1
|
Masuyama S, Mizui M, Morita M, Shigeki T, Kato H, Yamamoto T, Sakaguchi Y, Inoue K, Namba-Hamano T, Matsui I, Okuno T, Yamamoto R, Takashima S, Isaka Y. Enhanced fatty acid oxidation by selective activation of PPARα alleviates autoimmunity through metabolic transformation in T-cells. Clin Immunol 2024; 268:110357. [PMID: 39243921 DOI: 10.1016/j.clim.2024.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
While fatty acid oxidation (FAO) in mitochondria is a primary energy source for quiescent lymphocytes, the impact of promoting FAO in activated lymphocytes undergoing metabolic reprogramming remains unclear. Here, we demonstrate that pemafibrate, a selective PPARα modulator used clinically for the treatment of hypertriglyceridemia, transforms metabolic system of T-cells and alleviates several autoimmune diseases. Pemafibrate suppresses Th17 cells but not Th1 cells, through the inhibition of glutaminolysis and glycolysis initiated by enhanced FAO. In contrast, a conventional PPARα agonist fenofibrate significantly inhibits cell growth by restraining overall metabolisms even at a dose insufficient to induce fatty acid oxidation. Clinically, patients receiving pemafibrate showed a significant decrease of Th17/Treg ratio in peripheral blood. Our results suggest that augmented FAO by pemafibrate-mediated selective activation of PPARα restrains metabolic programs of Th17 cells and could be a viable option for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Satoshi Masuyama
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Masashi Morita
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Department of Nephrology, NHO Osaka Minami Medical Center, Japan
| | - Takatomo Shigeki
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yusuke Sakaguchi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunori Inoue
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryohei Yamamoto
- Department of Health Promotion Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
2
|
Ghanbar MI, Suresh K. Pulmonary toxicity of immune checkpoint immunotherapy. J Clin Invest 2024; 134:e170503. [PMID: 38226621 PMCID: PMC10786690 DOI: 10.1172/jci170503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Cancer remains a leading cause of mortality on a global scale. Lung cancer, specifically non-small cell lung cancer (NSCLC), is a prominent contributor to this burden. The management of NSCLC has advanced substantially in recent years, with immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), leading to improved patient outcomes. Although generally well tolerated, the administration of ICIs can result in unique side effects known as immune-related adverse events (irAEs). The occurrence of irAEs involving the lungs, specifically checkpoint inhibitor pneumonitis (CIP), can have a profound effect on both future therapy options and overall survival. Despite CIP being one of the more common serious irAEs, limited treatment options are currently available, in part due to a lack of understanding of the underlying mechanisms involved in its development. In this Review, we aim to provide an overview of the epidemiology and clinical characteristics of CIP, followed by an examination of the emerging literature on the pathobiology of this condition.
Collapse
Affiliation(s)
| | - Karthik Suresh
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Khantakova JN, Sennikov SV. T-helper cells flexibility: the possibility of reprogramming T cells fate. Front Immunol 2023; 14:1284178. [PMID: 38022605 PMCID: PMC10646684 DOI: 10.3389/fimmu.2023.1284178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Department of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology” (RIFCI), Novosibirsk, Russia
| | | |
Collapse
|
4
|
Duo M, Liu Z, Li P, Wang Y, Zhang Y, Weng S, Zheng Y, Fan M, Wu R, Xu H, Ren Y, Cheng Z. Integrative bioinformatics analysis to explore a robust diagnostic signature and landscape of immune cell infiltration in sarcoidosis. Front Med (Lausanne) 2022; 9:942177. [DOI: 10.3389/fmed.2022.942177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundThe unknown etiology of sarcoidosis with variable clinical features leads to delayed diagnosis and limited therapeutic strategies. Hence, exploring the latent mechanisms and constructing an accessible and reliable diagnostic model of sarcoidosis is vital for innovative therapeutic approaches to improve prognosis.MethodsThis retrospective study analyzed transcriptomes from 11 independent sarcoidosis cohorts, comprising 313 patients and 400 healthy controls. The weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were performed to identify molecular biomarkers. Machine learning was employed to fit a diagnostic model. The potential pathogenesis and immune landscape were detected by bioinformatics tools.ResultsA 10-gene signature SARDS consisting of GBP1, LEF1, IFIT3, LRRN3, IFI44, LHFPL2, RTP4, CD27, EPHX2, and CXCL10 was further constructed in the training cohorts by the LASSO algorithm, which performed well in the four independent cohorts with the splendid AUCs ranging from 0.938 to 1.000. The findings were validated in seven independent publicly available gene expression datasets retrieved from whole blood, PBMC, alveolar lavage fluid cells, and lung tissue samples from patients with outstanding AUCs ranging from 0.728 to 0.972. Transcriptional signatures associated with sarcoidosis revealed a potential role of immune response in the development of the disease through bioinformatics analysis.ConclusionsOur study identified and validated molecular biomarkers for the diagnosis of sarcoidosis and constructed the diagnostic model SARDS to improve the accuracy of early diagnosis of the disease.
Collapse
|
5
|
Belpaire A, van Geel N, Speeckaert R. From IL-17 to IFN-γ in inflammatory skin disorders: Is transdifferentiation a potential treatment target? Front Immunol 2022; 13:932265. [PMID: 35967358 PMCID: PMC9367984 DOI: 10.3389/fimmu.2022.932265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The targeted inhibition of effector cytokines such as interleukin 17 (IL-17) in psoriasis and IL-13 in atopic dermatitis offers impressive efficacy with a favorable side effect profile. In contrast, the downregulation of interferon gamma (IFN-γ) in T helper (Th) 1-dominant skin disorders may lead to more adverse events, given the crucial role of IFN-γ in antiviral and antitumoral immunity. Modulating Th17 and Th2 cell differentiation is performed by blocking IL-23 and IL-4, respectively, whereas anti-IL-12 antibodies are only moderately effective in downregulating Th1 lymphocyte differentiation. Therefore, a targeted approach of IFN-γ-driven disorders remains challenging. Recent literature suggests that certain pathogenic Th17 cell subsets with Th1 characteristics, such as CD4+CD161+CCR6+CXCR3+IL-17+IFN-y+ (Th17.1) and CD4+CD161+CCR6+CXCR3+IL-17-IFN-y+ (exTh17), are important contributors in Th1-mediated autoimmunity. Differentiation to a Th17.1 or exTh17 profile results in the upregulation of IFN-y. Remarkably, these pathogenic Th17 cell subsets are resistant to glucocorticoid therapy and the dampening effect of regulatory T cells (Treg). The identification of Th17.1/exTh17 cells in auto-immune disorders may explain the frequent treatment failure of conventional immunosuppressants. In this review, we summarize the current evidence regarding the cellular plasticity of Th17 cells in inflammatory skin disorders. A deeper understanding of this phenomenon may lead to better insights into the pathogenesis of various skin diseases and the discovery of a potential new treatment target.
Collapse
|
6
|
Hu B, Wang H, Xiao F. E74 Like ETS Transcription Factor 3 is a Negative Regulator of Pathogenic Lamina Propria T Helper 17.1 Cells in Murine Colitis. Immunol Invest 2022; 51:1950-1964. [PMID: 35696273 DOI: 10.1080/08820139.2022.2084409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interleukin-17A (IL-17A)-expressing T cells, including T helper 17 (Th17) and T helper 17.1 (Th17.1) cells, play a significant role in inflammatory bowel diseases (IBDs). Identifying the mechanisms underlying the heterogeneity and plasticity of IL-17A-expressing T cells is crucial for understanding and controlling their pathogenicity. The role of E74 like ETS transcription factor 3 (ELF3) in regulating the pathogenicity of IL-17A-expressing T cells has not been studied before. Dextran sulfate sodium was used to induce acute colitis in transgenic mice co-expressing IL-17A and enhanced green fluorescent protein (EGFP). IL-17A-expressing T cells were analyzed by flow cytometry. ELF3 expression was evaluated by reverse transcription and quantitative polymerase chain reaction. Lentivirus-mediated ELF3 overexpression was performed to assess the effect of ELF3 on Th17 and Th17.1 cells in vitro. The in vivo effect of ELF3 on Th17.1 cells was analyzed in an adoptive transfer colitis model. ELF3 was expressed by IL-17A-expressing T cells in the colonic lamina propria after colitis induction. Th17 cells and Th17.1 cells were distinguished based on the expression of C-X-C motif chemokine receptor 3, cytokine production, and key regulators. Th17 cells expressed higher ELF3 than Th17.1 cells. Ectopic ELF3 overexpression did not alter Th17 cell function while suppressing Th17.1 cell function in vitro. When adoptively transferred into Rag1 knockout mice to induce colitis, ELF3-overexpressing Th17.1 cells were less pathogenic than the control Th17.1 cells. ELF3 suppresses the pathogenicity of Th17.1 cells in colitis.
Collapse
Affiliation(s)
- Bo Hu
- Department of gastrointestinal surgery, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Hao Wang
- Department of gastrointestinal surgery, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Fei Xiao
- Department of gastrointestinal surgery, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
7
|
Misra DP, Agarwal V. Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases. Clin Rheumatol 2022; 41:2297-2308. [PMID: 35546376 DOI: 10.1007/s10067-022-06202-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022]
Abstract
It is now well established that Th17 lymphocytes associate with myriad immune-mediated inflammatory diseases. Over the past one and a half decades, a subset of Th17 lymphocytes viz. Th17.1 lymphocytes has been identified in pre-clinical and clinical models of inflammatory rheumatic diseases. These lymphocytes secrete IL-17A (signature cytokine of Th17 lymphocytes) as well as IFN-γ (the signature cytokine of Th1 lymphocytes). They express the chemokine markers for Th1 (CXCR3) as well as Th17 (CCR6) lymphocytes. Th17.1 lymphocytes also express the drug efflux protein p-glycoprotein, which associates with resistance to corticosteroids and other immunosuppressive drugs. This narrative review overviews the evidence regarding Th17.1 lymphocytes in different inflammatory rheumatic diseases. It is now recognized that Th17.1 lymphocytes are increased in the synovial fluid of affected joints in rheumatoid arthritis (RA) and associate with poor treatment response to abatacept. Th17.1 lymphocytes from synovial fluid of RA are less responsive to immunosuppression than those from the peripheral blood. In sarcoidosis, Th17.1 lymphocytes are concentrated in mediastinal lymph nodes and alveolar lining. Such Th17.1 lymphocytes in sarcoidosis are the predominant source of IFN-γ in the sarcoid lung. Th17.1 lymphocytes are elevated in lupus and Takayasu arteritis and associate with disease activity. Future studies should evaluate isolated Th17.1 lymphocytes from peripheral blood or sites of pathology such as synovial fluid and assess their modulation with immunosuppressive therapy in vitro. The analysis of gene expression signature of isolated Th17.1 lymphocytes might enable the identification of newer therapeutic strategies specifically targeting these cell populations in inflammatory rheumatic diseases. Key Points • Th17.1 lymphocytes are a subset of Th17 lymphocytes secreting both IFN-γ and IL-17 • Th17.1 lymphocytes drive neutrophilic inflammation, granuloma formation, and corticosteroid resistance • Th17.1 lymphocytes are elevated in rheumatoid arthritis and sarcoidosis at sites of inflammation • Increased circulating Th17.1 lymphocytes have been identified in lupus and Takayasu arteritis and associate with active disease.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India.
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow-226014, India
| |
Collapse
|
8
|
Byg KE, Illes Z, Sejbaek T, Lambertsen KL, Ellingsen T, Nielsen HH. Inflammatory profiles in plasma and cerebrospinal fluid of patients with neurosarcoidosis. J Neuroimmunol 2022; 367:577849. [DOI: 10.1016/j.jneuroim.2022.577849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
9
|
Zhang H, Costabel U, Dai H. The Role of Diverse Immune Cells in Sarcoidosis. Front Immunol 2021; 12:788502. [PMID: 34868074 PMCID: PMC8640342 DOI: 10.3389/fimmu.2021.788502] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcoidosis is a systemic inflammatory disorder of unknown etiology characterized by tissue infiltration with macrophages and lymphocytes and associated non-caseating granuloma formation. The disease primarily affects the lungs. Patients suffering from sarcoidosis show a wide range of clinical symptoms, natural history and disease outcomes. Originally described as a Th1-driven disease, sarcoidosis involves a complex interplay among diverse immune cells. This review highlights recent advances in the pathogenesis of sarcoidosis, with emphasis on the role of different immune cells. Accumulative evidence suggests Th17 cells, IFN-γ-producing Th17 cells or Th17.1 cells, and regulatory T (Treg) cells play a critical role. However, their specific actions, whether protective or pathogenic, remain to be clarified. Macrophages are also involved in granuloma formation, and M2 polarization may be predictive of fibrosis. Previously neglected cells including B cells, dendritic cells (DCs), natural killer (NK) cells and natural killer T (NKT) cells were studied more recently for their contribution to sarcoid granuloma formation. Despite these advances, the pathogenesis remains incompletely understood, indicating an urgent need for further research to reveal the distinct immunological events in this process, with hope to open up new therapeutic avenues and if possible, to develop preventive measures.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Peking Union Medical College, Beijing, China
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, Essen, Germany
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China
| |
Collapse
|
10
|
Barna BP, Judson MA, Thomassen MJ. Inflammatory Pathways in Sarcoidosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:39-52. [PMID: 34019262 DOI: 10.1007/978-3-030-68748-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Concepts regarding etiology and pathophysiology of sarcoidosis have changed remarkably within the past 5 years. Sarcoidosis is now viewed as a complex multi-causation disease related to a diverse collection of external environmental or infectious signals. It is generally accepted that the cause of sarcoidosis is unknown. Moreover, concepts of the inflammatory pathway have been modified by the realization that intrinsic genetic factors and innate immunity may modify adaptive immune responses to external triggers. With those potential regulatory pathways in mind, we will attempt to discuss the current understanding of the inflammatory response in sarcoidosis with emphasis on development of pulmonary granulomatous pathology. In that context, we will emphasize that both macrophages and T lymphocytes play key roles, with sometimes overlapping cytokine production (i.e., TNFα and IFN-γ) but also with unique mediators that influence the pathologic picture. Numerous studies have shown that in a sizable number of sarcoidosis patients, granulomas spontaneously resolve, usually within 3 years. Other sarcoidosis patients, however, may develop a chronic granulomatous disease which may subsequently lead to fibrosis. This chapter will outline our current understanding of inflammatory pathways in sarcoidosis which initiate and mediate granulomatous changes or onset of pulmonary fibrosis.
Collapse
Affiliation(s)
- Barbara P Barna
- Program in Lung Cell Biology and Translational Research, Division of Pulmonary and Critical Care Medicine, East Carolina University, Greenville, NC, USA
| | - Marc A Judson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
| | - Mary Jane Thomassen
- Program in Lung Cell Biology and Translational Research, Division of Pulmonary and Critical Care Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
11
|
West JD, Austin ED, Rizzi EM, Yan L, Tanjore H, Crabtree AL, Moore CS, Muthian G, Carrier EJ, Jacobson DA, Hamid R, Kendall PL, Majka S, Rathinasabapathy A. KCNK3 Mutation Causes Altered Immune Function in Pulmonary Arterial Hypertension Patients and Mouse Models. Int J Mol Sci 2021; 22:ijms22095014. [PMID: 34065088 PMCID: PMC8126011 DOI: 10.3390/ijms22095014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of function KCNK3 mutation is one of the gene variants driving hereditary pulmonary arterial hypertension (PAH). KCNK3 is expressed in several cell and tissue types on both membrane and endoplasmic reticulum and potentially plays a role in multiple pathological process associated with PAH. However, the role of various stressors driving the susceptibility of KCNK3 mutation to PAH is unknown. Hence, we exposed kcnk3fl/fl animals to hypoxia, metabolic diet and low dose lipopolysaccharide (LPS) and performed molecular characterization of their tissue. We also used tissue samples from KCNK3 patients (skin fibroblast derived inducible pluripotent stem cells, blood, lungs, peripheral blood mononuclear cells) and performed microarray, immunohistochemistry (IHC) and mass cytometry time of flight (CyTOF) experiments. Although a hypoxic insult did not alter vascular tone in kcnk3fl/fl mice, RNASeq study of these lungs implied that inflammatory and metabolic factors were altered, and the follow-up diet study demonstrated a dysregulation of bone marrow cells in kcnk3fl/fl mice. Finally, a low dose LPS study clearly showed that inflammation could be a possible second hit driving PAH in kcnk3fl/fl mice. Multiplex, IHC and CyTOF immunophenotyping studies on human samples confirmed the mouse data and strongly indicated that cell mediated, and innate immune responses may drive PAH susceptibility in these patients. In conclusion, loss of function KCNK3 mutation alters various physiological processes from vascular tone to metabolic diet through inflammation. Our data suggests that altered circulating immune cells may drive PAH susceptibility in patients with KCNK3 mutation.
Collapse
Affiliation(s)
- James D. West
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Eric D. Austin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Elise M. Rizzi
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Ling Yan
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Amber L. Crabtree
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Christy S. Moore
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - Gladson Muthian
- Department of Cancer Biology, Biochemistry and Neuropharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Erica J. Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA;
| | - Rizwan Hamid
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (E.D.A.); (L.Y.); (R.H.)
| | - Peggy L. Kendall
- Division of Allergy and Immunology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; (E.M.R.); (P.L.K.)
| | - Susan Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA;
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (J.D.W.); (H.T.); (A.L.C.); (C.S.M.); (E.J.C.)
- Correspondence:
| |
Collapse
|
12
|
Mousapasandi A, Herbert C, Thomas P. Potential use of biomarkers for the clinical evaluation of sarcoidosis. J Investig Med 2021; 69:jim-2020-001659. [PMID: 33452128 DOI: 10.1136/jim-2020-001659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/20/2022]
Abstract
Sarcoidosis is a systemic granulomatous disease of unknown etiology and pathogenesis with a heterogeneous clinical presentation. In the appropriate clinical and radiological context and with the exclusion of other diagnoses, the disease is characterized by the pathological presence of non-caseating epithelioid cell granulomas. Sarcoidosis is postulated to be a multifactorial disease caused by chronic antigenic stimulation. The immunopathogenesis of sarcoidosis encompasses a complex interaction between the host, genetic factors and postulated environmental and infectious triggers, which result in granuloma development.The exact pathogenesis of the disease has yet to be elucidated, but some of the inflammatory pathways that play a key role in disease progression and outcomes are becoming apparent, and these may form the logical basis for selecting potential biomarkers.Biomarkers are biological molecules that are altered pathologically. To date, there exists no single reliable biomarker for the evaluation of sarcoidosis, either diagnostically or prognostically but new candidates are emerging. A diagnosis of sarcoidosis ideally requires a biopsy confirming non-caseating granulomas, but the likelihood of progression that requires intervention remains unpredictable. These challenging aspects could be potentially resolved by incorporating biomarkers into clinical practice for both diagnosis and monitoring disease activity.This review outlines the current knowledge on sarcoidosis with an emphasis on pulmonary sarcoidosis, and delineates the understanding surrounding the implication of biomarkers for the clinical evaluation of sarcoidosis.
Collapse
Affiliation(s)
- Amir Mousapasandi
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Cristan Herbert
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Thomas
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Respiratory Medicine, Prince of Wales' Hospital and Prince of Wales' Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|