivae (p = 0.008). The higher the expression of CCR7 was, the more blood vessels appeared in pterygia (r = 0.437, p = 0.002) and the more general ocular redness was (r = 0.51, p < 0.001) in pterygium patients. CCR7 was significantly associated with pterygium extent (r = 0.286, p = 0.048). In addition, we found that CCR7 colocalized with CD11b, CD11c or MHC II in dendritic cells, and immunofluorescence staining showed that CCR7-CCL21 is a potential chemokine axis in pterygium. CONCLUSIONS This work verified that CCR7 impacts the extent of primary pterygia invading the cornea and inflammation at the ocular surface, which may provide a possibility for a further in-depth understanding of the immunological mechanism in pterygia.
Collapse
|
11
|
Meng C, Liu J, Kang X, Xu Z, Xu S, Li X, Pan Z, Chen X, Jiao X. Discrepancy in Response of Mouse Dendritic Cells against BCG: Weak Immune Effects of Plasmacytoid Dendritic Cells Compared to Classical Dendritic Cells despite the Uptake of Bacilli. Trop Med Infect Dis 2023; 8:tropicalmed8030140. [PMID: 36977141 PMCID: PMC10057906 DOI: 10.3390/tropicalmed8030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Tuberculosis (TB), a zoonosis characterized by chronic respiratory infections, is mainly caused by Mycobacterium tuberculosis and is associated with one of the heaviest disease burdens in the world. Dendritic cells (DCs) play a key role and act as a bridge between innate and adaptive immune responses against TB. DCs are divided into distinct subsets. Currently, the response of DCs to mycobacterial infections is poorly understood. Herein, we aimed to evaluate the responses of splenic conventional DCs (cDC) and plasmacytoid DCs (pDC), subsets to Bacillus Calmette–Guérin (BCG) infection in mice. Splenic pDC had a significantly higher infection rate and intracellular bacterial count than cDC and the CD8+ and CD8− cDC subsets after BCG infection. However, the expression levels of CD40, CD80, CD86, and MHC-II molecules were significantly upregulated in splenic cDC and the CD8 cDC subsets compared to pDC during BCG infection. Splenic cDC had a higher expression of IFN-γ and IL-12p70 than pDC, whereas pDC had higher levels of TNF-α and MCP-1 than cDC in mice infected with BCG. At early stages of immunization with BCG containing the Ag85A protein, splenic cDC and pDC could present the Ag85A peptide to a specific T hybridoma; however, cDC had a stronger antigen presenting activity than pDC. In summary, splenic cDC and pDC extensively participate in mouse immune responses against BCG infection in vivo. Although pDC had a higher BCG uptake, cDC induced stronger immunological effects, including activation and maturation, cytokine production, and antigen presentation.
Collapse
Affiliation(s)
- Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuangyuan Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xin Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.C.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.C.); (X.J.)
| |
Collapse
|
12
|
Xu F, Bian K, Wang S, Yao F, Chen J, Cao Y, Qin Y. B and T lymphocyte attenuator as a C-reactive protein and IgA associated auxiliary diagnostic marker for pulmonary tuberculosis: a case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1370. [PMID: 36660715 PMCID: PMC9843424 DOI: 10.21037/atm-22-6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Background Screening and identification of hematologic molecular indicators of pulmonary tuberculosis (PTB) is crucial for its diagnose and therapy. Therefore, our work aims to detect the diagnostic value of blood marker B and T lymphocyte attenuator (BTLA) in PTB, and provide a certain theoretical basis for the auxiliary diagnosis of PTB. Methods Based on the inclusion criteria, 56 Patients with clinically confirmed pulmonary TB by clinical between January 2020 and December 2021 at our hospital were selected as the research objects of this study. Fifty-two matched healthy population at our hospital was used as the control group. Clinical characteristics were got from clinical laboratory. Real-time polymerase chain reaction (RT-PCR) was used to analyze changes in BTLA along with its ligand in peripheral blood. Changes in BTLA on the surface of different cells were analyzed by flow cytometry. The correlation test was used to determine the associations between BTLA and clinical indicators. Receiver operating characteristic (ROC) curve analysis was used to evaluate the auxiliary diagnostic value in PTB of BTLA expression from different sources. Results Compared with the control, changes in peripheral blood BTLA in the PTB group were significantly increased (P=0.0187) rather than its ligand. Changes in BTLA on the surface of CD68 and antigen-presenting cell (APC) CD11c were significantly increased in the PTB group (P=0.0004, P<0.0001), while changes in BTLA on the surface of CD4+ T and CD8+ T cells were not significantly different (P=0.0792, P=0.8706). The expression of BTLA+CD11c+ was negatively correlated with the expression of immunoglobulin A (IgA) (r=-0.2934, P=0.0282) and positively related to C-reactive protein (r=0.3277, P=0.0137). ROC curve analysis suggested that the area under the curve (AUC), sensitivity and specificity of BTLA RT-PCR detection were 0.6315, 53.57%, 57.69% while for BTLA+CD11c+ detection were 0.8039, 88.46% and 73.21% and for BTLA+CD68+ detection were 0.6973, 60.71% and 61.54%. Conclusions BTLA is highly expressed in peripheral blood and specific cell types of patients with PTB and is correlated with specific clinical indicators, which may be an important molecular marker for the auxiliary diagnosis of PTB.
Collapse
Affiliation(s)
- Feifan Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China;,Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Keyun Bian
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China;,Department of Microbiology Laboratory, Disease Control and Prevention Center of Rugao, Nantong, China
| | - Shouwei Wang
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Fan Yao
- Department of Tuberculosis, Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yali Cao
- Department of Preventive Health Care, The Third People’s Hospital of Nantong, Nantong, China
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
13
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
14
|
Chen H, Zhou J, Zhao X, Liu Q, Shao L, Zhu Y, Ou Q. Characterization of multiple soluble immune checkpoints in individuals with different Mycobacterium tuberculosis infection status and dynamic changes during anti-tuberculosis treatment. BMC Infect Dis 2022; 22:543. [PMID: 35701741 PMCID: PMC9192932 DOI: 10.1186/s12879-022-07506-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune checkpoints are crucial for the maintenance of subtle balance between self-tolerance and effector immune responses, but the role of soluble immune checkpoints (sICs) in Mycobacterium tuberculosis (M. tb) infection remains unknown. We assessed the levels of multiple sICs in individuals with distinct M. tb infection status, and their dynamic changes during anti-tuberculosis treatment. METHODS We enrolled 24 patients with pulmonary tuberculosis, among which 10 patients were diagnosed with tuberculous pleurisy (TBP), 10 individuals with latent tuberculosis infection (LTBI), and 10 healthy volunteers from Wuxi Fifth People's Hospital and Huashan Hospital between February 2019 and May 2021. Plasma concentrations of thirteen sICs were measured at enrollment and during anti-tuberculosis treatment using luminex-based multiplex assay. sICs levels in tuberculous pleural effusion (TPE) and their relations to laboratory test markers of TPE were also assessed in TBP patients. RESULTS The circulating levels of sPD-1, sPD-L1, sCTLA-4, sBTLA, sGITR, sIDO, sCD28, sCD27 and s4-1BB were upregulated in tuberculosis patients than in healthy controls. A lower sPD-L1 level was found in LTBI individuals than in tuberculosis patients. In TBP patients, the levels of sPD-1, sPD-L2, sCD28, sCD80, sCD27, sTIM-3, sLAG-3, sBTLA, s4-1BB and sIDO increased significantly in TPE than in plasma. In TPE, sBTLA and sLAG-3 correlated positively with the adenosine deaminase level. sIDO and sCD80 correlated positively with the lactate dehydrogenase level and the percentage of lymphocytes in TPE, respectively. Meanwhile, sCD27 correlated negatively with the specific gravity and protein level in TPE. In tuberculosis patients, the circulating levels of sBTLA and sPD-L1 gradually declined during anti-tuberculosis treatment. CONCLUSIONS We characterized the changing balance of sICs in M. tb infection. And our results revealed the relations of sICs to laboratory test markers and treatment responses in tuberculosis patients, indicating that certain sICs may serve as potential biomarkers for disease surveillance and prognosis of tuberculosis.
Collapse
Affiliation(s)
- Huaxin Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.,Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, 1215 Guangrui Road, Wuxi, 214005, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinguo Zhao
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, 1215 Guangrui Road, Wuxi, 214005, China
| | - Qianqian Liu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yehan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, China.
| | - Qinfang Ou
- Department of Pulmonary Diseases, Wuxi Infectious Diseases Hospital, 1215 Guangrui Road, Wuxi, 214005, China.
| |
Collapse
|
15
|
Demerlé C, Gorvel L, Olive D. BTLA-HVEM Couple in Health and Diseases: Insights for Immunotherapy in Lung Cancer. Front Oncol 2021; 11:682007. [PMID: 34532285 PMCID: PMC8438526 DOI: 10.3389/fonc.2021.682007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Immunotherapies (IT) have been rapidly approved for lung cancer treatment after the spectacular results in melanoma. Responses to the currently used checkpoint inhibitors are strikingly good especially in metastatic diseases. However, durable responses are observed in only 25% of cases. Consequently, there is an urgent need for new immunotherapy targets. Among the multiple checkpoints involved in the tumor immune escape, the BTLA-HVEM couple appears to be a promising target. BTLA (B- and T- Lymphocyte Attenuator) is a co-inhibitory receptor mainly expressed by B and T cells, repressing the activation signal transduction. BTLA shares similarities with other immune checkpoints such as PD-1 and CTLA-4 which are the targets of the currently used immunotherapies. Furthermore, BTLA expression points out terminally exhausted and dysfunctional lymphocytes, and correlates with lung cancer progression. The ligand of BTLA is HVEM (Herpes Virus Entry Mediator) which belongs to the TNF receptor family. Often described as a molecular switch, HVEM is constitutively expressed by many cells, including cells from tumor and healthy tissues. In addition, HVEM seems to be involved in tumor immuno-evasion, especially in lung tumors lacking PD-L1 expression. Here, we propose to review the role of BTLA-HVEM in immuno-escape in order to highlight its potential for designing new immunotherapies.
Collapse
Affiliation(s)
- Clemence Demerlé
- Cancer Research Center in Marseille (CRCM), INSERM U1068, CNRS U7258, Aix Marseille University (AMU), Paoli Calmette Institute (IPC), Marseille, France
| | - Laurent Gorvel
- Cancer Research Center in Marseille (CRCM), INSERM U1068, CNRS U7258, Aix Marseille University (AMU), Paoli Calmette Institute (IPC), Marseille, France
| | - Daniel Olive
- Cancer Research Center in Marseille (CRCM), INSERM U1068, CNRS U7258, Aix Marseille University (AMU), Paoli Calmette Institute (IPC), Marseille, France
| |
Collapse
|
16
|
Passeri L, Marta F, Bassi V, Gregori S. Tolerogenic Dendritic Cell-Based Approaches in Autoimmunity. Int J Mol Sci 2021; 22:8415. [PMID: 34445143 PMCID: PMC8395087 DOI: 10.3390/ijms22168415] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Dendritic cells (DCs) dictate the outcomes of tissue-specific immune responses. In the context of autoimmune diseases, DCs instruct T cells to respond to antigens (Ags), including self-Ags, leading to organ damage, or to becoming regulatory T cells (Tregs) promoting and perpetuating immune tolerance. DCs can acquire tolerogenic properties in vitro and in vivo in response to several stimuli, a feature that opens the possibility to generate or to target DCs to restore tolerance in autoimmune settings. We present an overview of the different subsets of human DCs and of the regulatory mechanisms associated with tolerogenic (tol)DC functions. We review the role of DCs in the induction of tissue-specific autoimmunity and the current approaches exploiting tolDC-based therapies or targeting DCs in vivo for the treatment of autoimmune diseases. Finally, we discuss limitations and propose future investigations for improving the knowledge on tolDCs for future clinical assessment to revert and prevent autoimmunity. The continuous expansion of tolDC research areas will lead to improving the understanding of the role that DCs play in the development and treatment of autoimmunity.
Collapse
Affiliation(s)
- Laura Passeri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Fortunato Marta
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| | - Virginia Bassi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
- San Raffaele Scientific Institute IRCCS, University Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (L.P.); (F.M.); (V.B.)
| |
Collapse
|
17
|
Deng Z, Zheng Y, Cai P, Zheng Z. The Role of B and T Lymphocyte Attenuator in Respiratory System Diseases. Front Immunol 2021; 12:635623. [PMID: 34163466 PMCID: PMC8215117 DOI: 10.3389/fimmu.2021.635623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
B and T lymphocyte attenuator (BTLA), an immunomodulatory molecule widely expressed on the surface of immune cells, can influence various signaling pathways and negatively regulate the activation and proliferation of immune cells by binding to its ligand herpes virus entry mediator (HVEM). BTLA plays an important role in immunoregulation and is involved in the pathogenesis of various respiratory diseases, including airway inflammation, asthma, infection, pneumonia, acute respiratory distress syndrome and lung cancer. In recent years, some studies have found that BTLA also has played a positive regulatory effect on immunity system in the occurrence and development of respiratory diseases. Since severe pulmonary infection is a risk factor for sepsis, this review also summarized the new findings on the role of BTLA in sepsis.
Collapse
Affiliation(s)
- Zheng Deng
- General Department, Hunan Institute for Tuberculosis Control, Changsha, China.,General Department, Hunan Chest Hospital, Changsha, China
| | - Yi Zheng
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Pei Cai
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Zheng
- General Department, Hunan Institute for Tuberculosis Control, Changsha, China.,General Department, Hunan Chest Hospital, Changsha, China
| |
Collapse
|
18
|
Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol 2021; 12:654960. [PMID: 33859648 PMCID: PMC8043046 DOI: 10.3389/fimmu.2021.654960] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is one of the most important cosignaling molecules. It belongs to the CD28 superfamily and is similar to programmed cell death-1 (PD-1) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) in terms of its structure and function. BTLA can be detected in most lymphocytes and induces immunosuppression by inhibiting B and T cell activation and proliferation. The BTLA ligand, herpesvirus entry mediator (HVEM), does not belong to the classic B7 family. Instead, it is a member of the tumor necrosis factor receptor (TNFR) superfamily. The association of BTLA with HVEM directly bridges the CD28 and TNFR families and mediates broad and powerful immune effects. Recently, a large number of studies have found that BTLA participates in numerous physiopathological processes, such as tumor, inflammatory diseases, autoimmune diseases, infectious diseases, and transplantation rejection. Therefore, the present work aimed to review the existing knowledge about BTLA in immunity and summarize the diverse functions of BTLA in various immune disorders.
Collapse
Affiliation(s)
- Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
19
|
Vazquez-Madrigal C, Lopez S, Grao-Cruces E, Millan-Linares MC, Rodriguez-Martin NM, Martin ME, Alba G, Santa-Maria C, Bermudez B, Montserrat-de la Paz S. Dietary Fatty Acids in Postprandial Triglyceride-Rich Lipoproteins Modulate Human Monocyte-Derived Dendritic Cell Maturation and Activation. Nutrients 2020; 12:nu12103139. [PMID: 33066622 PMCID: PMC7656296 DOI: 10.3390/nu12103139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary fatty acids have been demonstrated to modulate systemic inflammation and induce the postprandial inflammatory response of circulating immune cells. We hypothesized that postprandial triglyceride-rich lipoproteins (TRLs) may have acute effects on immunometabolic homeostasis by modulating dendritic cells (DCs), sentinels of the immunity that link innate and adaptive immune systems. In healthy volunteers, saturated fatty acid (SFA)-enriched meal raised serum levels of granulocyte/macrophage colony-stimulating factor GM-CSF (SFAs > monounsaturated fatty acids (MUFAs) = polyunsaturated fatty acids (PUFAs)) in the postprandial period. Autologous TRL-SFAs upregulated the gene expression of DC maturation (CD123 and CCR7) and DC pro-inflammatory activation (CD80 and CD86) genes while downregulating tolerogenic genes (PD-L1 and PD-L2) in human monocyte-derived DCs (moDCs). These effects were reversed with oleic acid-enriched TRLs. Moreover, postprandial SFAs raised IL-12p70 levels, while TRL-MUFAs and TRL-PUFAs increased IL-10 levels in serum of healthy volunteers and in the medium of TRL-treated moDCs. In conclusion, postprandial TRLs are metabolic entities with DC-related tolerogenic activity, and this function is linked to the type of dietary fat in the meal. This study shows that the intake of meals enriched in MUFAs from olive oil, when compared with meals enriched in SFAs, prevents the postprandial production and priming of circulating pro-inflammatory DCs, and promotes tolerogenic response in healthy subjects. However, functional assays with moDCs generated in the presence of different fatty acids and T cells could increase the knowledge of postprandial TRLs’ effects on DC differentiation and function.
Collapse
Affiliation(s)
- Carlos Vazquez-Madrigal
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Soledad Lopez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC, 41013 Seville, Spain; (M.C.M.-L.); (N.M.R.-M.)
| | - Noelia M. Rodriguez-Martin
- Department of Food & Health, Instituto de la Grasa, CSIC, 41013 Seville, Spain; (M.C.M.-L.); (N.M.R.-M.)
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain; (M.E.M.); (B.B.)
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
| | - Consuelo Santa-Maria
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain;
| | - Beatriz Bermudez
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain; (M.E.M.); (B.B.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, 41009 Seville, Spain; (C.V.-M.); (S.L.); (E.G.-C.); (G.A.)
- Correspondence: ; Tel.: +34-954-559-850
| |
Collapse
|
20
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|