1
|
Buso H, Firinu D, Gambier RF, Scarpa R, Garzi G, Soccodato V, Costanzo G, Ledda AG, Rashidy N, Bertozzi I, Nicola S, Tessarin G, Ramigni M, Piovesan C, Vianello F, Vianello A, Del Giacco S, Lougaris V, Brussino L, Jones MG, Quinti I, Agostini C, Rattazzi M, Milito C, Cinetto F. Lung function trajectories in common variable immunodeficiencies: An observational retrospective multicenter study. J Allergy Clin Immunol 2024:S0091-6749(24)01230-2. [PMID: 39566607 DOI: 10.1016/j.jaci.2024.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Respiratory disease is a frequent cause of morbidity and mortality in common variable immunodeficiencies (CVIDs); however, lung function trajectories are poorly understood. OBJECTIVE We sought to determine lung physiology measurements in CVIDs, their temporal trajectory, and their association with clinical and immunologic parameters. METHODS This retrospective study from 5 Italian centers included patients with CVIDs who had longitudinal pulmonary function tests (PFTs) and chest computed tomography scan available. Applying the European Respiratory Society/American Thoracic Society 2021 standard, PFTs were expressed as percentile value within the normal distribution of healthy individuals, with the 5th percentile identified as lower limit of normal (LLN). The association of lung function with clinical and immunologic parameters was investigated. RESULTS The study included 185 patients with CVIDs; 64% had at least 1 lung comorbidity (bronchiectasis: 41%; granulomatous interstitial lung diseases: 24%). At first spirometry, median FEV1 was 3.07 L (interquartile range: 2.40-3.80 L), at the 32nd percentile (6th-61st percentile), and median forced vital capacity (FVC) was 3.70 L (interquartile range: 3.00-.54 L), at the 29th percentile (7th-49th percentile). Of patients, 23% had FEV1 < LLN, and 21% had FVC < LLN. Switched-memory B cells <2% were associated with both FEV1 < LLN (odds ratio 7.58) and FVC < LLN (odds ratio 3.55). In 112 patients with at least 5 years of PFTs, we found no significant difference between measured and predicted annual decline of FEV1 (25.6 mL/year vs 20.7 mL/year) and FVC (15.6 mL/year vs 16.2 mL/year). CONCLUSIONS In our study, lung volumes of the majority of patients with CVIDs were in the lower third of normal distribution of healthy individuals. After diagnosis, rate of lung decline was not accelerated.
Collapse
Affiliation(s)
- Helena Buso
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy.
| | - Renato Finco Gambier
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Riccardo Scarpa
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Valentina Soccodato
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Andrea G Ledda
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Nicolò Rashidy
- Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - Ilaria Bertozzi
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Stefania Nicola
- Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - Giulio Tessarin
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| | | | | | - Fabrizio Vianello
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Vianello
- Department of Cardio-Thoracic, Respiratory Pathophysiology Division, University of Padova, Padova, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Paediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia, Brescia, Italy
| | - Luisa Brussino
- Department of Medical Sciences, University of Torino & Mauriziano Hospital, Torino, Italy
| | - Mark G Jones
- Clinical and Experimental Sciences & NIHR Southampton Biomedical Research Centre, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Isabella Quinti
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Carlo Agostini
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Marcello Rattazzi
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Francesco Cinetto
- Department of Medicine, DIMED, University of Padova, Padova, Italy; Internal Medicine 1, Ca' Foncello University Hospital, AULSS2, Treviso, Italy
| |
Collapse
|
2
|
Fasshauer M, Dinges S, Staudacher O, Völler M, Stittrich A, von Bernuth H, Wahn V, Krüger R. Monogenic Inborn Errors of Immunity with impaired IgG response to polysaccharide antigens but normal IgG levels and normal IgG response to protein antigens. Front Pediatr 2024; 12:1386959. [PMID: 38933494 PMCID: PMC11203071 DOI: 10.3389/fped.2024.1386959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
In patients with severe and recurrent infections, minimal diagnostic workup to test for Inborn Errors of Immunity (IEI) includes a full blood count, IgG, IgA and IgM. Vaccine antibodies against tetanus toxoid are also frequently measured, whereas testing for anti-polysaccharide IgG antibodies and IgG subclasses is not routinely performed by primary care physicians. This basic approach may cause a significant delay in diagnosing monogenic IEI that can present with an impaired IgG response to polysaccharide antigens with or without IgG subclass deficiency at an early stage. Our article reviews genetically defined IEI, that may initially present with an impaired IgG response to polysaccharide antigens, but normal or only slightly decreased IgG levels and normal responses to protein or conjugate vaccine antigens. We summarize clinical, genetic, and immunological findings characteristic for these IEI. This review may help clinicians to identify patients that require extended immunologic and genetic evaluations despite unremarkable basic immunologic findings. We recommend the inclusion of anti-polysaccharide IgG antibodies as part of the initial routine work-up for possible IEI.
Collapse
Affiliation(s)
- Maria Fasshauer
- Immuno Deficiency Center Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig, Germany
| | - Sarah Dinges
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Olga Staudacher
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Stittrich
- Department of Human Genetics, Labor Berlin - Charité Vivantes GmbH, Berlin, Germany
| | - Horst von Bernuth
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Department of Immunology, Labor Berlin - Charité VivantesGmbH, Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Volker Wahn
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Renate Krüger
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
3
|
Justiz-Vaillant AA, Hoyte T, Davis N, Deonarinesingh C, De Silva A, Dhanpaul D, Dookhoo C, Doorpat J, Dopson A, Durgapersad J, Palmer C, Asin-Milan O, Williams-Persad AFA, Arozarena-Fundora R. A Systematic Review of the Clinical Diagnosis of Transient Hypogammaglobulinemia of Infancy. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1358. [PMID: 37628357 PMCID: PMC10453633 DOI: 10.3390/children10081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Transient hypogammaglobulinemia of infancy (THI) is a primary immunodeficiency caused by a temporary decline in serum immunoglobulin G (IgG) levels greater than two standard deviations below the mean age-specific reference values in infants between 5 and 24 months of age. Preterm infants are particularly susceptible to THI, as IgG is only transferred across the placenta from mother to infant during the third trimester of pregnancy. This study aimed to conduct a systematic review of the diagnostic criteria for transient hypogammaglobulinemia of infancy. Systematic review: Three electronic databases (PubMed, MEDLINE, and Google Scholar) were manually searched from September 2021 to April 2022. Abstracts were screened to assess their fit to the inclusion criteria. Data were extracted from the selected studies using an adapted extraction tool (Cochrane). The studies were then assessed for bias using an assessment tool adapted from Cochrane. Of the 215 identified articles, 16 were eligible for examining the diagnostic criteria of THI. These studies were also assessed for bias in the six domains. A total of five studies (31%) had a low risk of bias, while four studies (25%) had a high risk of bias, and bias in the case of seven studies (44%) was unclear. We conclude that THI is only definitively diagnosed after abnormal IgG levels normalise. Hence, THI is not a benign condition, and monitoring for subsequent recurrent infections must be conducted. The diagnostic criteria should also include vaccine and isohaemagglutinin responses to differentiate THI from other immunological disorders in infants.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Trudee Hoyte
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Nikao Davis
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Candice Deonarinesingh
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Amir De Silva
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Dylan Dhanpaul
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Chloe Dookhoo
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Justin Doorpat
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Alexei Dopson
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Joash Durgapersad
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Clovis Palmer
- Tulane National Primate Research Centre, Tulane University, Covington, LA 70433, USA;
| | | | - Arlene Faye-Ann Williams-Persad
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| | - Rodolfo Arozarena-Fundora
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine 685509, Trinidad and Tobago; (T.H.); (N.D.); (C.D.); (A.D.S.); (D.D.); (C.D.); (J.D.); (A.D.); (J.D.); (A.F.-A.W.-P.); (R.A.-F.)
| |
Collapse
|
4
|
Piano Mortari E, Pulvirenti F, Marcellini V, Terreri S, Salinas AF, Ferrari S, Di Napoli G, Guadagnolo D, Sculco E, Albano C, Guercio M, Di Cecca S, Milito C, Garzi G, Pesce AM, Bonanni L, Sinibaldi M, Bordoni V, Di Cecilia S, Accordini S, Castilletti C, Agrati C, Quintarelli C, Zaffina S, Locatelli F, Carsetti R, Quinti I. Functional CVIDs phenotype clusters identified by the integration of immune parameters after BNT162b2 boosters. Front Immunol 2023; 14:1194225. [PMID: 37304298 PMCID: PMC10248522 DOI: 10.3389/fimmu.2023.1194225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Assessing the response to vaccinations is one of the diagnostic criteria for Common Variable Immune Deficiencies (CVIDs). Vaccination against SARS-CoV-2 offered the unique opportunity to analyze the immune response to a novel antigen. We identify four CVIDs phenotype clusters by the integration of immune parameters after BTN162b2 boosters. Methods We performed a longitudinal study on 47 CVIDs patients who received the 3rd and 4th vaccine dose of the BNT162b2 vaccine measuring the generation of immunological memory. We analyzed specific and neutralizing antibodies, spike-specific memory B cells, and functional T cells. Results We found that, depending on the readout of vaccine efficacy, the frequency of responders changes. Although 63.8% of the patients have specific antibodies in the serum, only 30% have high-affinity specific memory B cells and generate recall responses. Discussion Thanks to the integration of our data, we identified four functional groups of CVIDs patients with different B cell phenotypes, T cell functions, and clinical diseases. The presence of antibodies alone is not sufficient to demonstrate the establishment of immune memory and the measurement of the in-vivo response to vaccination distinguishes patients with different immunological defects and clinical diseases.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | | | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ane Fernandez Salinas
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Di Napoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniele Guadagnolo
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Di Cecca
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulia Garzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Pesce
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Livia Bonanni
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Matilde Sinibaldi
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Veronica Bordoni
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Silvia Accordini
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Chiara Agrati
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
IgG antibody response to pneumococcal-conjugated vaccine (Prevenar®13) in children with immunodeficiency disorders. Med Microbiol Immunol 2023; 212:93-102. [PMID: 36595027 DOI: 10.1007/s00430-022-00759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
Measurement of anti-pneumococcal capsular polysaccharides (anti-PnPs) IgG titers is an important tool in the immunologic assessment of patients with suspected immunodeficiency disorders (ID) to reduce the morbi-mortality and minimize severe infections. Retrospectively, we studied the relationship among anti-PnPs IgG response to 3 doses of Prevenar®13, levels of immune system components, leukocyte populations, and clinical data in children with ID. Serum samples were collected at least 4 weeks post vaccination. Subsequently, multi-serotype enzyme-linked immunosorbent assay (ELISA) was performed. Eighty-seven children (under 12 years) were enrolled. Primary immunodeficiency disorder (PID) was the most common disorder (45) followed by possible immunodeficiency disorder (POID) (19), secondary immunodeficiency disorder (SID) (15), and mixed immunodeficiency disorder (MID) (8). The median age was 3 (1.50-5.33) years, 65% of patients were male. Deficient production of anti-PnPs IgG (titer ≤ 50 mg/L) was detected in 47 patients (54%), especially in the MID group, all of them under immunosuppressive therapy. In PCV13 responders, the mean of leukocyte population levels was higher with statistically significance differences in CD4 + /CD8 + T lymphocytes (p = 0.372, p = 0.014) and CD56 + /CD16 + NK (p = 0.016). Patients with previous bone marrow transplantation were the worst PCV13 responders. Pneumococcal IgG antibody titers (post-vaccination) along with clinical and analytical markers represented.
Collapse
|
6
|
Peterson LK. Application of vaccine response in the evaluation of patients with suspected B-cell immunodeficiency: Assessment of responses and challenges with interpretation. J Immunol Methods 2022; 510:113350. [PMID: 36067869 DOI: 10.1016/j.jim.2022.113350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 12/31/2022]
Abstract
Diagnostic vaccination is an integral component in the evaluation of patients suspected to have a B cell or humoral deficiency. Evaluation of antibody production in response to both protein- and polysaccharide-based vaccines aids in distinguishing between specific categories of humoral deficiency. Although assessment of pneumococcal polysaccharide responses is widely available and included in diagnostic guidelines, significant variability still exists in the measurement and interpretation of these responses. Interpretation can also be complicated by age, vaccination history and treatment with immunoglobulin replacement therapy. Despite the challenges and limitations of evaluating pneumococcal polysaccharide vaccine responses, it can provide valuable diagnostic and prognostic information to guide therapeutic intervention. Future efforts are needed to further standardize measurement and interpretation of pneumococcal antibody responses to vaccination and to identify and establish other methods and/or vaccines as alternatives to pneumococcal vaccination to address the challenges in certain patient populations.
Collapse
Affiliation(s)
- Lisa K Peterson
- Department of Pathology, University of Utah, 15 N Medical Dr. East Ste. 1100, Salt Lake City, UT 84112, USA; ARUP Institute for Clinical and Experimental Pathology, 500 Chipeta Way, Salt Lake City, UT 84108, USA.
| |
Collapse
|
7
|
Pulvirenti F, Di Cecca S, Sinibaldi M, Piano Mortari E, Terreri S, Albano C, Guercio M, Sculco E, Milito C, Ferrari S, Locatelli F, Quintarelli C, Carsetti R, Quinti I. T-Cell Defects Associated to Lack of Spike-Specific Antibodies after BNT162b2 Full Immunization Followed by a Booster Dose in Patients with Common Variable Immune Deficiencies. Cells 2022; 11:1918. [PMID: 35741048 PMCID: PMC9221747 DOI: 10.3390/cells11121918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 02/07/2023] Open
Abstract
Following the third booster dose of the mRNA vaccine, Common Variable Immune Deficiencies (CVID) patients may not produce specific antibodies against the virus spike protein. The T-cell abnormalities associated with the absence of antibodies are still a matter of investigation. Spike-specific IgG and IgA, peripheral T cell subsets, CD40L and cytokine expression, and Spike-specific specific T-cells responses were evaluated in 47 CVID and 26 healthy donors after three doses of BNT162b2 vaccine. Testing was performed two weeks after the third vaccine dose. Thirty-six percent of the patients did not produce anti-SARS-CoV-2 IgG or IgA antibodies. Non responder patients had lower peripheral blood lymphocyte counts, circulating naïve and central memory T-cells, low CD40L expression on the CD4+CD45+RO+ and CD8+CD45+RO+ T-cells, high frequencies of TNFα and IFNγ expressing CD8+ T-cells, and defective release of IFNγ and TNFα following stimulation with Spike peptides. Non responders had a more complex disease phenotype, with higher frequencies of structural lung damage and autoimmunity, especially autoimmune cytopenia. Thirty-five percent of them developed a SARS-CoV-2 infection after immunization in comparison to twenty percent of CVID who responded to immunization with antibodies production. CVID-associated T cell abnormalities contributed to the absence of SARS-CoV-2 specific antibodies after full immunization.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy;
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Matilde Sinibaldi
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Sara Terreri
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Eleonora Sculco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| | - Simona Ferrari
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (S.D.C.); (M.S.); (M.G.); (F.L.); (C.Q.)
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (E.P.M.); (S.T.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (E.S.); (C.M.)
| |
Collapse
|
8
|
Sauerwein KMT, Geier CB, Stemberger RF, Akyaman H, Illes P, Fischer MB, Eibl MM, Walter JE, Wolf HM. Antigen-Specific CD4+ T-Cell Activation in Primary Antibody Deficiency After BNT162b2 mRNA COVID-19 Vaccination. Front Immunol 2022; 13:827048. [PMID: 35237272 PMCID: PMC8882590 DOI: 10.3389/fimmu.2022.827048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Previous studies on immune responses following COVID-19 vaccination in patients with common variable immunodeficiency (CVID) were inconclusive with respect to the ability of the patients to produce vaccine-specific IgG antibodies, while patients with milder forms of primary antibody deficiency such as immunoglobulin isotype deficiency or selective antibody deficiency have not been studied at all. In this study we examined antigen-specific activation of CXCR5-positive and CXCR5-negative CD4+ memory cells and also isotype-specific and functional antibody responses in patients with CVID as compared to other milder forms of primary antibody deficiency and healthy controls six weeks after the second dose of BNT162b2 vaccine against SARS-CoV-2. Expression of the activation markers CD25 and CD134 was examined by multi-color flow cytometry on CD4+ T cell subsets stimulated with SARS-CoV-2 spike peptides, while in parallel IgG and IgA antibodies and surrogate virus neutralization antibodies against SARS-CoV-2 spike protein were measured by ELISA. The results show that in CVID and patients with other milder forms of antibody deficiency normal IgG responses (titers of spike protein-specific IgG three times the detection limit or more) were associated with intact vaccine-specific activation of CXCR5-negative CD4+ memory T cells, despite defective activation of circulating T follicular helper cells. In contrast, CVID IgG nonresponders showed defective vaccine-specific and superantigen-induced activation of both CD4+T cell subsets. In conclusion, impaired TCR-mediated activation of CXCR5-negative CD4+ memory T cells following stimulation with vaccine antigen or superantigen identifies patients with primary antibody deficiency and impaired IgG responses after BNT162b2 vaccination.
Collapse
Affiliation(s)
- Kai M. T. Sauerwein
- Immunology Outpatient Clinic, Vienna, Austria
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
- Biomedizinische Forschung & Bio-Produkte AG, Vienna, Austria
| | | | | | | | - Peter Illes
- USF Health Department of Pediatrics, Division of Allergy/Immunology, Children´s Research Institute, St. Petersburg, FL, United States
| | - Michael B. Fischer
- Department for Biomedical Research, Center of Experimental Medicine, Danube University Krems, Krems an der Donau, Austria
- Clinic for Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Martha M. Eibl
- Immunology Outpatient Clinic, Vienna, Austria
- Biomedizinische Forschung & Bio-Produkte AG, Vienna, Austria
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy/Immunology, Department of Pediatrics, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, United States
| | - Hermann M. Wolf
- Immunology Outpatient Clinic, Vienna, Austria
- Medical School, Sigmund Freud Private University, Vienna, Austria
- *Correspondence: Hermann M. Wolf,
| |
Collapse
|
9
|
Quinti I, Locatelli F, Carsetti R. The Immune Response to SARS-CoV-2 Vaccination: Insights Learned From Adult Patients With Common Variable Immune Deficiency. Front Immunol 2022; 12:815404. [PMID: 35126372 PMCID: PMC8807657 DOI: 10.3389/fimmu.2021.815404] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
CVID patients have an increased susceptibility to vaccine-preventable infections. The question on the potential benefits of immunization of CVID patients against SARS-CoV-2 offered the possibility to analyze the defective mechanisms of immune responses to a novel antigen. In CVID, as in immunocompetent subjects, the role of B and T cells is different between infected and vaccinated individuals. Upon vaccination, variable anti-Spike IgG responses have been found in different CVID cohorts. Immunization with two doses of mRNA vaccine did not generate Spike-specific classical memory B cells (MBCs) but atypical memory B cells (ATM) with low binding capacity to Spike protein. Spike-specific T-cells responses were also induced in CVID patients with a variable frequency, differently from specific T cells produced after multiple exposures to viral antigens following influenza virus immunization and infection. The immune response elicited by SARS-CoV-2 infection was enhanced by subsequent immunization underlying the need to immunize convalescent COVID-19 CVID patients after recovery. In particular, immunization after SARS-Cov-2 infection generated Spike-specific classical memory B cells (MBCs) with low binding capacity to Spike protein and Spike-specific antibodies in a high percentage of CVID patients. The search for a strategy to elicit an adequate immune response post-vaccination in CVID patients is necessary. Since reinfection with SARS-CoV-2 has been documented, at present SARS-CoV-2 positive CVID patients might benefit from new preventing strategy based on administration of anti-SARS-CoV-2 monoclonal antibodies.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- *Correspondence: Isabella Quinti,
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Diagnostic Immunology Clinical Unit, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
10
|
Pulvirenti F, Fernandez Salinas A, Milito C, Terreri S, Piano Mortari E, Quintarelli C, Di Cecca S, Lagnese G, Punziano A, Guercio M, Bonanni L, Auria S, Villani F, Albano C, Locatelli F, Spadaro G, Carsetti R, Quinti I. B Cell Response Induced by SARS-CoV-2 Infection Is Boosted by the BNT162b2 Vaccine in Primary Antibody Deficiencies. Cells 2021; 10:cells10112915. [PMID: 34831138 PMCID: PMC8616496 DOI: 10.3390/cells10112915] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Patients with primary antibody deficiencies are at risk in the current COVID-19 pandemic due to their impaired response to infection and vaccination. Specifically, patients with common variable immunodeficiency (CVID) generated poor spike-specific antibody and T cell responses after immunization. Methods: Thirty-four CVID convalescent patients after SARS-CoV-2 infection, 38 CVID patients immunized with two doses of the BNT162b2 vaccine, and 20 SARS-CoV-2 CVID convalescents later and immunized with BNT162b2 were analyzed for the anti-spike IgG production and the generation of spike-specific memory B cells and T cells. Results: Spike-specific IgG was induced more frequently after infection than after vaccination (82% vs. 34%). The antibody response was boosted in convalescents by vaccination. Although immunized patients generated atypical memory B cells possibly by extra-follicular or incomplete germinal center reactions, convalescents responded to infection by generating spike-specific memory B cells that were improved by the subsequent immunization. Poor spike-specific T cell responses were measured independently from the immunological challenge. Conclusions: SARS-CoV-2 infection primed a more efficient classical memory B cell response, whereas the BNT162b2 vaccine induced non-canonical B cell responses in CVID. Natural infection responses were boosted by subsequent immunization, suggesting the possibility to further stimulate the immune response by additional vaccine doses in CVID.
Collapse
Affiliation(s)
- Federica Pulvirenti
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Ane Fernandez Salinas
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Concetta Quintarelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Stefano Di Cecca
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Marika Guercio
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
| | - Livia Bonanni
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Stefania Auria
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Francesca Villani
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy; (F.P.); (L.B.); (S.A.); (F.V.)
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Franco Locatelli
- Department Onco-Haematology, and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, 00116 Rome, Italy; (C.Q.); (S.D.C.); (M.G.); (F.L.)
- Dipartimento Materno-Infantile e Scienze Urologiche, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy; (G.L.); (A.P.); (G.S.)
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Viale di San Paolo, 00146 Rome, Italy; (S.T.); (E.P.M.); (C.A.); (R.C.)
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (A.F.S.); (C.M.)
- Correspondence: ; Tel.: +39-0649972007
| |
Collapse
|
11
|
Diks AM, Overduin LA, van Leenen LD, Slobbe L, Jolink H, Visser LG, van Dongen JJM, Berkowska MA. B-Cell Immunophenotyping to Predict Vaccination Outcome in the Immunocompromised - A Systematic Review. Front Immunol 2021; 12:690328. [PMID: 34557188 PMCID: PMC8452967 DOI: 10.3389/fimmu.2021.690328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Vaccination is the most effective measure to prevent infections in the general population. Its efficiency strongly depends on the function and composition of the immune system. If the immune system lacks critical components, patients will not be fully protected despite a completed vaccination schedule. Antigen-specific serum immunoglobulin levels are broadly used correlates of protection. These are the products of terminally differentiated B cells - plasma cells. Here we reviewed the literature on how aberrancies in B-cell composition and function influence immune responses to vaccinations. In a search through five major literature databases, 6,537 unique articles published from 2000 and onwards were identified. 75 articles were included along three major research lines: extremities of life, immunodeficiency and immunosuppression. Details of the protocol can be found in the International Prospective Register of Systematic Reviews [PROSPERO (registration number CRD42021226683)]. The majority of articles investigated immune responses in adults, in which vaccinations against pneumococci and influenza were strongly represented. Lack of baseline information was the most common reason of exclusion. Irrespective of study group, three parameters measured at baseline seemed to have a predictive value in assessing vaccine efficacy: (1) distribution of B-cell subsets (mostly a reduction in memory B cells), (2) presence of exhausted/activated B cells, or B cells with an aberrant phenotype, and (3) pre-existing immunological memory. In this review we showed how pre-immunization (baseline) knowledge of circulating B cells can be used to predict vaccination efficacy. We hope that this overview will contribute to optimizing vaccination strategies, especially in immunocompromised patients.
Collapse
Affiliation(s)
- Annieck M Diks
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Lisanne A Overduin
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Laurens D van Leenen
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Lennert Slobbe
- Department of Internal Medicine, Section of Infectious Diseases, Institute for Tropical Diseases, Erasmus Medical Center (MC), Rotterdam, Netherlands
| | - Hetty Jolink
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Leonardus G Visser
- Department of Infectious Diseases, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Magdalena A Berkowska
- Department of Immunology, Leiden University Medical Center (LUMC), Leiden, Netherlands
| |
Collapse
|
12
|
Milito C, Soccodato V, Collalti G, Lanciarotta A, Bertozzi I, Rattazzi M, Scarpa R, Cinetto F. Vaccination in PADs. Vaccines (Basel) 2021; 9:vaccines9060626. [PMID: 34207916 PMCID: PMC8230118 DOI: 10.3390/vaccines9060626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022] Open
Abstract
Primary antibody deficiencies (PADs) are the most common primary immunodeficiencies (PIDs). They can be divided into the following groups, depending on their immunological features: agammaglobulinemia; common variable immunodeficiency (CVID) isotype; hyper IgM isotype; light chain or functional deficiencies with normal B cell count; specific antibody deficiency with normal Ig concentrations and normal numbers of B cells and transient hypogammaglobulinemia of infancy. The role of vaccination in PADs is recognized as therapeutic, diagnostic and prognostic and may be used in patients with residual B-cell function to provide humoral immunity to specific infective agents. According to their content and mechanisms, vaccines are grouped as live attenuated, inactivated (conjugated, polysaccharide), mRNA or replication-deficient vector vaccines. Vaccination may be unsafe or less effective when using certain vaccines and in specific types of immunodeficiency. Inactivated vaccines can be administered in PAD patients even if they could not generate a protective response; live attenuated vaccines are not recommended in major antibody deficiencies. From December 2020, European Medicines Agency (EMA) approved vaccines against COVID-19 infection: according to ESID advises, those vaccinations are recommended in patients with PADs. No specific data are available on safety and efficacy in PAD patients.
Collapse
Affiliation(s)
- Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.S.); (G.C.)
- Correspondence:
| | - Valentina Soccodato
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.S.); (G.C.)
| | - Giulia Collalti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.S.); (G.C.)
| | - Alison Lanciarotta
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Ilaria Bertozzi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Marcello Rattazzi
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Riccardo Scarpa
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| | - Francesco Cinetto
- Department of Medicine, University of Padua, 35122 Padua, Italy; (A.L.); (I.B.); (M.R.); (R.S.); (F.C.)
- Internal Medicine I, Ca’ Foncello Hospital, 10103 Treviso, Italy
| |
Collapse
|
13
|
Janssen LMA, Heron M, Murk JL, Leenders ACAP, Rijkers GT, de Vries E. The clinical relevance of IgM and IgA anti-pneumococcal polysaccharide ELISA assays in patients with suspected antibody deficiency. Clin Exp Immunol 2021; 205:213-221. [PMID: 33877708 PMCID: PMC8274160 DOI: 10.1111/cei.13605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 11/28/2022] Open
Abstract
Unlike immunoglobulin (Ig)G pneumococcal polysaccharide (PnPS)‐antibodies, PnPS IgA and IgM‐antibodies are not routinely determined for the assessment of immunocompetence. It is not yet known whether an isolated inability to mount a normal IgM or IgA‐PnPS response should be considered a relevant primary antibody deficiency (PAD). We studied the clinical relevance of anti‐PnPS IgM and IgA‐assays in patients with suspected primary immunodeficiency in a large teaching hospital in ’s‐Hertogenbosch, the Netherlands. Serotype‐specific‐PnPS IgG assays were performed; subsequently, 23‐valent‐PnPS IgG assays (anti‐PnPS IgG assays), and later anti‐PnPS IgA and IgM assays, were performed in archived material (240 patients; 304 samples). Eleven of 65 pre‐ and six of 10 post‐immunization samples from good responders to PnPS serotype‐specific IgG testing had decreased anti‐PnPS IgA and/or IgM titres. Of these, three pre‐ and no post‐immunization samples were from patients previously classified as ‘no PAD’. Determination of anti‐PnPS IgA and IgM in addition to anti‐PnPS IgG did not reduce the need for serotype‐specific PnPS IgG testing to assess immunocompetence [receiver operating characteristic (ROC) analysis of post‐immunization samples: anti‐PnPS IgA + IgG area under the curve (AUC) = 0.80, 95% confidence interval (CI) = 0.63–0.97; anti‐PnPS IgM + IgG AUC 0.80, 95% CI = 0.62–0.98; anti‐PnPS IgA + IgG + IgM AUC = 0.71, 95% CI = 0.51–0.91; anti‐PnPS IgG AUC = 0.93, 95% CI = 0.85–1.00]. Our data show that patients classified as having an intact antibody response based on measurement of serotype‐specific PnPS IgG can still display impaired anti‐PnPS IgM and IgA responses, and that the additional measurement of anti‐PnPS IgA and IgM could not reduce the need for serotype‐specific IgG testing. Future studies are needed to investigate the clinical relevance of potential ‘specific IgA or IgM antibody deficiency’ in patients with recurrent airway infections in whom no PAD could be diagnosed according to the current definitions.
Collapse
Affiliation(s)
- Lisanne M A Janssen
- Department of Tranzo, Tilburg University, Tilburg, the Netherlands.,Department of Paediatrics, Amalia Children's Hospital, Nijmegen, the Netherlands
| | - Michiel Heron
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | - Jean-Luc Murk
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | | | - Ger T Rijkers
- Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands.,Science Department, University College Roosevelt, Middelburg, the Netherlands
| | - Esther de Vries
- Department of Tranzo, Tilburg University, Tilburg, the Netherlands.,Laboratory of Medical Microbiology and Immunology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| |
Collapse
|
14
|
Quinti I, Mortari EP, Fernandez Salinas A, Milito C, Carsetti R. IgA Antibodies and IgA Deficiency in SARS-CoV-2 Infection. Front Cell Infect Microbiol 2021; 11:655896. [PMID: 33889552 PMCID: PMC8057809 DOI: 10.3389/fcimb.2021.655896] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/16/2021] [Indexed: 01/01/2023] Open
Abstract
A large repertoire of IgA is produced by B lymphocytes with T-independent and T-dependent mechanisms useful in defense against pathogenic microorganisms and to reduce immune activation. IgA is active against several pathogens, including rotavirus, poliovirus, influenza virus, and SARS-CoV-2. It protects the epithelial barriers from pathogens and modulates excessive immune responses in inflammatory diseases. An early SARS-CoV-2 specific humoral response is dominated by IgA antibodies responses greatly contributing to virus neutralization. The lack of anti-SARS-Cov-2 IgA and secretory IgA (sIgA) might represent a possible cause of COVID-19 severity, vaccine failure, and possible cause of prolonged viral shedding in patients with Primary Antibody Deficiencies, including patients with Selective IgA Deficiency. Differently from other primary antibody deficiency entities, Selective IgA Deficiency occurs in the vast majority of patients as an asymptomatic condition, and it is often an unrecognized, Studies are needed to clarify the open questions raised by possible consequences of a lack of an IgA response to SARS-CoV-2.
Collapse
Affiliation(s)
- Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- Department of Laboratory Medicine, Research Area Multimodal Medicine, Diagnostic Immunology and Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- Department of Laboratory Medicine, Research Area Multimodal Medicine, Diagnostic Immunology and Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
15
|
Cavaliere FM, Graziani S, Del Duca E, Bilotta C, Sgrulletti M, Quinti I, Moschese V. IgM, IgA and IgG response to conjugate polysaccharides in children with recurrent respiratory infections. Scand J Immunol 2020; 93:e12955. [PMID: 32767783 DOI: 10.1111/sji.12955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - Simona Graziani
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Elisabetta Del Duca
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Caterina Bilotta
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|