1
|
Shirahama Y, Kokuzawa A, Yamauchi Y, Kirino Y, Nagai H, Inoue Y, Ota T, Chifu Y, Mitoma H, Akahoshi M, Sakai M, Maruyama A, Ohta A, Iwamoto M, Tada Y. Cluster analysis defines four groups of Japanese patients with adult-onset Still's disease. Mod Rheumatol 2024; 34:1213-1220. [PMID: 38564322 DOI: 10.1093/mr/roae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVES To define groups and characterize differences in the prognosis of patients with adult-onset Still's disease (AOSD). METHODS We performed a retrospective cohort study. Patients with AOSD were grouped using hierarchical unsupervised cluster analysis according to age, sex, clinical features, and laboratory data. The primary endpoints were overall survival and drug-free remission rate. RESULTS A total of 153 patients with AOSD were placed into four clusters. Those in Cluster 1 had a young onset, tended to be female, and had fewer complications and moderate ferritin concentrations. Those in Cluster 2 had a young onset and had more complications and higher ferritin concentrations. Those in Cluster 3 had a young onset, tended to be male, and had no lymphadenopathy and fewer complications. Those in Cluster 4 had an older onset, tended to be female, and had more complications and higher ferritin concentrations. Overall survival tended to be lower (P = .0539) in Cluster 4, and drug-free remission was higher in Clusters 1, 2, and 3 [hazard ratios (HRs) 2.19, 3.37, and 3.62 vs. Cluster 4, respectively]. CONCLUSIONS Four groups of AOSD that have distinct clinical manifestations, ferritin concentrations, severity, and drug-free remission rate were identified, which were lowest in Cluster 4.
Collapse
Affiliation(s)
- Yuri Shirahama
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Ayako Kokuzawa
- Department of Rheumatology and Clinical Immunology, Jichi Medical University, Shimotsuke, Japan
| | - Yusuke Yamauchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideto Nagai
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasushi Inoue
- Division of Rheumatology, Japanese Red Cross Fukuoka Hospital, Fukuoka, Japan
| | - Toshiyuki Ota
- Centre for Rheumatic Diseases, Iizuka Hospital, Iizuka, Japan
| | - Yutaka Chifu
- Division of Internal Medicine, Saiseikai Karatsu Hospital, Karatsu, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mitsuteru Akahoshi
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Mariko Sakai
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Akihito Maruyama
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| | - Akihide Ohta
- Suigo-en Kohokai Group Medical Corporation, Fukuoka, Japan
| | - Masahiro Iwamoto
- Department of Rheumatology and Clinical Immunology, Jichi Medical University, Shimotsuke, Japan
| | - Yoshifumi Tada
- Department of Rheumatology, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
2
|
Chi H, Hong X, Dai N, Chen L, Zhang H, Liu H, Cheng X, Ye J, Shi H, Hu Q, Meng J, Zhou Z, Jia J, Liu T, Wang F, Wang M, Ma Y, Chen X, You Y, Zhu D, Tang Z, Yang C, Teng J, Su Y, Sun Y. The landscape of innate and adaptive immune cell subsets in patients with adult-onset Still's disease. Rheumatology (Oxford) 2024; 63:1987-1997. [PMID: 37756690 DOI: 10.1093/rheumatology/kead507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disorder. The understanding of the changes in adaptive immune cells and the crosstalk between innate and adaptive immune systems in AOSD is limited. This study aimed to examine the peripheral immune cell composition and inflammatory protein levels in AOSD patients. METHODS Twenty-nine active AOSD patients were enrolled. Flow cytometry was used to analyse the cell populations in peripheral blood. Antibody chips were utilized to detect the protein expression profile in serum. RESULTS In active AOSD patients, there was an increase in the percentage of classical and non-classical monocytes among peripheral blood mononuclear cells. The proportion of natural killer (NK) cells decreased, with an increase in CD56dim NK1 cells and a decrease in CD56bright NK2 cells compared with healthy controls (HCs). The percentage of naïve central memory T cells was decreased, while the percentage of effector and effector memory T cells was increased among adaptive lymphocytes. The proportion of naïve B and memory B cells was decreased, while plasma cells were increased in AOSD patients, indicating activation of the adaptive immune system. Additionally, the serum levels of 40 proteins were elevated in AOSD patients, primarily involved in cytokine-cytokine receptor interaction, inflammatory response and regulation of mitogen-activated protein kinase cascade. CONCLUSION Our findings showed the activation of the innate and adaptive immune system in AOSD. The protein-protein interaction analysis suggested potential communication between innate and adaptive cell subsets. These findings provide new insights into the pathogenesis of the disease and the development of targeted therapies.
Collapse
Affiliation(s)
- Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Hong
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningqi Dai
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longfang Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijun You
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dehao Zhu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihan Tang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kontzias A, Petryna O, Nakasato P, Efthimiou P. Diagnosing and Treating Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease as Part of the Still's Disease Continuum. Mediterr J Rheumatol 2024; 35:45-57. [PMID: 38756937 PMCID: PMC11094444 DOI: 10.31138/mjr.290323.dat] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 05/18/2024] Open
Abstract
Aim We have summarised the existing evidence supporting the concept that systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) are part of the same Still's disease spectrum. Methods A PubMed/Embase database search was conducted using specific search strings and free text words to screen for relevant articles. The search was limited to studies in humans, published up to June 2023, in English-language. Summary sJIA and AOSD are rare autoinflammatory disorders that have similar pathophysiological and clinical features. The clinical presentations of sJIA and AOSD are highly variable, with differential diagnoses that include a broad range of malignancies, infectious diseases, and autoimmune disorders, which contribute to delays in diagnosis. Several sets of classification exist to help diagnose patients in clinical practice; the International League of Associations for Rheumatology criteria for sJIA and the Yamaguchi and Fautrel criteria for AOSD are the most-used criteria. The therapeutic strategy for Still's disease aims to relieve signs and symptoms, prevent irreversible joint damage and potentially life-threatening complications, and avoid deleterious side effects of treatment. Recently, targeted therapies such as interleukin (IL)-1 and IL-6 inhibitors have become available for the treatment of sJIA and AOSD. While these biologics were originally largely reserved for patients in whom non-steroidal anti-inflammatory drugs, corticosteroids and conventional synthetic disease-modifying anti-rheumatic drugs had failed, they are increasingly used earlier in the treatment paradigm. Among IL-1 inhibitors, canakinumab is the only biologic approved in the US for the treatment of both sJIA and AOSD.
Collapse
Affiliation(s)
- Apostolos Kontzias
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Olga Petryna
- Department of Medicine, White Plains Hospital, White Plains, NY, USA
| | | | - Petros Efthimiou
- Department of Medicine, White Plains Hospital, White Plains, NY, USA
| |
Collapse
|
4
|
Ruscitti P, Cantarini L, Nigrovic PA, McGonagle D, Giacomelli R. Recent advances and evolving concepts in Still's disease. Nat Rev Rheumatol 2024; 20:116-132. [PMID: 38212542 DOI: 10.1038/s41584-023-01065-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Still's disease is a rare inflammatory syndrome that encompasses systemic juvenile idiopathic arthritis and adult-onset Still's disease, both of which can exhibit life-threatening complications, including macrophage activation syndrome (MAS), a secondary form of haemophagocytic lymphohistiocytosis. Genetic insights into Still's disease involve both HLA and non-HLA susceptibility genes, suggesting the involvement of adaptive immune cell-mediated immunity. At the same time, phenotypic evidence indicates the involvement of autoinflammatory processes. Evidence also implicates the type I interferon signature, mechanistic target of rapamycin complex 1 signalling and ferritin in the pathogenesis of Still's disease and MAS. Pathological entities associated with Still's disease include lung disease that could be associated with biologic DMARDs and with the occurrence of MAS. Historically, monophasic, recurrent and persistent Still's disease courses were recognized. Newer proposals of alternative Still's disease clusters could enable better dissection of clinical heterogeneity on the basis of immune cell profiles that could represent diverse endotypes or phases of disease activity. Therapeutically, data on IL-1 and IL-6 antagonism and Janus kinase inhibition suggest the importance of early administration in Still's disease. Furthermore, there is evidence that patients who develop MAS can be treated with IFNγ antagonism. Despite these developments, unmet needs remain that can form the basis for the design of future studies leading to improvement of disease management.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), Leeds Teaching Hospitals, Leeds, UK
| | - Roberto Giacomelli
- Clinical and research section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Rome, Italy
- Rheumatology and Clinical Immunology, Department of Medicine, University of Rome "Campus Biomedico", School of Medicine, Rome, Italy
| |
Collapse
|
5
|
Li S, Ying S, Wang Y, Lv Y, Qiao J, Fang H. Neutrophil extracellular traps and neutrophilic dermatosis: an update review. Cell Death Discov 2024; 10:18. [PMID: 38195543 PMCID: PMC10776565 DOI: 10.1038/s41420-023-01787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Neutrophils have both antimicrobial ability and pathogenic effect in the immune system, neutrophil extracellular traps (NETs) formation is one of the representative behaviors of their dual role. NETs formation was triggered by pathogen-related components and pathogen non-related proteins as cytokines to exert its effector functions. Recent studies indicate that the pathogenicity of NETs contributed to several skin diseases such as psoriasis, Stevens-Johnson syndrome, toxic epidermal necrolysis, and neutrophilic dermatosis. Especially in neutrophilic dermatosis, a heterogeneous group of inflammatory skin disorders characterized with sterile neutrophilic infiltrate on dermis, NETs formation was reported as the way of participation of neutrophils in the pathogenesis of these diseases. In this review, we describe the different processes of NETs formation, then summarized the most recent updates about the pathogenesis of neutrophilic dermatosis and the participation of NETs, including pyoderma gangrenosum and PAPA syndrome, Behçet syndrome, hidradenitis suppurativa, Sweet Syndrome, pustular dermatosis and other neutrophilic dermatosis. Furthermore, we discuss the link between NETs formation and the development of neutrophilic dermatosis.
Collapse
Affiliation(s)
- Sheng Li
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shuni Ying
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuqian Wang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Yelu Lv
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jianjun Qiao
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| | - Hong Fang
- Department of Dermatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
6
|
Jia J, Wang M, Ma Y, Meng J, Zhu D, Chen X, Shi H, Sun Y, Liu H, Cheng X, Su Y, Ye J, Chi H, Liu T, Zhou Z, Wang F, Chen L, Yi D, Xiao Y, Yang C, Teng J, Hu Q. Neutrophil extracellular trap-induced intermediate monocytes trigger macrophage activation syndrome in adult-onset Still's disease. BMC Med 2023; 21:507. [PMID: 38124139 PMCID: PMC10734198 DOI: 10.1186/s12916-023-03231-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Adult-onset Still's disease (AOSD) is a systemic autoinflammatory disease characterized by innate immune system activation, with a high risk for macrophage activation syndrome (MAS). MAS development is associated with monocyte/macrophage activation and cytokine storm. Monocytes consist of three different subsets, classical monocytes (CMs, CD14brightCD16 -), intermediate monocytes (IMs, CD14brightCD16 +), and non-classical monocytes (NCMs, CD14dimCD16 +), each has distinct roles in inflammatory regulation. However, the frequencies and regulatory mechanism of monocyte subsets in AOSD patients have not been identified. METHODS We performed flow cytometry, RNA sequencing, phagocytosis analysis, and enzyme-linked immunosorbent assay to evaluate monocyte subsets, cell functions, and potential biomarkers. The effect of neutrophil extracellular traps (NETs) on monocytes was determined by evaluating mRNA levels of DNA sensors, surface CD16 expression, and inflammasome pathway activation. RESULTS Higher proportions of intermediate monocytes (IMs) were identified in active AOSD patients. IMs displayed higher expression of CD80, CD86, HLA-DR, and CD163 than CMs and NCMs. CD163 upregulation was noted on AOSD IMs, accompanied by increased phagocytic activity and elevated cytokine/chemokine production, including IL-1β, IL-6, CCL8, and CXCL10. The frequencies of IMs were correlated with disease activity and higher in AOSD patients with MAS (AOSD-MAS). CCL8 and CXCL10 were highly expressed in RNA sequencing of monocytes from AOSD-MAS patients and plasma CXCL10 level could serve as a potential biomarker for AOSD-MAS. Moreover, DNA-sensing pathway was activated in monocytes from AOSD-MAS patients. Stimulation with NETs derived from AOSD induced DNA sensor expression, the expansion of IMs, and inflammasome pathway activation. These effects can be abrogated by DNase I treatment. CONCLUSIONS Our results demonstrated that the proportions of IMs were elevated in AOSD and associated with MAS. The DNA component in NETs from AOSD plays an important role in the formation of IMs, shedding new light for the therapeutic target.
Collapse
Affiliation(s)
- Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Dehao Zhu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xia Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Honglei Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiaobing Cheng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yutong Su
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Junna Ye
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Huihui Chi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Zhuochao Zhou
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Fan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Longfang Chen
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Da Yi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Yu Xiao
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
7
|
He X, You R, Shi Y, Zeng Z, Tang B, Yu J, Xiao Y, Xiao R. Pyroptosis: the potential eye of the storm in adult-onset Still's disease. Inflammopharmacology 2023; 31:2269-2282. [PMID: 37429997 DOI: 10.1007/s10787-023-01275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
Pyroptosis, a form of programmed cell death with a high pro-inflammatory effect, causes cell lysis and leads to the secretion of countless interleukin-1β (IL-1β) and IL-18 cytokines, resulting in a subsequent extreme inflammatory response through the caspase-1-dependent pathway or caspase-1-independent pathway. Adult-onset Still's disease (AOSD) is a systemic inflammatory disease with extensive disease manifestations and severe complications such as macrophage activation syndrome, which is characterized by high-grade inflammation and cytokine storms regulated by IL-1β and IL-18. To date, the pathogenesis of AOSD is unclear, and the available therapy is unsatisfactory. As such, AOSD is still a challenging disease. In addition, the high inflammatory states and the increased expression of multiple pyroptosis markers in AOSD indicate that pyroptosis plays an important role in the pathogenesis of AOSD. Accordingly, this review summarizes the molecular mechanisms of pyroptosis and describes the potential role of pyroptosis in AOSD, the therapeutic practicalities of pyroptosis target drugs in AOSD, and the therapeutic blueprint of other pyroptosis target drugs.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruixuan You
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bingsi Tang
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiangfan Yu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
8
|
Madrid-García A, Merino-Barbancho B, Rodríguez-González A, Fernández-Gutiérrez B, Rodríguez-Rodríguez L, Menasalvas-Ruiz E. Understanding the role and adoption of artificial intelligence techniques in rheumatology research: An in-depth review of the literature. Semin Arthritis Rheum 2023; 61:152213. [PMID: 37315379 DOI: 10.1016/j.semarthrit.2023.152213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
The major and upward trend in the number of published research related to rheumatic and musculoskeletal diseases, in which artificial intelligence plays a key role, has exhibited the interest of rheumatology researchers in using these techniques to answer their research questions. In this review, we analyse the original research articles that combine both worlds in a five- year period (2017-2021). In contrast to other published papers on the same topic, we first studied the review and recommendation articles that were published during that period, including up to October 2022, as well as the publication trends. Secondly, we review the published research articles and classify them into one of the following categories: disease identification and prediction, disease classification, patient stratification and disease subtype identification, disease progression and activity, treatment response, and predictors of outcomes. Thirdly, we provide a table with illustrative studies in which artificial intelligence techniques have played a central role in more than twenty rheumatic and musculoskeletal diseases. Finally, the findings of the research articles, in terms of disease and/or data science techniques employed, are highlighted in a discussion. Therefore, the present review aims to characterise how researchers are applying data science techniques in the rheumatology medical field. The most immediate conclusions that can be drawn from this work are: multiple and novel data science techniques have been used in a wide range of rheumatic and musculoskeletal diseases including rare diseases; the sample size and the data type used are heterogeneous, and new technical approaches are expected to arrive in the short-middle term.
Collapse
Affiliation(s)
- Alfredo Madrid-García
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain; Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain.
| | - Beatriz Merino-Barbancho
- Escuela Técnica Superior de Ingenieros de Telecomunicación. Universidad Politécnica de Madrid, Avenida Complutense, 30, Madrid, 28040, Spain
| | | | - Benjamín Fernández-Gutiérrez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Luis Rodríguez-Rodríguez
- Grupo de Patología Musculoesquelética. Hospital Clínico San Carlos, Prof. Martin Lagos s/n, Madrid, 28040, Spain
| | - Ernestina Menasalvas-Ruiz
- Centro de Tecnología Biomédica. Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
9
|
Jung JY, Ahn MH, Kim JW, Suh CH, Han JH, Kim HA. Association between CCR2 and CCL2 expression and NET stimulation in adult-onset Still's disease. Sci Rep 2023; 13:12218. [PMID: 37500699 PMCID: PMC10374521 DOI: 10.1038/s41598-023-39517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by the activation of monocyte-derived cells and the release of neutrophil extracellular traps (NET). C-C motif ligand (CCL) 2 is a chemoattractant that interacts with the C-C motif chemokine receptor (CCR) 2, resulting in monocyte recruitment and activation. CCL2 and CCR2 were measured with enzyme-linked immunosorbent assay (ELISA) at the serum level, and using immunohistochemical staining at the skin and lymph node tissues levels. THP-1 cell lysates were analyzed using western blot and ELISA after NET stimulation in patients with AOSD. Serum CCL2 level was higher in patients with AOSD than in patients with rheumatoid arthritis and healthy controls (HCs). In patients with AOSD, the percentage of CCL2-positive inflammatory cells in the skin tissues and CCR2-positive inflammatory cells in the lymph nodes increased, compared to that in HCs and in patients with reactive lymphadenopathy, respectively. NET induced in patients with AOSD enhanced the secretion of CCR2, higher CCR2 expression in monocytes, and the levels of interleukin (IL)-1β, IL-6, and IL-18 from THP-1 cells. Our findings suggest that upregulation of the CCL2-CCR2 axis may contribute to the clinical and inflammatory characteristics of AOSD.
Collapse
Affiliation(s)
- Ju-Yang Jung
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Mi-Hyun Ahn
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Ji-Won Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chang-Hee Suh
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jae Ho Han
- Department of Pathology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Hyoun-Ah Kim
- Department of Rheumatology, Ajou University School of Medicine, 164, World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
10
|
Galozzi P, Basso D, Plebani M, Padoan A. Artificial Intelligence and laboratory data in rheumatic diseases. Clin Chim Acta 2023; 546:117388. [PMID: 37187221 DOI: 10.1016/j.cca.2023.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Artificial intelligence (AI)-based medical technologies are rapidly evolving into actionable solutions for clinical practice. Machine learning (ML) algorithms can process increasing amounts of laboratory data such as gene expression immunophenotyping data and biomarkers. In recent years, the analysis of ML has become particularly useful for the study of complex chronic diseases, such as rheumatic diseases, heterogenous conditions with multiple triggers. Numerous studies have used ML to classify patients and improve diagnosis, to stratify the risk and determine disease subtypes, as well as to discover biomarkers and gene signatures. This review aims to provide examples of ML models for specific rheumatic diseases using laboratory data and some insights into relevant strengths and limitations. A better understanding and future application of these analytical strategies could facilitate the development of precision medicine for rheumatic patients.
Collapse
Affiliation(s)
- Paola Galozzi
- Department of Medicine-DIMED, University of Padova, Padova, Italy.
| | - Daniela Basso
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| | - Andrea Padoan
- Department of Medicine-DIMED, University of Padova, Padova, Italy; Laboratory Medicine Unit, University Hospital of Padova, Padova, Italy
| |
Collapse
|
11
|
Ferritin triggers neutrophil extracellular trap-mediated cytokine storm through Msr1 contributing to adult-onset Still's disease pathogenesis. Nat Commun 2022; 13:6804. [PMID: 36357401 PMCID: PMC9648446 DOI: 10.1038/s41467-022-34560-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
Hyperferritinemic syndrome, an overwhelming inflammatory condition, is characterized by high ferritin levels, systemic inflammation and multi-organ dysfunction, but the pathogenic role of ferritin remains largely unknown. Here we show in an animal model that ferritin administration leads to systemic and hepatic inflammation characterized by excessive neutrophil leukocyte infiltration and neutrophil extracellular trap (NET) formation in the liver tissue. Ferritin-induced NET formation depends on the expression of peptidylarginine deiminase 4 and neutrophil elastase and on reactive oxygen species production. Mechanistically, ferritin exposure increases both overall and cell surface expression of Msr1 on neutrophil leukocytes, and also acts as ligand to Msr1 to trigger the NET formation pathway. Depletion of neutrophil leukocytes or ablation of Msr1 protect mice from tissue damage and the hyperinflammatory response, which further confirms the role of Msr1 as ferritin receptor. The relevance of the animal model is underscored by the observation that enhanced NET formation, increased Msr1 expression and signalling on neutrophil leukocytes are also characteristic to adult-onset Still's disease (AOSD), a typical hyperferritinemic syndrome. Collectively, our findings demonstrate an essential role of ferritin in NET-mediated cytokine storm, and suggest that targeting NETs or Msr1 may benefit AOSD patients.
Collapse
|
12
|
Rao S, Tsang LSL, Zhao M, Shi W, Lu Q. Adult-onset Still’s disease: A disease at the crossroad of innate immunity and autoimmunity. Front Med (Lausanne) 2022; 9:881431. [PMID: 36072947 PMCID: PMC9442343 DOI: 10.3389/fmed.2022.881431] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/27/2022] [Indexed: 01/12/2023] Open
Abstract
Adult-onset Still’s disease (AOSD) is a rare disease affecting multiple systems and organs with unknown etiology, and the clinical symptoms are usually described as spiking fever, arthritis, evanescent salmon-pink eruptions, lymphadenopathy, splenomegaly, and other manifestations. The laboratory indicators are not specific, often presenting as increased leukocyte counts and neutrophil percentage, elevated erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP), hyperferritinemia, and increased inflammatory factors. ANA, ENA, and RF are negative. According to those unspecific clinical presentations and laboratory findings, infection, tumor, connective tissue disease, and other diseases must be ruled out before diagnosis. The diagnosis of AOSD is a great challenge for clinicians. The mechanism of AOSD pathogenesis is complicated and still being studied. There is a new opinion that atypical persistent skin eruptions (APSEs) with specific histological manifestations are unique for AOSD, and APSEs might be on a spectrum with classical evanescent eruptions. Studies on APSEs showed that IL-1β and IFN-γ are strongly correlated with the pathogenesis of necrosis keratinocytes in APSEs. IL-1β is strongly involved in inflammatory disease when it is abnormal, and plays an important role in the pathogenesis of neutrophil dermatosis. In the early stage of AOSD, skin lesions appear to be evanescent urticaria-like eruptions accompanied by fever, and only neutrophils infiltrate around the blood vessels in the dermis pathologically. As the course of the disease progresses, IL-1β is gradually released. Through the stimulation of other inflammatory factors and the influence of unknown factors, IL-1β gradually infiltrates into the stratum corneum and finally accumulates around the necrotic keratinocytes of the stratum corneum. However, the detailed mechanism is still unknown. IFN-γ could play a pro-inflammatory or regulatory role in some disorders. IL-1β can enhance the expression of IFN-γ, and IFN-γ can cause keratinocyte apoptosis by activating the autocrine of caspase. Also, several pieces of evidence indicate that adaptive immunity is also involved in the pathogenesis of AOSD. Increased α-soluble receptors of IL-2 may suggest T-cell activation and proliferation in AOSD patients. Increased IL-4- and IFN-γ-producing T cells were found in active AOSD and related to disease severity. Frequencies of Treg cells in AOSD were significantly lower and were inversely correlated with disease severity. According to these, more and more researchers have reached a consensus that AOSD is a disease at the crossroads of innate immunity and autoimmunity. In this review, we will provide a comprehensive insight into AOSD, describing research progress and the immunological mechanism contribution to the disease. In the meantime, different treatment options and the efficacy and safety of various biologic agents are also discussed. A further understanding of AOSD requires closer cooperation among doctors from different departments, and this review will provide a new idea for diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Shijia Rao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Lemuel Shui-Lun Tsang
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ming Zhao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wei Shi,
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
- Qianjin Lu,
| |
Collapse
|
13
|
Adult-Onset Still's Disease: Novel Biomarkers of Specific Subsets, Disease Activity, and Relapsing Forms. Int J Mol Sci 2021; 22:ijms222413320. [PMID: 34948117 PMCID: PMC8706484 DOI: 10.3390/ijms222413320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022] Open
Abstract
Adult-onset Still’s disease (AOSD) is a systemic inflammatory disease of unknown etiology. Recent studies have demonstrated that the hallmark of AOSD is a cytokine storm, which is characterized by the excessive production of interleukin (IL)-1, IL-6, IL-18, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), suggesting how pro-inflammatory cytokines play an important role in the pathogenesis of this disease. Actually, a certain proportion of patients (around 17–32%) with severe clinical symptoms achieves only partial remission or is resistant to both first-line corticosteroids and second-line DMARDs. These patients are defined as refractory AOSD patients, requiring higher dosage glucocorticoids, longer treatment duration, or the simultaneous introduction of immunosuppressive drugs, further leading to AOSD relapses. In this narrative review, we will analyze the latest literature data to unravel potential pathogenetic factors associated with specific patterns of AOSD disease or relapses in order to identify biomarkers that may guide clinical decisions, eventually leading to new therapeutic options.
Collapse
|
14
|
An Update on the Pathogenic Role of Neutrophils in Systemic Juvenile Idiopathic Arthritis and Adult-Onset Still's Disease. Int J Mol Sci 2021; 22:ijms222313038. [PMID: 34884842 PMCID: PMC8657670 DOI: 10.3390/ijms222313038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
Neutrophils are innate immune phagocytes that play a key role in immune defense against invading pathogens. The main offensive mechanisms of neutrophils are the phagocytosis of pathogens, release of granules, and production of cytokines. The formation of neutrophil extracellular traps (NETs) has been described as a novel defense mechanism in the literature. NETs are a network of fibers assembled from chromatin deoxyribonucleic acid, histones, and neutrophil granule proteins that have the ability to kill pathogens, while they can also cause toxic effects in hosts. Activated neutrophils with NET formation stimulate autoimmune responses related to a wide range of inflammatory autoimmune diseases by exposing autoantigens in susceptible individuals. The association between increased NET formation and autoimmunity was first reported in antineutrophil cytoplasmic antibody-related vasculitis, and the role of NETs in various diseases, including systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, has since been elucidated in research. Herein, we discuss the mechanistic role of neutrophils, including NETs, in the pathogenesis of systemic juvenile idiopathic arthritis (SJIA) and adult-onset Still’s disease (AOSD), and provide their clinical values as biomarkers for monitoring and prognosis.
Collapse
|
15
|
Ruscitti P, Berardicurti O, Giacomelli R, Cipriani P. The clinical heterogeneity of adult onset Still's disease may underlie different pathogenic mechanisms. Implications for a personalised therapeutic management of these patients. Semin Immunol 2021; 58:101632. [PMID: 35787972 DOI: 10.1016/j.smim.2022.101632] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Adult-onset Still's disease (AOSD) is a rare inflammatory disease of unknown aetiology usually affecting young adults and manifesting with a clinical triad of spiking fever, arthritis, and evanescent cutaneous rash. AOSD may be considered a highly heterogeneous disease, despite a similar clinical presentation, the disease course may be completely different. Some patients may have a single episode of the disease whereas others may evolve toward a chronic course and experience life-threatening complications. On these bases, to dissect the clinical heterogeneity of this disease, four different subsets were identified combining the manifestations at the beginning with possible diverse outcomes over time. Each one of these derived subsets would be characterised by a prominent different clinical feature from others, thus proposing dissimilar underlying pathogenic mechanisms, at least partially. Consequently, a distinct management of AOSD may be suggested to appropriately tailor the therapeutic strategy to these patients, according to principles of the precision medicine. These findings would also provide the rationale to recognise a different genetic and molecular profile of patients with AOSD. Taking together these findings, the basis for a precision medicine approach may be suggested in AOSD, which would drive a tailored therapeutic approach in these patients. A better patient stratification may also help in arranging specific designed studies to improve the management of patients with AOSD. Behind these different clinical phenotypes, distinct endotypes of AOSD may be suggested, probably differing in pathogenesis, outcomes, and response to therapies.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Onorina Berardicurti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Giacomelli
- Unit of Rheumatology and Clinical Immunology, University of Rome "Campus Biomedico", Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
16
|
Ma Y, Meng J, Jia J, Wang M, Teng J, Zhu D, Yang C, Hu Q. Current and emerging biological therapy in adult-onset Still's disease. Rheumatology (Oxford) 2021; 60:3986-4000. [PMID: 34117886 PMCID: PMC8410009 DOI: 10.1093/rheumatology/keab485] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a rare, but characteristic non-familial, multi-genic systemic auto-inflammatory disorder, characterized by high spiking fever, salmon-like evanescent skin rash, polyarthritis, sore throat, hyperferritinemia and leucocytosis. The hallmark of AOSD is a cytokine storm triggered by dysregulation of inflammation. Nowadays, with advances in anti-cytokine biologic agents, the treatment of AOSD is no longer limited to NSAIDs, glucocorticoids or conventional synthetic DMARDs. In this review, we focussed on the roles of these cytokines in the pathogenesis of AOSD and summarized the current and emerging biological therapy.
Collapse
Affiliation(s)
- Yuning Ma
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jianfen Meng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai.,Department of Rheumatology and Immunology, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Mengyan Wang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Jialin Teng
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Dehao Zhu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai
| |
Collapse
|
17
|
Yan Y, Liang H, Liu X, Liu L, Chen Y. Topical cationic hairy particles targeting cell free DNA in dermis enhance treatment of psoriasis. Biomaterials 2021; 276:121027. [PMID: 34293700 DOI: 10.1016/j.biomaterials.2021.121027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 12/22/2022]
Abstract
Abnormal high level of cell free DNA (cfDNA) triggers chronic inflammation to exacerbate psoriasis symptoms. Scavenging cfDNA by topical cationic polymeric nanoparticles has been certified as an effective therapeutic strategy for treating psoriasis. However, cationic cfDNA scavengers have a great potential risk to organs after entering systemic circulation through skin barrier. For better transformation to clinical application, herein a series of poly(2-(dimethylamino)ethyl methacrylate) (PDMA) grafted hairy silica particles (cSPs) with tunable PDMA length and particle size are applied to scavenge cfDNA in dermis. We reveal that the structure of cSPs correlates with the permeation ability across stratum corneum, retention time in dermis, binding affinity to cfDNA, and toxicity tolerance, which in turn affect the therapeutic effect. Especially, the cSPs of 700 nm show more accumulation and longer retention in psoriatic lesions, leading to excellent treatment results. They also outperform the cSPs of 200 nm at a lower administration frequency. Thus, we address the issues of size, cationic content of cSPs to open a potential new avenue to topically treatment of psoriasis by targeting cfDNA in dermis.
Collapse
Affiliation(s)
- Yanzi Yan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Huiyi Liang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xingliang Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, 510275, Guangzhou, China.
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
18
|
Nakabo S, Romo-Tena J, Kaplan MJ. Neutrophils as Drivers of Immune Dysregulation in Autoimmune Diseases with Skin Manifestations. J Invest Dermatol 2021; 142:823-833. [PMID: 34253374 DOI: 10.1016/j.jid.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Dysregulation in the phenotype and function of neutrophils may play important roles in the initiation and perpetuation of autoimmune responses, including conditions affecting the skin. Neutrophils can have local and systemic effects on innate and adaptive immune cells as well as on resident cells in the skin, including keratinocytes (KCs). Aberrant formation/clearance of neutrophil extracellular traps (NETs) in systemic autoimmunity and chronic inflammatory diseases have been associated with the externalization of modified autoantigens in peripheral blood and tissues. NETs can impact the function of many cells, including macrophages, lymphocytes, dendritic cells, fibroblasts, and KCs. Emerging evidence has unveiled the pathogenic key roles of neutrophils in systemic lupus erythematosus, idiopathic inflammatory myopathies, psoriasis, hidradenitis suppurativa, and other chronic inflammatory conditions. As such, neutrophil-targeting strategies represent promising therapeutic options for these diseases.
Collapse
Affiliation(s)
- Shuichiro Nakabo
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jorge Romo-Tena
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA; Medical Science PhD Program, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|