1
|
Li X, Wu J, Zhu S, Wei Q, Wang L, Chen J. Intragraft immune cells: accomplices or antagonists of recipient-derived macrophages in allograft fibrosis? Cell Mol Life Sci 2023; 80:195. [PMID: 37395809 DOI: 10.1007/s00018-023-04846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Organ fibrosis caused by chronic allograft rejection is a major concern in the field of transplantation. Macrophage-to-myofibroblast transition plays a critical role in chronic allograft fibrosis. Adaptive immune cells (such as B and CD4+ T cells) and innate immune cells (such as neutrophils and innate lymphoid cells) participate in the occurrence of recipient-derived macrophages transformed to myofibroblasts by secreting cytokines, which eventually leads to fibrosis of the transplanted organ. This review provides an update on the latest progress in understanding the plasticity of recipient-derived macrophages in chronic allograft rejection. We discuss here the immune mechanisms of allograft fibrosis and review the reaction of immune cells in allograft. The interactions between immune cells and the process of myofibroblast formulation are being considered for the potential therapeutic targets of chronic allograft fibrosis. Therefore, research on this topic seems to provide novel clues for developing strategies for preventing and treating allograft fibrosis.
Collapse
Affiliation(s)
- Xiaoping Li
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
- Department of Pediatrics, First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Jing Wu
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Shan Zhu
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Qiuyu Wei
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Liyan Wang
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China
| | - Jingtao Chen
- Cancer Center, First Hospital of Jilin University, Changchun, 130021, Jilin, China.
- Laboratory for Tumor Immunology, First Hospital of Jilin University, Changchun, 130061, Jilin, China.
| |
Collapse
|
2
|
Malard F, Holler E, Sandmaier BM, Huang H, Mohty M. Acute graft-versus-host disease. Nat Rev Dis Primers 2023; 9:27. [PMID: 37291149 DOI: 10.1038/s41572-023-00438-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/10/2023]
Abstract
Acute graft-versus-host disease (GVHD) is a common immune complication that can occur after allogeneic haematopoietic cell transplantation (alloHCT). Acute GVHD is a major health problem in these patients, and is associated with high morbidity and mortality. Acute GVHD is caused by the recognition and the destruction of the recipient tissues and organs by the donor immune effector cells. This condition usually occurs within the first 3 months after alloHCT, but later onset is possible. Targeted organs include the skin, the lower and upper gastrointestinal tract and the liver. Diagnosis is mainly based on clinical examination, and complementary examinations are performed to exclude differential diagnoses. Preventive treatment for acute GVHD is administered to all patients who receive alloHCT, although it is not always effective. Steroids are used for first-line treatment, and the Janus kinase 2 (JAK2) inhibitor ruxolitinib is second-line treatment. No validated treatments are available for acute GVHD that is refractory to steroids and ruxolitinib, and therefore it remains an unmet medical need.
Collapse
Affiliation(s)
- Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| | - Ernst Holler
- University Hospital of Regensburg, Department of Internal Medicine 3, Regensburg, Germany
| | - Brenda M Sandmaier
- Fred Hutchinson Cancer Center, Translational Science and Therapeutics Division, Seattle, WA, USA
- University of Washington School of Medicine, Division of Medical Oncology, Seattle, WA, USA
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Province, Hangzhou, China
- Engineering Laboratory for Stem Cell and Immunity Therapy, Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
3
|
Bos S, Milross L, Filby AJ, Vos R, Fisher AJ. Immune processes in the pathogenesis of chronic lung allograft dysfunction: identifying the missing pieces of the puzzle. Eur Respir Rev 2022; 31:31/165/220060. [PMID: 35896274 DOI: 10.1183/16000617.0060-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Lung transplantation is the optimal treatment for selected patients with end-stage chronic lung diseases. However, chronic lung allograft dysfunction remains the leading obstacle to improved long-term outcomes. Traditionally, lung allograft rejection has been considered primarily as a manifestation of cellular immune responses. However, in reality, an array of complex, interacting and multifactorial mechanisms contribute to its emergence. Alloimmune-dependent mechanisms, including T-cell-mediated rejection and antibody-mediated rejection, as well as non-alloimmune injuries, have been implicated. Moreover, a role has emerged for autoimmune responses to lung self-antigens in the development of chronic graft injury. The aim of this review is to summarise the immune processes involved in the pathogenesis of chronic lung allograft dysfunction, with advanced insights into the role of innate immune pathways and crosstalk between innate and adaptive immunity, and to identify gaps in current knowledge.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK.,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Luke Milross
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Robin Vos
- Dept of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK .,Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| |
Collapse
|
4
|
Quatrini L, Tumino N, Besi F, Ciancaglini C, Galaverna F, Grasso AG, Merli P, Locatelli F, Vacca P, Moretta L. Glucocorticoids inhibit human hematopoietic stem cell differentiation toward a common ILC precursor. J Allergy Clin Immunol 2021; 149:1772-1785. [PMID: 34688777 DOI: 10.1016/j.jaci.2021.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Innate lymphoid cells (ILCs) comprise cytotoxic natural killer (NK) cells and helper ILCs (hILCs). Human hILC development is less characterized as compared with that of NK cells, although all ILCs are developmentally related. It has been reported that the immunosuppressive drugs glucocorticoids (GCs) regulate ILC function, but whether they control ILC differentiation from hematopoietic stem cells (HSCs) is unknown. OBJECTIVES This study sought to analyze the effect of GCs on ILC development from HSCs. METHODS This study exploited an in vitro system to generate and expand from peripheral blood HSCs a multipotent CD56+ ILC precursor able to differentiate into NK cells, ILC1s, and ILC3s. We also analyzed ex vivo, at different time points, the peripheral blood of recipients of allogeneic HSC transplantation who were or were not treated with GCs and compared ILC subset reconstitution. RESULTS Invitro, GCs favor the generation of NK cells from myeloid precursors, while they strongly impair lymphoid development. In support of these data, recipients of HSC transplantation who had been treated with GCs display a lower number of circulating hILCs, including the ILC precursor (ILCP) previously identified as a systemic substrate for tissue ILC differentiation. CONCLUSIONS GCs impair the development of the CD117+ ILCP from CD34+ HSCs, while they do not affect the further steps of ILCP differentiation toward NK cells and hILC subsets. This reflects an association of GC treatment with a marked reduction of circulating hILCs in the recipients of HSC transplantation.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy.
| | - Nicola Tumino
- Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Cecilia Ciancaglini
- Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Galaverna
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Antonio Giacomo Grasso
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy; Department of Pediatrics, Sapienza, University of Rome, Rome, Italy
| | - Paola Vacca
- Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
5
|
Huarte E, Peel M, Juvekar A, Dubé P, Sarah S, Stephens L, Stewart B, Long B, Czerniak P, Oliver J, Smith P. Ruxolitinib, a JAK1/JAK2 selective inhibitor, ameliorates acute and chronic steroid-refractory GvHD mouse models. Immunotherapy 2021; 13:977-987. [PMID: 34184542 DOI: 10.2217/imt-2021-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Graft-versus-host disease (GvHD) is a major complication arising in patients undergoing allogenic hematopoietic stem cell transplantation. Material & methods: We tested ruxolitinib (a selective JAK1/2 inhibitor) efficacy in three different preclinical models of GvHD. Results: Ruxolitinib, at doses that mimic clinically achievable human JAK/signal transducers and activators of transcription target inhibition, significantly reduced alloreactive T-cell activation and infiltration in the lung and skin, leading to improved outcomes in two experimental models of steroid-refractory acute and chronic GvHD. Additionally, we describe a novel humanized GvHD model in which immunodeficient NOG animals are engineered to produce human IL-15 to facilitate enhanced T- and NK cell engraftment, leading to severe GvHD. Conclusion: Ruxolitinib treatment ameliorated disease symptoms resulting from targeted immune modulation via JAK/signal transducers and activators of transcription signaling inhibition.
Collapse
Affiliation(s)
- Eduardo Huarte
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Michael Peel
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Ashish Juvekar
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Philip Dubé
- Taconic Biosciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Sarala Sarah
- Taconic Biosciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Lynn Stephens
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Becky Stewart
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Brian Long
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Philip Czerniak
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Julian Oliver
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| | - Paul Smith
- Incyte Research Institute, 1801 Augustine Cut-off, Wilmington, DE 19803, USA
| |
Collapse
|
6
|
Quatrini L, Ricci B, Ciancaglini C, Tumino N, Moretta L. Regulation of the Immune System Development by Glucocorticoids and Sex Hormones. Front Immunol 2021; 12:672853. [PMID: 34248954 PMCID: PMC8260976 DOI: 10.3389/fimmu.2021.672853] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Through the release of hormones, the neuro-endocrine system regulates the immune system function promoting adaptation of the organism to the external environment and to intrinsic physiological changes. Glucocorticoids (GCs) and sex hormones not only regulate immune responses, but also control the hematopoietic stem cell (HSC) differentiation and subsequent maturation of immune cell subsets. During the development of an organism, this regulation has long-term consequences. Indeed, the effects of GC exposure during the perinatal period become evident in the adulthood. Analogously, in the context of HSC transplantation (HSCT), the immune system development starts de novo from the donor HSCs. In this review, we summarize the effects of GCs and sex hormones on the regulation of HSC, as well as of adaptive and innate immune cells. Moreover, we discuss the short and long-term implications on hematopoiesis of sex steroid ablation and synthetic GC administration upon HSCT.
Collapse
Affiliation(s)
- Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Biancamaria Ricci
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Cecilia Ciancaglini
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
7
|
Ogawa Y, Kawakami Y, Tsubota K. Cascade of Inflammatory, Fibrotic Processes, and Stress-Induced Senescence in Chronic GVHD-Related Dry Eye Disease. Int J Mol Sci 2021; 22:ijms22116114. [PMID: 34204098 PMCID: PMC8201206 DOI: 10.3390/ijms22116114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 01/12/2023] Open
Abstract
Ocular graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Ocular GVHD affects recipients' visual function and quality of life. Recent advanced research in this area has gradually attracted attention from a wide range of physicians and ophthalmologists. This review highlights the mechanism of immune processes and the molecular mechanism, including several inflammation cascades, pathogenic fibrosis, and stress-induced senescence related to ocular GVHD, in basic spectrum topics in this area. How the disease develops and what kinds of cells participate in ocular GVHD are discussed. Although the classical immune process is a main pathological pathway in this disease, senescence-associated changes in immune cells and stem cells may also drive this disease. The DNA damage response, p16/p21, and the expression of markers associated with the senescence-associated secretory phenotype (SASP) are seen in ocular tissue in GVHD. Macrophages, T cells, and mesenchymal cells from donors or recipients that increasingly infiltrate the ocular surface serve as the source of increased secretion of IL-6, which is a major SASP driver. Agents capable of reversing the changes, including senolytic reagents or those that can suppress the SASP seen in GVHD, provide new potential targets for the treatment of GVHD. Creating innovative therapies for ocular GVHD is necessary to treat this intractable ocular disease.
Collapse
Affiliation(s)
- Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Correspondence: ; Tel.: +81-3-3353-1211
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan;
- Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| |
Collapse
|