1
|
Pashirova T, Shaihutdinova Z, Tatarinov D, Mansurova M, Kazakova R, Bogdanov A, Chabrière E, Jacquet P, Daudé D, Akhunzianov AA, Miftakhova RR, Masson P. Tuning the Envelope Structure of Enzyme Nanoreactors for In Vivo Detoxification of Organophosphates. Int J Mol Sci 2023; 24:15756. [PMID: 37958742 PMCID: PMC10649860 DOI: 10.3390/ijms242115756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Encapsulated phosphotriesterase nanoreactors show their efficacy in the prophylaxis and post-exposure treatment of poisoning by paraoxon. A new enzyme nanoreactor (E-nRs) containing an evolved multiple mutant (L72C/Y97F/Y99F/W263V/I280T) of Saccharolobus solfataricus phosphotriesterase (PTE) for in vivo detoxification of organophosphorous compounds (OP) was made. A comparison of nanoreactors made of three- and di-block copolymers was carried out. Two types of morphology nanoreactors made of di-block copolymers were prepared and characterized as spherical micelles and polymersomes with sizes of 40 nm and 100 nm, respectively. The polymer concentrations were varied from 0.1 to 0.5% (w/w) and enzyme concentrations were varied from 2.5 to 12.5 μM. In vivo experiments using E-nRs of diameter 106 nm, polydispersity 0.17, zeta-potential -8.3 mV, and loading capacity 15% showed that the detoxification efficacy against paraoxon was improved: the LD50 shift was 23.7xLD50 for prophylaxis and 8xLD50 for post-exposure treatment without behavioral alteration or functional physiological changes up to one month after injection. The pharmacokinetic profiles of i.v.-injected E-nRs made of three- and di-block copolymers were similar to the profiles of the injected free enzyme, suggesting partial enzyme encapsulation. Indeed, ELISA and Western blot analyses showed that animals developed an immune response against the enzyme. However, animals that received several injections did not develop iatrogenic symptoms.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Zukhra Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Dmitry Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Milana Mansurova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Renata Kazakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Andrei Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088 Kazan, Russia; (Z.S.); (D.T.); (A.B.)
| | - Eric Chabrière
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Pauline Jacquet
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - David Daudé
- Gene&GreenTK, 19–21 Boulevard Jean Moulin, 13005 Marseille, France; (E.C.); (P.J.); (D.D.)
| | - Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (M.M.); (R.K.); (A.A.A.); (R.R.M.)
| |
Collapse
|
2
|
Yang L, Zhou D, Cao J, Shi F, Zeng J, Zhang S, Yan G, Chen Z, Chen B, Guo Y, Lin X. Revealing the biological mechanism of acupuncture in alleviating excessive inflammatory responses and organ damage in sepsis: a systematic review. Front Immunol 2023; 14:1242640. [PMID: 37753078 PMCID: PMC10518388 DOI: 10.3389/fimmu.2023.1242640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/28/2023] Open
Abstract
Sepsis is a systemic inflammation caused by a maladjusted host response to infection. In severe cases, it can cause multiple organ dysfunction syndrome (MODS) and even endanger life. Acupuncture is widely accepted and applied in the treatment of sepsis, and breakthroughs have been made regarding its mechanism of action in recent years. In this review, we systematically discuss the current clinical applications of acupuncture in the treatment of sepsis and focus on the mechanisms of acupuncture in animal models of systemic inflammation. In clinical research, acupuncture can not only effectively inhibit excessive inflammatory reactions but also improve the immunosuppressive state of patients with sepsis, thus maintaining immune homeostasis. Mechanistically, a change in the acupoint microenvironment is the initial response link for acupuncture to take effect, whereas PROKR2 neurons, high-threshold thin nerve fibres, cannabinoid CB2 receptor (CB2R) activation, and Ca2+ influx are the key material bases. The cholinergic anti-inflammatory pathway of the vagus nervous system, the adrenal dopamine anti-inflammatory pathway, and the sympathetic nervous system are key to the transmission of acupuncture information and the inhibition of systemic inflammation. In MODS, acupuncture protects against septic organ damage by inhibiting excessive inflammatory reactions, resisting oxidative stress, protecting mitochondrial function, and reducing apoptosis and tissue or organ damage.
Collapse
Affiliation(s)
- Lin Yang
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dan Zhou
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaojiao Cao
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fangyuan Shi
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaming Zeng
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siqi Zhang
- Ministry of Education, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guorui Yan
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Pharmacy Department, Tianjin, China
| | - Zhihan Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Gupta P, Hu Z, Kopparapu PK, Deshmukh M, Sághy T, Mohammad M, Jin T, Engdahl C. The impact of TLR2 and aging on the humoral immune response to Staphylococcus aureus bacteremia in mice. Sci Rep 2023; 13:8850. [PMID: 37258615 DOI: 10.1038/s41598-023-35970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023] Open
Abstract
Aging alters immunoglobulin production, affecting the humoral immune response. Toll-like receptor 2 (TLR2) recognizes Staphylococcus aureus (S. aureus) which causes bacteremia with high mortality in the elderly. To understand how TLR2 and aging affect the humoral immune response in bacteremia, four groups of mice (wild type-young, wild type-old, TLR2-/--young, and TLR2-/--old) were used to analyze immunoglobulin levels in healthy conditions as well as 10 days after intravenous injection with S. aureus. We found that aging increased the levels of both IgM and IgG. Increased IgG in aged mice was controlled by TLR2. In bacteremia infection, aged mice failed to mount proper IgM response in both wild-type (WT) and TLR2-/- mice, whereas IgG response was impaired in both aged and TLR2-/- mice. Aged mice displayed reduced IgG1 and IgG2a response irrespective of TLR2 expression. However, impaired IgG2b response was only found in aged WT mice and not in TLR2-/- mice. Both aging and TLR2-/- increased the levels of anti-staphylococcal IgM in bacteremia. Aging increased sialylated IgG in WT mice but not in TLR2-/- mice. IgG sialylation was not affected by the infection in neither of the mice. In summary, aging increases all immunoglobulins except IgG1. However, aged mice fail to mount a proper antibody response to S. aureus bacteremia. TLR2 plays the regulatory role in IgG but not IgM response to infection.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden.
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Center, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- SciLifeLab, University of Gothenburg, Box 413, 405 30, Gothenburg, Sweden.
| | - Zhicheng Hu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Centre for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
| | - Meghshree Deshmukh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
| | - Tibor Sághy
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Center, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Box 413, 405 30, Gothenburg, Sweden
| | - Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Department of Rheumatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Engdahl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Box- 480, 413 45, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Center, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Box 413, 405 30, Gothenburg, Sweden
| |
Collapse
|
4
|
Riese J, Hähnel C, Menz J, Hannemann M, Khabipov A, Lührs F, Schulze T. S1PR 4 deficiency results in reduced germinal center formation but only marginally affects antibody production. Front Immunol 2022; 13:1053490. [PMID: 36532028 PMCID: PMC9755867 DOI: 10.3389/fimmu.2022.1053490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction Splenic B cells exhibit a high expression of the G protein-coupled sphingosine-1-phosphate (S1P) receptor type 4 (S1PR4). Little is known about the functional relevance of S1PR4 expression on those cells. Methods In this study, S1PR4-deficient mice were used to study the role of S1PR4-mediated S1P signaling in B cell motility in vitro and for the maintenance of the splenic architecture under steady state conditions as well as in polymicrobial abdominal sepsis in vivo. Finally, the impact of S1PR4 deficiency on antibody production after immunization with T cell dependent antigens was assessed. Results Loss of S1PR4 resulted in minor alterations of the splenic architecture concerning the presence of B cell follicles. After sepsis induction, the germinal center response was severely impaired in S1PR4-deficient animals. Splenic B cells showed reduced motility in the absence of S1PR4. However, titres of specific antibodies showed only minor reductions in S1PR4-deficient animals. Discussion These observations suggest that S1P signaling mediated by S1PR4 modifies chemokine-induced splenic B cell chemotaxis, thus modulating splenic microarchitecture, GC formation and T-cell dependent antibody production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tobias Schulze
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
5
|
Chen Q, Liu L, Ni S. Screening of ferroptosis-related genes in sepsis-induced liver failure and analysis of immune correlation. PeerJ 2022; 10:e13757. [PMID: 35923893 PMCID: PMC9341447 DOI: 10.7717/peerj.13757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Purpose Sepsis-induced liver failure is a kind of liver injury with a high mortality, and ferroptosis plays a key role in this disease. Our research aims to screen ferroptosis-related genes in sepsis-induced liver failure as targeted therapy for patients with liver failure. Methods Using the limma software, we analyzed the differentially expressed genes (DEGs) in the GSE60088 dataset downloaded from the Gene Expression Omnibus (GEO) database. Clusterprofiler was applied for enrichment analysis of DEGs enrichment function. Then, the ferroptosis-related genes of the mice in the FerrDb database were crossed with DEGs. Sepsis mice model were prepared by cecal ligation and perforation (CLP). ALT and AST in the serum of mice were measured using detection kit. The pathological changes of the liver tissues in mice were observed by hematoxylin-eosin (H & E) staining. We detected the apoptosis of mice liver tissues using TUNEL. The expression of Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36 were detected by qRT-PCR. Results DEGs analysis showed 136 up-regulated and 45 down-regulated DEGs. Meanwhile, we found that the up-regulated DEGs were enriched in pathways including the cytokine biosynthesis process while the down-regulated DEGs were enriched in pathways such as organic hydroxy compound metabolic process. In this study, seven genes (Hmox1, Epas1, Sirt1, Slc3a2, Jun, Plin2 and Zfp36) were obtained through the intersection of FerrDb database and DEGs. However, immune infiltration analysis revealed that ferroptosis-related genes may promote the development of liver failure through B cells and natural killer (NK) cells. Finally, it was confirmed by the construction of septic liver failure mice model that ferroptosis-related genes of Hmox1, Slc3a2, Jun and Zfp36 were significantly correlated with liver failure and were highly expressed. Conclusion The identification of ferroptosis-related genes Hmox1, Slc3a2, Jun and Zfp36 in the present study contribute to our understanding of the molecular mechanism of sepsis-induced liver failure, and provide candidate targets for the diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Qingli Chen
- Department of Emergency Medicine, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| | - Luxiang Liu
- Department of Infectious Disease, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| | - Shuangling Ni
- Department of Infectious Disease, Lishui City People’s Hospital, Lishui, Zhejiang Province, China
| |
Collapse
|
6
|
Nicolai O, Pötschke C, Raafat D, van der Linde J, Quosdorf S, Laqua A, Heidecke CD, Berek C, Darisipudi MN, Binder CJ, Bröker BM. Oxidation-Specific Epitopes (OSEs) Dominate the B Cell Response in Murine Polymicrobial Sepsis. Front Immunol 2020; 11:1570. [PMID: 32849533 PMCID: PMC7412885 DOI: 10.3389/fimmu.2020.01570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/15/2020] [Indexed: 12/29/2022] Open
Abstract
In murine abdominal sepsis by colon ascendens stent peritonitis (CASP), a strong increase in serum IgM and IgG antibodies was observed, which reached maximum values 14 days following sepsis induction. The specificity of this antibody response was studied in serum and at the single cell level using a broad panel of bacterial, sepsis-unrelated as well as self-antigens. Whereas an antibacterial IgM/IgG response was rarely observed, studies at the single-cell level revealed that IgM antibodies, in particular, were largely polyreactive. Interestingly, at least 16% of the IgM mAbs and 20% of the IgG mAbs derived from post-septic mice showed specificity for oxidation-specific epitopes (OSEs), which are known targets of the innate/adaptive immune response. This identifies those self-antigens as the main target of B cell responses in sepsis.
Collapse
Affiliation(s)
- Oliver Nicolai
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christian Pötschke
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Dina Raafat
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Julia van der Linde
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Quosdorf
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Laqua
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General Surgery, Visceral, Thoracic and Vascular Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Claudia Berek
- German Rheumatism Research Centre (DRFZ), Berlin, Germany
| | - Murthy N Darisipudi
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Barbara M Bröker
- Department of Immunology, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|