1
|
Wojciechowska-Durczynska K, Stepniak J, Lewinski A, Karbownik-Lewinska M. The Increased FCRL mRNA Expression in Patients with Graves' Disease Is Associated with Hyperthyroidism (But Not with Positive Thyroid Antibodies). J Clin Med 2024; 13:5289. [PMID: 39274506 PMCID: PMC11396638 DOI: 10.3390/jcm13175289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Fc receptor-like (FCRL) genes play a role in the immune system by encoding proteins that function as receptors on the surface of immune cells. The clinical significance of FCRL gene expression in Graves' Disease (GD) and Graves' Orbitopathy (GO) remains unclear. We evaluated the expression of FCRL 2, 3, 4 mRNA in patients with GD and GO and its role in the development and activity of these diseases. Methods: Peripheral blood samples from patients with GD (n = 24) or GO (n = 49) hospitalized in the Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, were collected. Expressions of FCRL2, FCRL3 and FCRL4 were measured by real-time PCR. Results: FCRL3 expression was higher in patients with GD compared to GO (1.375 vs. 0.673, p = 0.004) and, specifically, active GO (1.375 vs. 0.639, p = 0.005). Regarding FCRL4, mRNA expression was higher in GD compared to Control (3.078 vs. 0.916, p = 0.003), GO (3.078 vs. 1.178, p < 0.001), active GO (3.078 vs. 1.186, p = 0.002) and inactive GO (3.078 vs. 1.171, p = 0.008). In turn, FCRL4 mRNA expression was higher in patients with hyperthyroidism (subclinical + overt) than in euthyroid patients (2.509 vs. 0.995, p = 0.001 when the whole group of individuals was considered; 2.509 vs. 1.073, p = 0.004 when GO + GD was considered). Conclusions: The increased FCRL mRNA expression in patients with GD is associated with hyperthyroidism (but not with positive TSHRAbs), and our study is the first one to confirm this relationship.
Collapse
Affiliation(s)
- Katarzyna Wojciechowska-Durczynska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Jan Stepniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Andrzej Lewinski
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| | - Malgorzata Karbownik-Lewinska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
2
|
Moon HG, Eccles JD, Kim SJ, Kim KH, Kim YM, Rehman J, Lee H, Kanabar P, Christman JW, Ackerman SJ, Ascoli C, Kang H, Choi HS, Kim M, You S, Park GY. Complement C1q essential for aeroallergen sensitization via CSF1R + conventional dendritic cells type 2. J Allergy Clin Immunol 2023; 152:1141-1152.e2. [PMID: 37562753 PMCID: PMC10923196 DOI: 10.1016/j.jaci.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Dendritic cells (DCs) are heterogeneous, comprising multiple subsets with unique functional specifications. Our previous work has demonstrated that the specific conventional type 2 DC subset, CSF1R+cDC2s, plays a critical role in sensing aeroallergens. OBJECTIVE It remains to be understood how CSF1R+cDC2s recognize inhaled allergens. We sought to elucidate the transcriptomic programs and receptor-ligand interactions essential for function of this subset in allergen sensitization. METHODS We applied single-cell RNA sequencing to mouse lung DCs. Conventional DC-selective knockout mouse models were employed, and mice were subjected to inhaled allergen sensitization with multiple readouts of asthma pathology. Under the clinical arm of this work, human lung transcriptomic data were integrated with mouse data, and bronchoalveolar lavage (BAL) specimens were collected from subjects undergoing allergen provocation, with samples assayed for C1q. RESULTS We found that C1q is selectively enriched in lung CSF1R+cDC2s, but not in other lung cDC2 or cDC1 subsets. Depletion of C1q in conventional DCs significantly attenuates allergen sensing and features of asthma. Additionally, we found that C1q binds directly to human dust mite allergen, and the C1q receptor CD91 (LRP1) is required for lung CSF1R+cDC2s to recognize the C1q-allergen complex and induce allergic lung inflammation. Lastly, C1q is enriched in human BAL samples following subsegmental allergen challenge, and human RNA sequencing data demonstrate close homology between lung IGSF21+DCs and mouse CSF1R+cDC2s. CONCLUSIONS C1q is secreted from the CSF1R+cDC2 subset among conventional DCs. Our data indicate that the C1q-LRP1 axis represents a candidate for translational therapeutics in the prevention and suppression of allergic lung inflammation.
Collapse
Affiliation(s)
- Hyung-Geun Moon
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago.
| | - Jacob D Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Seung-Jae Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Ki-Hyun Kim
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Young-Mee Kim
- Department of Pharmacology, University of Illinois College of Medicine, Chicago
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago
| | - Hyun Lee
- College of Pharmacy, University of Illinois at Chicago, Chicago
| | - Pinal Kanabar
- Research Informatics Core, University of Illinois at Chicago, Chicago
| | - John W Christman
- Section of Pulmonary, Critical Care, and Sleep Medicine, Columbus; Davis Heart and Lung Research Center, The Ohio State University, Columbus
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago; Department of Medicine, University of Illinois at Chicago, Chicago
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago.
| |
Collapse
|
3
|
Zhao H, Souilljee M, Pavlidis P, Alachiotis N. Genome-wide scans for selective sweeps using convolutional neural networks. Bioinformatics 2023; 39:i194-i203. [PMID: 37387128 DOI: 10.1093/bioinformatics/btad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
MOTIVATION Recent methods for selective sweep detection cast the problem as a classification task and use summary statistics as features to capture region characteristics that are indicative of a selective sweep, thereby being sensitive to confounding factors. Furthermore, they are not designed to perform whole-genome scans or to estimate the extent of the genomic region that was affected by positive selection; both are required for identifying candidate genes and the time and strength of selection. RESULTS We present ASDEC (https://github.com/pephco/ASDEC), a neural-network-based framework that can scan whole genomes for selective sweeps. ASDEC achieves similar classification performance to other convolutional neural network-based classifiers that rely on summary statistics, but it is trained 10× faster and classifies genomic regions 5× faster by inferring region characteristics from the raw sequence data directly. Deploying ASDEC for genomic scans achieved up to 15.2× higher sensitivity, 19.4× higher success rates, and 4× higher detection accuracy than state-of-the-art methods. We used ASDEC to scan human chromosome 1 of the Yoruba population (1000Genomes project), identifying nine known candidate genes.
Collapse
Affiliation(s)
- Hanqing Zhao
- Faculty of EEMCS, University of Twente, Enschede, The Netherlands
| | | | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | | |
Collapse
|
4
|
Evidence for Extensive Duplication and Subfunctionalization of FCRL6 in Armadillo ( Dasypus novemcinctus). Int J Mol Sci 2023; 24:ijms24054531. [PMID: 36901962 PMCID: PMC10003336 DOI: 10.3390/ijms24054531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
The control of infections by the vertebrate adaptive immune system requires careful modulation to optimize defense and minimize harm to the host. The Fc receptor-like (FCRL) genes encode immunoregulatory molecules homologous to the receptors for the Fc portion of immunoglobulin (FCR). To date, nine different genes (FCRL1-6, FCRLA, FCRLB and FCRLS) have been identified in mammalian organisms. FCRL6 is located at a separate chromosomal position from the FCRL1-5 locus, has conserved synteny in mammals and is situated between the SLAMF8 and DUSP23 genes. Here, we show that this three gene block underwent repeated duplication in Dasypus novemcinctus (nine-banded armadillo) resulting in six FCRL6 copies, of which five appear functional. Among 21 mammalian genomes analyzed, this expansion was unique to D. novemcinctus. Ig-like domains that derive from the five clustered FCRL6 functional gene copies show high structural conservation and sequence identity. However, the presence of multiple non-synonymous amino acid changes that would diversify individual receptor function has led to the hypothesis that FCRL6 endured subfunctionalization during evolution in D. novemcinctus. Interestingly, D. novemcinctus is noteworthy for its natural resistance to the Mycobacterium leprae pathogen that causes leprosy. Because FCRL6 is chiefly expressed by cytotoxic T and NK cells, which are important in cellular defense responses against M. leprae, we speculate that FCRL6 subfunctionalization could be relevant for the adaptation of D. novemcinctus to leprosy. These findings highlight the species-specific diversification of FCRL family members and the genetic complexity underlying evolving multigene families critical for modulating adaptive immune protection.
Collapse
|
5
|
AFFINITY OF BRAZILIAN WILD MAMMAL IMMUNOGLOBULINS TO BACTERIAL PROTEINS A AND G. J Zoo Wildl Med 2023; 53:832-837. [PMID: 36640087 DOI: 10.1638/2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 01/09/2023] Open
Abstract
Staphylococcal A and streptococcal G proteins are widely used in immunoassays when specific immunological reagents are unavailable, such as for wild animals. The affinity of bacterial proteins A and G to the immunoglobulins of seven Brazilian mammals were tested, including black-tufted marmoset (Callithrix penicillata, n = 5), golden-bellied capuchin (Sapajus xanthosternos, n = 13), woolly mouse opossum (Micoureus demerarae, n = 6), long-nosed armadillo (Dasypus novemcinctus, n = 5), collared anteater (Tamandua tetradactyla, n = 5), ocelot (Leopardus pardalis, n = 6), and vampire bat (Desmodus rotundus, n = 5). Blood samples were collected from animals that were rescued in peri-urban rainforest fragments. Sera pools of each species were tested by ELISA to determine the intensity of each bacterial protein affinity to the immunoglobulins. When comparing the affinity to both proteins, immunoglobulins from D. rotundus, S. xanthosternos, and T. tetradactyla presented a higher affinity to protein G, whereas a higher affinity to protein A was found for immunoglobulins of C. penicillata and L. pardalis. The only species that presented a very low affinity to both bacterial proteins was M. demerarae. This study can be used as a reference for further studies on the development of sensitive and specific immunodiagnostic assays to be used for the monitoring of the health of these wild mammals.
Collapse
|
6
|
Neves F, de Sousa-Pereira P, Melo-Ferreira J, Esteves PJ, Pinheiro A. Evolutionary analyses of polymeric immunoglobulin receptor (pIgR) in the mammals reveals an outstanding mutation rate in the lagomorphs. Front Immunol 2022; 13:1009387. [PMID: 36466819 PMCID: PMC9716071 DOI: 10.3389/fimmu.2022.1009387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/03/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND The transcytosis of polymeric immunoglobulins, IgA and IgM, across the epithelial barrier to the luminal side of mucosal tissues is mediated by the polymeric immunoglobulin receptor (pIgR). At the luminal side the extracellular ligand binding region of pIgR, the secretory component (SC), is cleaved and released bound to dimeric IgA (dIgA), protecting it from proteolytic degradation, or in free form, protecting the mucosa form pathogens attacks. The pIgR was first cloned for rabbit in early 1980's and since then has been described for all vertebrates, from fish to mammals. The existence of more than one functional pIgR alternative-spliced variant in the European rabbit, the complete pIgR as other mammals and a shorter pIgR lacking two SC exons, raised the question whether other lagomorphs share the same characteristics and how has the PIGR gene evolved in these mammals. RESULTS To investigate these questions, we sequenced expressed pIgR genes for other leporid genus, Lepus spp., and obtained and aligned pIgR sequences from representative species of all mammalian orders. The obtained mammalian phylogeny, as well as the Bayesian inference of evolutionary rates and genetic distances, show that Lagomorpha pIgR is evolving at a higher substitution rate. Codon-based analyses of positive selection show that mammalian pIgR is evolving under strong positive selection, with strong incidence in the domains excised from the rabbit short pIgR isoform. We further confirmed that the hares also express the two rabbit pIgR isoforms. CONCLUSIONS The Lagomorpha pIgR unique evolutionary pattern may reflect a group specific adaptation. The pIgR evolution may be linked to the unusual expansion of IgA genes observed in lagomorphs, or to neofunctionalization in this group. Further studies are necessary to clarify the driving forces behind the unique lagomorph pIgR evolution.
Collapse
Affiliation(s)
- Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Patrícia de Sousa-Pereira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - José Melo-Ferreira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro J. Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| | - Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| |
Collapse
|
7
|
Bub A, Brenna S, Alawi M, Kügler P, Gui Y, Kretz O, Altmeppen H, Magnus T, Puig B. Multiplexed mRNA analysis of brain-derived extracellular vesicles upon experimental stroke in mice reveals increased mRNA content with potential relevance to inflammation and recovery processes. Cell Mol Life Sci 2022; 79:329. [PMID: 35639208 PMCID: PMC9156510 DOI: 10.1007/s00018-022-04357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed structures that represent newly discovered means for cell-to-cell communication as well as promising disease biomarkers and therapeutic tools. Apart from proteins, lipids, and metabolites, EVs can deliver genetic information such as mRNA, eliciting a response in the recipient cells. In the present study, we have analyzed the mRNA content of brain-derived EVs (BDEVs) isolated 72 h after experimental stroke in mice and compared them to controls (shams) using nCounter® Nanostring panels, with or without prior RNA isolation. We found that both panels show similar results when comparing upregulated mRNAs in stroke. Notably, the highest upregulated mRNAs were related to processes of stress and immune system responses, but also to anatomical structure development, cell differentiation, and extracellular matrix organization, thus indicating that regenerative mechanisms already take place at this time-point. The five top overrepresented mRNAs in stroke mice were confirmed by RT-qPCR and, interestingly, found to be full-length. We could reveal that the majority of the mRNA cargo in BDEVs was of microglial origin and predominantly present in small BDEVs (≤ 200 nm in diameter). However, the EV population with the highest increase in the total BDEVs pool at 72 h after stroke was of oligodendrocytic origin. Our study shows that nCounter® panels are a good tool to study mRNA content in tissue-derived EVs as they can be carried out even without previous mRNA isolation, and that the mRNA cargo of BDEVs indicates a possible participation in inflammatory but also recovery processes after stroke.
Collapse
Affiliation(s)
- Annika Bub
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Kügler
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqi Gui
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Kretz
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
8
|
Chen JQ, Zhang MP, Tong XK, Li JQ, Zhang Z, Huang F, Du HP, Zhou M, Ai HS, Huang LS. Scan of the endogenous retrovirus sequences across the swine genome and survey of their copy number variation and sequence diversity among various Chinese and Western pig breeds. Zool Res 2022; 43:423-441. [PMID: 35437972 PMCID: PMC9113972 DOI: 10.24272/j.issn.2095-8137.2021.379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
In pig-to-human xenotransplantation, the transmission risk of porcine endogenous retroviruses (PERVs) is of great concern. However, the distribution of PERVs in pig genomes, their genetic variation among Eurasian pigs, and their evolutionary history remain unclear. We scanned PERVs in the current pig reference genome (assembly Build 11.1), and identified 36 long complete or near-complete PERVs (lcPERVs) and 23 short incomplete PERVs (siPERVs). Besides three known PERVs (PERV-A, -B, and -C), four novel types (PERV-JX1, -JX2, -JX3, and -JX4) were detected in this study. According to evolutionary analyses, the newly discovered PERVs were more ancient, and PERV-Bs probably experienced a bottleneck ~0.5 million years ago (Ma). By analyzing 63 high-quality porcine whole-genome resequencing data, we found that the PERV copy numbers in Chinese pigs were lower (32.0±4.0) than in Western pigs (49.1±6.5). Additionally, the PERV sequence diversity was lower in Chinese pigs than in Western pigs. Regarding the lcPERV copy numbers, PERV-A and -JX2 in Western pigs were higher than in Chinese pigs. Notably, Bama Xiang (BMX) pigs had the lowest PERV copy number (27.8±5.1), and a BMX individual had no PERV-C and the lowest PERV copy number (23), suggesting that BMX pigs were more suitable for screening and/or modification as xenograft donors. Furthermore, we identified 451 PERV transposon insertion polymorphisms (TIPs), of which 86 were shared by all 10 Chinese and Western pig breeds. Our findings provide systematic insights into the genomic distribution, variation, evolution, and possible biological function of PERVs.
Collapse
Affiliation(s)
- Jia-Qi Chen
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ming-Peng Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xin-Kai Tong
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jing-Quan Li
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhou Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Fei Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hui-Peng Du
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Meng Zhou
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hua-Shui Ai
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|