1
|
Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q, Kuca K. Age-associated changes in innate and adaptive immunity: role of the gut microbiota. Front Immunol 2024; 15:1421062. [PMID: 39351234 PMCID: PMC11439693 DOI: 10.3389/fimmu.2024.1421062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.
Collapse
Affiliation(s)
- Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czechia
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| |
Collapse
|
2
|
Young AP, Denovan-Wright EM. JAK1/2 Regulates Synergy Between Interferon Gamma and Lipopolysaccharides in Microglia. J Neuroimmune Pharmacol 2024; 19:14. [PMID: 38642237 DOI: 10.1007/s11481-024-10115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.
Collapse
Affiliation(s)
- Alexander P Young
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
3
|
Stojiljkovic MR, Schmeer C, Witte OW. Senescence and aging differentially alter key metabolic pathways in murine brain microglia. Neurosci Lett 2024; 828:137751. [PMID: 38548220 DOI: 10.1016/j.neulet.2024.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Microglia, the resident immune cells of the central nervous system, are critically involved in maintaining brain homeostasis. With age, microglia display morphological and functional alterations that have been associated with cognitive decline and neurodegeneration. Although microglia seem to participate in an increasing number of biological processes which require a high energy demand, little is known about their metabolic regulation under physiological and pathophysiological conditions and during aging/senescence. Here, we determined mRNA expression levels of critical rate limiting enzymes in several key metabolic pathways including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis in association with oxidative phosphorylation in microglia, both under aging and senescent conditions. We found strong evidence for different metabolic changes occuring in senescent vs. aged microglia cells. While senescent microglia display a hypermetabolic state as indicated by increased expression of key enzymes involved in glycolysis and pentose phosphate pathway, aging microglia are rather in a state of hypometabolism. Our findings indicate that studies involving aging and senescent microglia require a clear differentiation between these microglial states due to profound metabolic differences observed here. Understanding metabolic changes in senescent and aged microglia may lead to novel strategies to decrease over-activation of these cells due to aging, which is associated to the process of inflamm-aging and neurodegeneration.
Collapse
Affiliation(s)
- Milan R Stojiljkovic
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Christian Schmeer
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
4
|
Kato Y, Takatori S, Akahori A, Etani H, Chu YN, Tomita T. Protocol for gene knockdown using siRNA in primary cultured neonatal murine microglia. STAR Protoc 2024; 5:102867. [PMID: 38341850 PMCID: PMC10867443 DOI: 10.1016/j.xpro.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/13/2024] Open
Abstract
In this protocol, we describe the small interfering RNA (siRNA)-mediated gene knockdown in primary mouse microglia, providing an approach to investigate functions such as phagocytosis and chemotaxis. The approach includes siRNA design, establishment of mixed glial cultures, microglia isolation, and siRNA transfection. Validation of knockdown efficacy employs quantitative immunoblot analysis. This technique empowers the investigation of specific molecular and cellular functions within the intricate microenvironment of the brain, comprising diverse cell types. For complete details on the use and execution of this protocol, please refer to Iguchi et al. (2023).1.
Collapse
Affiliation(s)
- Yuma Kato
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sho Takatori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Aika Akahori
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hayato Etani
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yung Ning Chu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
5
|
Zhang H, Han B, Li Z, Zhao Y, Du Y, Yang Y, Wang S, Zhang J. The role and mechanism of inflammatory response to growing rod implantation in early onset scoliosis. Front Cell Dev Biol 2023; 11:1282573. [PMID: 37965575 PMCID: PMC10642228 DOI: 10.3389/fcell.2023.1282573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Growing rod implantation, a surgery treatment for EOS (early onset scoliosis), may cause a kind of chronic inflammation called metalosis and all other implant-related complications because of the metal debris released by the implants as a result of fraction and corrosion. There is no complete explanation of immunologic mechanisms of metalosis up to now. This review demonstrates the researches on metalosis from the clinical issues down to basic immunologic mechanisms. Adverse reactions of metal implants are mainly the formation of NLRP3 (nod-like receptor protein 3) inflammasome, primed by TLR4 (toll-like receptor protein 4), activated by phagocytosis and often accompanied by type Ⅳ hypersensitive reaction. Recent studies found that TNF-α (tumor necrosis factor α) also participates in priming, and activation of inflammasome requires disturbance of lysosome and release of cathepsin B. Ca-074Me and MCC950 are therapeutic interventions worth exploring in aseptic loosening of orthopedic implants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengru Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Towriss M, MacVicar B, Ciernia AV. Modelling Microglial Innate Immune Memory In Vitro: Understanding the Role of Aerobic Glycolysis in Innate Immune Memory. Int J Mol Sci 2023; 24:8967. [PMID: 37240311 PMCID: PMC10219556 DOI: 10.3390/ijms24108967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system, play important roles in maintaining brain homeostasis and facilitating the brain's innate immune responses. Following immune challenges microglia also retain immune memories, which can alter responses to secondary inflammatory challenges. Microglia have two main memory states, training and tolerance, which are associated with increased and attenuated expression of inflammatory cytokines, respectively. However, the mechanisms differentiating these two distinct states are not well understood. We investigated mechanisms underlying training versus tolerance memory paradigms in vitro in BV2 cells using B-cell-activating factor (BAFF) or bacterial lipopolysaccharide (LPS) as a priming stimulus followed by LPS as a second stimulus. BAFF followed by LPS showed enhanced responses indicative of priming, whereas LPS followed by LPS as the second stimulus caused reduced responses suggestive of tolerance. The main difference between the BAFF versus the LPS stimulus was the induction of aerobic glycolysis by LPS. Inhibiting aerobic glycolysis during the priming stimulus using sodium oxamate prevented the establishment of the tolerized memory state. In addition, tolerized microglia were unable to induce aerobic glycolysis upon LPS restimulus. Therefore, we conclude that aerobic glycolysis triggered by the first LPS stimulus was a critical step in the induction of innate immune tolerance.
Collapse
Affiliation(s)
- Morgan Towriss
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brian MacVicar
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
7
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
8
|
Effects of NADPH Oxidase Isoform-2 (NOX2) Inhibition on Behavioral Responses and Neuroinflammation in a Mouse Model of Neuropathic Pain. Biomedicines 2023; 11:biomedicines11020416. [PMID: 36830952 PMCID: PMC9953009 DOI: 10.3390/biomedicines11020416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
NADPH oxidase isoform-2 (NOX2) has been implicated in the pathophysiology of neuropathic pain (NP), mostly through the modulation of neuroinflammation. Since it is also accepted that some neuroimmune mechanisms underlying NP are sex-dependent, we aimed to evaluate the effects of early systemic treatment with the NOX2-selective inhibitor (NOX2i) GSK2795039 on behavioral responses and spinal neuroinflammation in spared nerve injury (SNI)-induced NP in male and female mice. Mechanical sensitivity was evaluated with the von Frey test, while general well-being and anxiety-like behavior were assessed with burrowing and light/dark box tests. Spinal microglial activation and cytokines IL-1β, IL-6, and IL-10, as well as macrophage colony-stimulating factor (M-CSF) were evaluated by immunofluorescence and multiplex immunoassay, respectively. NOX2i treatment reduced SNI-induced mechanical hypersensitivity and early SNI-induced microglial activation in both sexes. SNI-females, but not males, showed a transient reduction in burrowing activity. NOX2i treatment did not improve their burrowing activity, but tendentially reduced their anxiety-like behavior. NOX2i marginally decreased IL-6 in females, and increased M-CSF in males. Our findings suggest that NOX2-selective inhibition may be a potential therapeutic strategy for NP in both male and female individuals, with particular interest in females due to its apparent favorable impact in anxiety-like behavior.
Collapse
|
9
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
10
|
Persistent muscle hyperalgesia after adolescent stress is exacerbated by a mild-nociceptive input in adulthood and is associated with microglia activation. Sci Rep 2022; 12:18324. [PMID: 36316425 PMCID: PMC9622712 DOI: 10.1038/s41598-022-21808-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
Non-specific low back pain (LBP) is a major global disease burden and childhood adversity predisposes to its development. The mechanisms are largely unknown. Here, we investigated if adversity in young rats augments mechanical hyperalgesia and how spinal cord microglia contribute to this. Adolescent rats underwent restraint stress, control animals were handled. In adulthood, all rats received two intramuscular injections of NGF/saline or both into the lumbar multifidus muscle. Stress induced in rats at adolescence lowered low back pressure pain threshold (PPT; p = 0.0001) and paw withdrawal threshold (PWT; p = 0.0007). The lowered muscle PPT persisted throughout adulthood (p = 0.012). A subsequent NGF in adulthood lowered only PPT (d = 0.87). Immunohistochemistry revealed changes in microglia morphology: stress followed by NGF induced a significant increase in ameboid state (p < 0.05). Repeated NGF injections without stress showed significantly increased cell size in surveilling and bushy states (p < 0.05). Thus, stress in adolescence induced persistent muscle hyperalgesia that can be enhanced by a mild-nociceptive input. The accompanying morphological changes in microglia differ between priming by adolescent stress and by nociceptive inputs. This novel rodent model shows that adolescent stress is a risk factor for the development of LBP in adulthood and that morphological changes in microglia are signs of spinal mechanisms involved.
Collapse
|
11
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
12
|
Pal R, Bradford BM, Mabbott NA. Prion Disease in the Central Nervous System. Front Cell Neurosci 2022; 16:918883. [PMID: 35875357 PMCID: PMC9302378 DOI: 10.3389/fncel.2022.918883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/13/2022] [Indexed: 01/15/2023] Open
Abstract
Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep, are infectious and chronic neurodegenerative diseases to which there are no cures. Infection with prions in the central nervous system (CNS) ultimately causes extensive neurodegeneration, and this is accompanied by prominent microglial and astrocytic activation in affected regions. The microglia are the CNS macrophages and help maintain neuronal homeostasis, clear dead or dying cells and provide defense against pathogens. The microglia also provide neuroprotection during CNS prion disease, but their pro-inflammatory activation may exacerbate the development of the neuropathology. Innate immune tolerance induced by consecutive systemic bacterial lipopolysaccharide (LPS) treatment can induce long-term epigenetic changes in the microglia in the brain that several months later can dampen their responsiveness to subsequent LPS treatment and impede the development of neuritic damage in a transgenic mouse model of Alzheimer’s disease-like pathology. We therefore reasoned that innate immune tolerance in microglia might similarly impede the subsequent development of CNS prion disease. To test this hypothesis groups of mice were first infected with prions by intracerebral injection, and 35 days later given four consecutive systemic injections with LPS to induce innate immune tolerance. Our data show that consecutive systemic LPS treatment did not affect the subsequent development of CNS prion disease. Our data suggests innate immune tolerance in microglia does not influence the subsequent onset of prion disease-induced neuropathology in mice, despite previously published evidence of this effect in an Alzheimer’s disease mouse model.
Collapse
|
13
|
Lajqi T, Frommhold D, Gille C, Hudalla H. Induction of memory-like adaptive responses in murine neutrophils in vitro. Cell Immunol 2022; 376:104535. [DOI: 10.1016/j.cellimm.2022.104535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/02/2023]
|
14
|
Zhang X, Kracht L, Lerario AM, Dubbelaar ML, Brouwer N, Wesseling EM, Boddeke EWGM, Eggen BJL, Kooistra SM. Epigenetic regulation of innate immune memory in microglia. J Neuroinflammation 2022; 19:111. [PMID: 35568856 PMCID: PMC9107649 DOI: 10.1186/s12974-022-02463-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Microglia are the tissue-resident macrophages of the CNS. They originate in the yolk sac, colonize the CNS during embryonic development and form a self-sustaining population with limited turnover. A consequence of their relative slow turnover is that microglia can serve as a long-term memory for inflammatory or neurodegenerative events. Methods Using ATAC-, ChIP- and RNA-sequencing, we characterized the epigenomes and transcriptomes of FACS-purified microglia from mice exposed to different stimuli. A repeated endotoxin challenge (LPS) was used to induce tolerance in microglia, while genotoxic stress (DNA repair deficiency-induced accelerated aging through Ercc1 deficiency) resulted in primed (hypersensitive) microglia. Results Whereas the enrichment of permissive epigenetic marks at enhancer regions could explain training (hyper-responsiveness) of primed microglia to an LPS challenge, the tolerized response of microglia seems to be regulated by loss of permissive epigenetic marks. We identify that inflammatory stimuli and accelerated aging as a result of genotoxic stress activate distinct gene networks. These gene networks and associated biological processes are partially overlapping, which is likely driven by specific transcription factor networks, resulting in altered epigenetic signatures and distinct functional (desensitized vs. primed) microglia phenotypes. Conclusion This study provides insight into epigenetic profiles and transcription factor networks associated with transcriptional signatures of tolerized and trained microglia in vivo, leading to a better understanding of innate immune memory of microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02463-5.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Evelyn M Wesseling
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
15
|
Memory-like response in platelet attenuates platelet hyperactivation in arterial thrombosis. Biochem Biophys Res Commun 2022; 612:154-161. [DOI: 10.1016/j.bbrc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/18/2022]
|
16
|
Lajqi T, Köstlin-Gille N, Hillmer S, Braun M, Kranig SA, Dietz S, Krause C, Rühle J, Frommhold D, Pöschl J, Gille C, Hudalla H. Gut Microbiota-Derived Small Extracellular Vesicles Endorse Memory-like Inflammatory Responses in Murine Neutrophils. Biomedicines 2022; 10:442. [PMID: 35203650 PMCID: PMC8962420 DOI: 10.3390/biomedicines10020442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are classically characterized as merely reactive innate effector cells. However, the microbiome is known to shape the education and maturation process of neutrophils, improving their function and immune-plasticity. Recent reports demonstrate that murine neutrophils possess the ability to exert adaptive responses after exposure to bacterial components such as LPS (Gram-negative bacteria) or LTA (Gram-positive bacteria). We now ask whether small extracellular vesicles (EVs) from the gut may directly mediate adaptive responses in neutrophils in vitro. Murine bone marrow-derived neutrophils were primed in vitro by small EVs of high purity collected from colon stool samples, followed by a second hit with LPS. We found that low-dose priming with gut microbiota-derived small EVs enhanced pro-inflammatory sensitivity as indicated by elevated levels of TNF-α, IL-6, ROS and MCP-1 and increased migratory and phagocytic activity. In contrast, high-dose priming resulted in a tolerant phenotype, marked by increased IL-10 and decreased transmigration and phagocytosis. Alterations in TLR2/MyD88 as well as TLR4/MyD88 signaling were correlated with the induction of adaptive cues in neutrophils in vitro. Taken together, our study shows that small EVs from stools can drive adaptive responses in neutrophils in vitro and may represent a missing link in the gut-immune axis.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - Stefan Hillmer
- Electron Microscopy Core Facility (EMCF), University of Heidelberg, D-69120 Heidelberg, Germany;
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - Christian Krause
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany;
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany;
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (N.K.-G.); (M.B.); (S.A.K.); (S.D.); (C.K.); (J.P.); (C.G.)
| |
Collapse
|
17
|
Morales-Prieto DM, Murrieta-Coxca JM, Stojiljkovic M, Diezel C, Streicher PE, Henao-Restrepo JA, Röstel F, Lindner J, Witte OW, Weis S, Schmeer C, Marz M. Small Extracellular Vesicles from Peripheral Blood of Aged Mice Pass the Blood-Brain Barrier and Induce Glial Cell Activation. Cells 2022; 11:cells11040625. [PMID: 35203276 PMCID: PMC8870085 DOI: 10.3390/cells11040625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 01/15/2023] Open
Abstract
Extracellular vesicles (EVs), including small EVs (sEVs), are involved in neuroinflammation and neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Yet, increased neuroinflammation can also be detected in the aging brain, and it is associated with increased glial activation. Changes in EV concentration are reported in aging tissues and senescence cells, suggesting a role of EVs in the process of aging. Here, we investigated the effect of peripheral sEVs from aged animals on neuroinflammation, specifically on glial activation. sEVs were isolated from the peripheral blood of young (3 months) and aged (24 months) C57BL/6J wildtype mice and injected into the peripheral blood from young animals via vein tail injections. The localization of EVs and the expression of selected genes involved in glial cell activation, including Gfap, Tgf-β, Cd68, and Iba1, were assessed in brain tissue 30 min, 4 h, and 24 h after injection. We found that sEVs from peripheral blood of aged mice but not from young mice altered gene expression in the brains of young animals. In particular, the expression of the specific astrocyte marker, Gfap, was significantly increased, indicating a strong response of this glial cell type. Our study shows that sEVs from aged mice can pass the blood-brain barrier (BBB) and induce glial cell activation.
Collapse
Affiliation(s)
- Diana M. Morales-Prieto
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- Correspondence: (D.M.M.-P.); (M.M.); Tel.: +49-364-1939-0859 (D.M.M.-P.)
| | - José M. Murrieta-Coxca
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
| | - Milan Stojiljkovic
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Celia Diezel
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| | - Priska E. Streicher
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
| | - Julian A. Henao-Restrepo
- Placenta Lab, Department of Obstetrics, Jena University Hospital, 07747 Jena, Germany; (J.M.M.-C.); (P.E.S.); (J.A.H.-R.)
| | - Franziska Röstel
- Department for Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
| | - Julia Lindner
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Sebastian Weis
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany;
- Institute for Infectious Disease and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Germany; (M.S.); (J.L.); (O.W.W.); (C.S.)
| | - Manja Marz
- RNA Bioinformatics and High Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
- Correspondence: (D.M.M.-P.); (M.M.); Tel.: +49-364-1939-0859 (D.M.M.-P.)
| |
Collapse
|
18
|
Carloni E, Ramos A, Hayes LN. Developmental Stressors Induce Innate Immune Memory in Microglia and Contribute to Disease Risk. Int J Mol Sci 2021; 22:13035. [PMID: 34884841 PMCID: PMC8657756 DOI: 10.3390/ijms222313035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Many types of stressors have an impact on brain development, function, and disease susceptibility including immune stressors, psychosocial stressors, and exposure to drugs of abuse. We propose that these diverse developmental stressors may utilize a common mechanism that underlies impaired cognitive function and neurodevelopmental disorders such as schizophrenia, autism, and mood disorders that can develop in later life as a result of developmental stressors. While these stressors are directed at critical developmental windows, their impacts are long-lasting. Immune activation is a shared pathophysiology across several different developmental stressors and may thus be a targetable treatment to mitigate the later behavioral deficits. In this review, we explore different types of prenatal and perinatal stressors and their contribution to disease risk and underlying molecular mechanisms. We highlight the impact of developmental stressors on microglia biology because of their early infiltration into the brain, their critical role in brain development and function, and their long-lived status in the brain throughout life. Furthermore, we introduce innate immune memory as a potential underlying mechanism for developmental stressors' impact on disease. Finally, we highlight the molecular and epigenetic reprogramming that is known to underlie innate immune memory and explain how similar molecular mechanisms may be at work for cells to retain a long-term perturbation after exposure to developmental stressors.
Collapse
Affiliation(s)
- Elisa Carloni
- Department of Molecular and Cellular Biology, Dartmouth College, Hanover, NH 03755, USA;
| | - Adriana Ramos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Leroy C, Saba W. Contribution of TSPO imaging in the understanding of the state of gliosis in substance use disorders. Eur J Nucl Med Mol Imaging 2021; 49:186-200. [PMID: 34041563 DOI: 10.1007/s00259-021-05408-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Recent research in last years in substance use disorders (SUD) synthesized a proinflammatory hypothesis of SUD based on reported pieces of evidence of non-neuronal central immune signalling pathways modulated by drug of abuse and that contribute to their pharmacodynamic actions. Positron emission tomography has been shown to be a precious imaging technique to study in vivo neurochemical processes involved in SUD and to highlight the central immune signalling actions of drugs of abuse. METHODS In this review, we investigate the contribution of the central immune system, with a particular focus on translocator protein 18 kDa (TSPO) imaging, associated with a series of drugs involved in substance use disorders (SUD) specifically alcohol, opioids, tobacco, methamphetamine, cocaine, and cannabis. RESULTS The large majority of preclinical and clinical studies presented in this review converges towards SUD modulation of the neuroimmune responses and TSPO expression and speculated a pivotal positioning in the pathogenesis of SUD. However, some contradictions concerning the same drug or between preclinical and clinical studies make it difficult to draw a clear picture about the significance of glial state in SUD. DISCUSSION Significant disparities in clinical and biological characteristics are present between investigated populations among studies. Heterogeneity in genetic factors and other clinical co-morbidities, difficult to be reproduced in animal models, may affect findings. On the other hand, technical aspects including study designs, radioligand limitations, or PET imaging quantification methods could impact the study results and should be considered to explain discrepancies in outcomes. CONCLUSION The supposed neuroimmune component of SUD provides new therapeutic approaches in the prediction and treatment of SUD pointing to the central immune signalling.
Collapse
Affiliation(s)
- Claire Leroy
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Wadad Saba
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France.
| |
Collapse
|
20
|
Hayley S, Sun H. Neuroimmune multi-hit perspective of coronaviral infection. J Neuroinflammation 2021; 18:231. [PMID: 34645457 PMCID: PMC8512650 DOI: 10.1186/s12974-021-02282-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
It is well accepted that environmental stressors experienced over a one’s life, from microbial infections to chemical toxicants to even psychological stressors, ultimately shape central nervous system (CNS) functioning but can also contribute to its eventual breakdown. The severity, timing and type of such environmental “hits”, woven together with genetic factors, likely determine what CNS outcomes become apparent. This focused review assesses the current COVID-19 pandemic through the lens of a multi-hit framework and disuses how the SARS-COV-2 virus (causative agent) might impact the brain and potentially interact with other environmental insults. What the long-term consequences of SAR2 COV-2 upon neuronal processes is yet unclear, but emerging evidence is suggesting the possibility of microglial or other inflammatory factors as potentially contributing to neurodegenerative illnesses. Finally, it is critical to consider the impact of the virus in the context of the substantial psychosocial stress that has been associated with the global pandemic. Indeed, the loneliness, fear to the future and loss of social support alone has exerted a massive impact upon individuals, especially the vulnerable very young and the elderly. The substantial upswing in depression, anxiety and eating disorders is evidence of this and in the years to come, this might be matched by a similar spike in dementia, as well as motor and cognitive neurodegenerative diseases.
Collapse
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| | - Hongyu Sun
- Department of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
21
|
Schmidt C, Schneble-Löhnert N, Lajqi T, Wetzker R, Müller JP, Bauer R. PI3Kγ Mediates Microglial Proliferation and Cell Viability via ROS. Cells 2021; 10:2534. [PMID: 34685514 PMCID: PMC8534080 DOI: 10.3390/cells10102534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Rapid microglial proliferation contributes to the complex responses of the innate immune system in the brain to various neuroinflammatory stimuli. Here, we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) and reactive oxygen species (ROS) for rapid proliferation of murine microglia induced by LPS and ATP. (2) Methods: PI3Kγ knockout mice (PI3Kγ KO), mice expressing catalytically inactive PI3Kγ (PI3Kγ KD) and wild-type mice were assessed for microglial proliferation using an in vivo wound healing assay. Additionally, primary microglia derived from newborn wild-type, PI3Kγ KO and PI3Kγ KD mice were used to analyze PI3Kγ effects on proliferation and cell viability, senescence and cellular and mitochondrial ROS production; the consequences of ROS production for proliferation and cell viability after LPS or ATP stimulation were studied using genetic and pharmacologic approaches. (3) Results: Mice with a loss of lipid kinase activity showed impaired proliferation of microglia. The prerequisite of induced microglial proliferation and cell viability appeared to be PI3Kγ-mediated induction of ROS production. (4) Conclusions: The lipid kinase activity of PI3Kγ plays a crucial role for microglial proliferation and cell viability after acute inflammatory activation.
Collapse
Affiliation(s)
- Caroline Schmidt
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| | - Nadine Schneble-Löhnert
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| | - Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, 69120 Heidelberg, Germany;
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany;
| | - Jörg P. Müller
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| | - Reinhard Bauer
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Jena University Hospital, 07745 Jena, Germany; (C.S.); (N.S.-L.); (J.P.M.)
| |
Collapse
|
22
|
Lajqi T, Braun M, Kranig SA, Frommhold D, Pöschl J, Hudalla H. LPS Induces Opposing Memory-like Inflammatory Responses in Mouse Bone Marrow Neutrophils. Int J Mol Sci 2021; 22:ijms22189803. [PMID: 34575963 PMCID: PMC8469609 DOI: 10.3390/ijms22189803] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
A growing body of evidence suggests that innate immune cells can respond in a memory-like (adaptive) fashion, which is referred to as trained immunity. Only few in vivo studies have shown training effects in neutrophils; however, no in vitro setup has been established to study the induction of trained immunity or tolerance in neutrophils by microbial agents. In light of their short lifespan (up to 48 h), we suggest to use the term trained sensitivity for neutrophils in an in vitro setting. Here, we firstly describe a feasible two-hit model, using different doses of lipopolysaccharide (LPS) in bone marrow neutrophils. We found that low doses (10 pg/mL) induce pro-inflammatory activation (trained sensitivity), whereas priming with high doses (100 ng/mL) leads to suppression of pro-inflammatory mediators such as TNF-α or IL-6 (tolerance) (p < 0.05). On a functional level, trained neutrophils displayed increased phagocytic activity and LFA-1 expression as well as migrational capacity and CD11a expression, whereas tolerant neutrophils show contrasting effects in vitro. Mechanistically, TLR4/MyD88/PI3Ks regulate the activation of p65, which controls memory-like responses in mouse bone marrow neutrophils (p < 0.05). Our results open a new window for further in vitro studies on memory-like inflammatory responses of short-lived innate immune cells such as neutrophils.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Maylis Braun
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Simon Alexander Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - David Frommhold
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany; (T.L.); (M.B.); (S.A.K.); (D.F.); (J.P.)
- Correspondence: ; Tel.: +49-6221-56-1983; Fax: +49-6221-56-5626
| |
Collapse
|
23
|
Fan Y, Bi Y, Chen H. Salidroside Improves Chronic Stress Induced Depressive Symptoms Through Microglial Activation Suppression. Front Pharmacol 2021; 12:635762. [PMID: 34168556 PMCID: PMC8217647 DOI: 10.3389/fphar.2021.635762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
Depression is a severe neurological disorder highly associated with chronic mental stress stimulation, which involves chronic inflammation and microglial activation in the central nervous system (CNS). Salidroside (SLDS) has been reported to exhibit anti-neuroinflammatory and protective properties on neurological diseases. However, the mechanism underlying the effect of SLDS on depressive symptoms has not been well elaborated. In the present study, the effects of SLDS on depressive behaviors and microglia activation in mice CNS were investigated. Behavioral tests, including Forced swimming test (FST), Open field test (OFT) and Morris water maze (MWM) revealed that SLDS treatment attenuated the depressive behaviors in stress mice. SLDS treatment significantly reduced the microglial immunoreactivity for both Iba-1 and CD68, characteristic of deleterious M1 phenotype in hippocampus of stress mice. Additionally, SLDS inhibited microglial activation involving the suppression of ERK1/2, P38 MAPK and p65 NF-κB activation and thus reduced the expression and release of neuroinflammatory cytokines in stress mice as well as in lipopolysaccharide (LPS)-induced primary microglia. Also, SLDS changed microglial morphology, attachment and reduced the phagocytic ability in LPS-induced primary microglia. The results demonstrated that SLDS treatment could improve the depressive symptoms caused by unpredictable chronic stress, indicating a potential therapeutic application of SLDS in depression treatment by interfering microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Haixia Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
24
|
The Role of the Pathogen Dose and PI3Kγ in Immunometabolic Reprogramming of Microglia for Innate Immune Memory. Int J Mol Sci 2021; 22:ijms22052578. [PMID: 33806610 PMCID: PMC7961448 DOI: 10.3390/ijms22052578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia, the innate immune cells of the CNS, exhibit long-term response changes indicative of innate immune memory (IIM). Our previous studies revealed IIM patterns of microglia with opposing immune phenotypes: trained immunity after a low dose and immune tolerance after a high dose challenge with pathogen-associated molecular patterns (PAMP). Compelling evidence shows that innate immune cells adopt features of IIM via immunometabolic control. However, immunometabolic reprogramming involved in the regulation of IIM in microglia has not been fully addressed. Here, we evaluated the impact of dose-dependent microglial priming with ultra-low (ULP, 1 fg/mL) and high (HP, 100 ng/mL) lipopolysaccharide (LPS) doses on immunometabolic rewiring. Furthermore, we addressed the role of PI3Kγ on immunometabolic control using naïve primary microglia derived from newborn wild-type mice, PI3Kγ-deficient mice and mice carrying a targeted mutation causing loss of lipid kinase activity. We found that ULP-induced IIM triggered an enhancement of oxygen consumption and ATP production. In contrast, HP was followed by suppressed oxygen consumption and glycolytic activity indicative of immune tolerance. PI3Kγ inhibited glycolysis due to modulation of cAMP-dependent pathways. However, no impact of specific PI3Kγ signaling on immunometabolic rewiring due to dose-dependent LPS priming was detected. In conclusion, immunometabolic reprogramming of microglia is involved in IIM in a dose-dependent manner via the glycolytic pathway, oxygen consumption and ATP production: ULP (ultra-low-dose priming) increases it, while HP reduces it.
Collapse
|