1
|
Bang SY, Shim SC. Early human migration determines the risk of being attacked by wolves: ethnic gene diversity on the development of systemic lupus erythematosus. JOURNAL OF RHEUMATIC DISEASES 2024; 31:200-211. [PMID: 39355544 PMCID: PMC11439634 DOI: 10.4078/jrd.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 10/03/2024]
Abstract
The prevalence of systemic lupus erythematosus (SLE) varies significantly based on ethnicity rather than geographic distribution; thus, the prevalence is higher in Asian, Hispanic, and Black African populations than in European populations. The risk of developing lupus nephritis (LN) is the highest among Asian populations. Therefore, we hypothesize that human genetic diversity between races has occurred through the early human migration and human genetic adaptation to various environments, with a particular focus on pathogens. Additionally, we compile the currently available evidence on the ethnic gene diversity of SLE and how it relates to disease severity. The human leukocyte antigen (HLA) locus is well established as associated with susceptibility to SLE; specific allele distributions have been observed across diverse populations. Notably, specific amino acid residues within these HLA loci demonstrate significant associations with SLE risk. The non-HLA genetic loci associated with SLE risk also varies across diverse ancestries, implicating distinct immunological pathways, such as the type-I interferon and janus kinase-signal transducers and activators of transcription (JAK-STAT) pathways in Asians, the type-II interferon signaling pathway in Europeans, and B cell activation pathway in Africans. Furthermore, assessing individual genetic susceptibility using genetic risk scores (GRS) for SLE helps to reveal the diverse prevalence, age of onset, and clinical phenotypes across different ethnicities. A higher GRS increases the risk of LN and the severity of SLE. Therefore, understanding ethnic gene diversity is crucial for elucidating disease mechanisms and SLE severity, which could enable the development of novel drugs specific to each race.
Collapse
Affiliation(s)
- So-Young Bang
- Division of Rheumatology, Hanyang University Guri Hospital, Guri, Korea
- Hanyang University Institute for Rheumatology Research and Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
2
|
Takahashi Ueda M. Retrotransposon-derived transcripts and their functions in immunity and disease. Genes Genet Syst 2024; 98:305-319. [PMID: 38199240 DOI: 10.1266/ggs.23-00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Retrotransposons, which account for approximately 42% of the human genome, have been increasingly recognized as "non-self" pathogen-associated molecular patterns (PAMPs) due to their virus-like sequences. In abnormal conditions such as cancer and viral infections, retrotransposons that are aberrantly expressed due to impaired epigenetic suppression display PAMPs, leading to their recognition by pattern recognition receptors (PRRs) of the innate immune system and triggering inflammation. This viral mimicry mechanism has been observed in various human diseases, including aging and autoimmune disorders. However, recent evidence suggests that retrotransposons possess highly regulated immune reactivity and play important roles in the development and function of the immune system. In this review, I discuss a wide range of retrotransposon-derived transcripts, their role as targets in immune recognition, and the diseases associated with retrotransposon activity. Furthermore, I explore the implications of chimeric transcripts formed between retrotransposons and known gene mRNAs, which have been previously underestimated, for the increase of immune-related gene isoforms and their influence on immune function. Retrotransposon-derived transcripts have profound and multifaceted effects on immune system function. The aim of this comprehensive review is to provide a better understanding of the complex relationship between retrotransposon transcripts and immune defense.
Collapse
Affiliation(s)
- Mahoko Takahashi Ueda
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University
| |
Collapse
|
3
|
Zhou Z, Ou-yang C, Chen Q, Ren Z, Guo X, Lei M, Liu C, Yang X. Trafficking and effect of released DNA on cGAS-STING signaling pathway and cardiovascular disease. Front Immunol 2023; 14:1287130. [PMID: 38152400 PMCID: PMC10751357 DOI: 10.3389/fimmu.2023.1287130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
Evidence from clinical research and animal studies indicates that inflammation is an important factor in the occurrence and development of cardiovascular disease (CVD). Emerging evidence shows that nucleic acids serve as crucial pathogen-associated molecular patterns (PAMPs) or non-infectious damage-associated molecular patterns (DAMPs), are released and then recognized by pattern recognition receptors (PRRs), which activates immunological signaling pathways for host defense. Mechanistically, the released nucleic acids activate cyclic GMP-AMP synthase (cGAS) and its downstream receptor stimulator of interferon genes (STING) to promote type I interferons (IFNs) production, which play an important regulatory function during the initiation of an innate immune response to various diseases, including CVD. This pathway represents an essential defense regulatory mechanism in an organism's innate immune system. In this review, we outline the overall profile of cGAS-STING signaling, summarize the latest findings on nucleic acid release and trafficking, and discuss their potential role in CVD. This review also sheds light on potential directions for future investigations on CVD.
Collapse
Affiliation(s)
- Zimo Zhou
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- State Key Laboratory of Trauma, Burns and Combined Injury, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Changhan Ou-yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiying Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Min Lei
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiaosong Yang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, China
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
4
|
Shin W, Mun S, Han K. Human Endogenous Retrovirus-K (HML-2)-Related Genetic Variation: Human Genome Diversity and Disease. Genes (Basel) 2023; 14:2150. [PMID: 38136972 PMCID: PMC10742618 DOI: 10.3390/genes14122150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
Human endogenous retroviruses (HERVs) comprise a significant portion of the human genome, making up roughly 8%, a notable comparison to the 2-3% represented by coding sequences. Numerous studies have underscored the critical role and importance of HERVs, highlighting their diverse and extensive influence on the evolution of the human genome and establishing their complex correlation with various diseases. Among HERVs, the HERV-K (HML-2) subfamily has recently attracted significant attention, integrating into the human genome after the divergence between humans and chimpanzees. Its insertion in the human genome has received considerable attention due to its structural and functional characteristics and the time of insertion. Originating from ancient exogenous retroviruses, these elements succeeded in infecting germ cells, enabling vertical transmission and existing as proviruses within the genome. Remarkably, these sequences have retained the capacity to form complete viral sequences, exhibiting activity in transcription and translation. The HERV-K (HML-2) subfamily is the subject of active debate about its potential positive or negative effects on human genome evolution and various pathologies. This review summarizes the variation, regulation, and diseases in human genome evolution arising from the influence of HERV-K (HML-2).
Collapse
Affiliation(s)
- Wonseok Shin
- NGS Clinical Laboratory, Division of Cancer Research, Dankook University Hospital, Cheonan 31116, Republic of Korea;
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
| | - Seyoung Mun
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| | - Kyudong Han
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Republic of Korea
- Department of Bioconvergence Engineering, Dankook University, Yongin 16890, Republic of Korea
- R&D Center, HuNBiome Co., Ltd., Seoul 08507, Republic of Korea
| |
Collapse
|
5
|
Sun B, Kim H, Mello CC, Priess JR. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet 2023; 19:e1010804. [PMID: 37384599 PMCID: PMC10309623 DOI: 10.1371/journal.pgen.1010804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.
Collapse
Affiliation(s)
- Bing Sun
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Haram Kim
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Craig C. Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester,United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James R. Priess
- Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Ferrari L, Monti P, Favero C, Carugno M, Tarantini L, Maggioni C, Bonzini M, Pesatori AC, Bollati V. Association between night shift work and methylation of a subset of immune-related genes. Front Public Health 2023; 10:1083826. [PMID: 36711387 PMCID: PMC9877629 DOI: 10.3389/fpubh.2022.1083826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Introduction Night shift (NS) work has been associated with an increased risk of different conditions characterized by altered inflammatory and immune responses, such as cardio-metabolic and infectious diseases, cancer, and obesity. Epigenetic modifications, such as DNA methylation, might mirror alterations in biological processes that are influenced by NS work. Methods The present study was conducted on 94 healthy female workers with different working schedules and aimed at identifying whether NS was associated with plasmatic concentrations of the inflammatory proteins NLRP3 and TNF-alpha, as well as with DNA methylation levels of ten human endogenous retroviral (HERV) sequences, and nine genes selected for their role in immune and inflammatory processes. We also explored the possible role of the body mass index (BMI) as an additional susceptibility factor that might influence the effects of NS work on the tested epigenetic modifications. Results and discussion We observed a positive association between NS and NLRP3 levels (p-value 0.0379). Moreover, NS workers retained different methylation levels for ERVFRD-1 (p-value = 0.0274), HERV-L (p-value = 0.0377), and HERV-P (p-value = 0.0140) elements, and for BIRC2 (p-value = 0.0460), FLRT3 (p-value = 0.0422), MIG6 (p-value = 0.0085), and SIRT1 (p-value = 0.0497) genes. We also observed that the BMI modified the relationship between NS and the methylation of ERVE, HERV-L, and ERVW-1 elements. Overall, our results suggest that HERV methylation could pose as a promising biomolecular sensor to monitor not only the effect of NS work but also the cumulative effect of multiple stressors.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,*Correspondence: Luca Ferrari ✉
| | - Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Chiara Favero
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Michele Carugno
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Letizia Tarantini
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Cristina Maggioni
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Devaux CA, Pontarotti P, Nehari S, Raoult D. 'Cannibalism' of exogenous DNA sequences: The ancestral form of adaptive immunity which entails recognition of danger. Front Immunol 2022; 13:989707. [PMID: 36618387 PMCID: PMC9816338 DOI: 10.3389/fimmu.2022.989707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Adaptive immunity is a sophisticated form of immune response capable of retaining the molecular memory of a very great diversity of target antigens (epitopes) as non-self. It is capable of reactivating itself upon a second encounter with an immunoglobulin or T-cell receptor antigen-binding site with a known epitope that had previously primed the host immune system. It has long been considered that adaptive immunity is a highly evolved form of non-self recognition that appeared quite late in speciation and complemented a more generalist response called innate immunity. Innate immunity offers a relatively non-specific defense (although mediated by sensors that could specifically recognize virus or bacteria compounds) and which does not retain a memory of the danger. But this notion of recent acquisition of adaptive immunity is challenged by the fact that another form of specific recognition mechanisms already existed in prokaryotes that may be able to specifically auto-protect against external danger. This recognition mechanism can be considered a primitive form of specific (adaptive) non-self recognition. It is based on the fact that many archaea and bacteria use a genome editing system that confers the ability to appropriate viral DNA sequences allowing prokaryotes to prevent host damage through a mechanism very similar to adaptive immunity. This is indistinctly called, 'endogenization of foreign DNA' or 'viral DNA predation' or, more pictorially 'DNA cannibalism'. For several years evidence has been accumulating, highlighting the crucial role of endogenization of foreign DNA in the fundamental processes related to adaptive immunity and leading to a change in the dogma that adaptive immunity appeared late in speciation.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France,*Correspondence: Christian A. Devaux,
| | - Pierre Pontarotti
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Sephora Nehari
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
8
|
Khadjinova AI, Wang X, Laine A, Ukadike K, Eckert M, Stevens A, Bengtsson AA, Lood C, Mustelin T. Autoantibodies against the envelope proteins of endogenous retroviruses K102 and K108 in patients with systemic lupus erythematosus correlate with active disease. Clin Exp Rheumatol 2022; 40:1306-1312. [PMID: 34665695 PMCID: PMC10695298 DOI: 10.55563/clinexprheumatol/2kg1d8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES To determine if patients with systemic lupus erythematosus (SLE), a disease characterised by elevated type I interferons reminiscent of anti-viral immunity, have expression of human endogenous retrovirus K (HERV-K) proviruses capable of producing envelope (Env) protein, as well as associated autoantibodies against the Env protein. METHODS ELISAs were conducted with recombinant Env protein and sera from SLE patients with active (n=60) or inactive (n=49) disease, healthy controls (n=47), other rheumatic disorders (n=59), as well as plasma from paediatric lupus patients with active (n=30) or inactive (n=30) disease, and 17 healthy children. Antibody reactivity was evaluated for correlations with clinical and laboratory parameters of the patients. Expression of HERV-K transcripts were profiled in SLE leukocytes by RNA-Seq. RESULTS Both adult and paediatric SLE patients had autoantibodies against HERV-K Env with higher titres than healthy controls or patients with Sjögren's syndrome, small- or large-vessel vasculitis, or psoriatic arthritis. Transcripts from only two HERV-K loci capable of producing Env, HERV-K102 and -K108, were detected among the 10 expressed loci in SLE patients. CONCLUSIONS Our data reveal that HERV-K proviruses are expressed in SLE and that the HERV-K-encoded Env protein elicits an immune response in patients, particularly during active disease.
Collapse
Affiliation(s)
- Anastasia I Khadjinova
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Xiaoxing Wang
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amanda Laine
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kennedy Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary Eckert
- Seattle Children's Hospital, Seattle, WA, USA
| | - Anne Stevens
- Seattle Children's Hospital and Seattle Children's Research Institute, Seattle, WA, and Jansen Research and Development LLC, Malvern, PA, USA
| | | | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Koch BF. SARS-CoV-2 and human retroelements: a case for molecular mimicry? BMC Genom Data 2022; 23:27. [PMID: 35395708 PMCID: PMC8992427 DOI: 10.1186/s12863-022-01040-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
Background The factors driving the late phase of COVID-19 are still poorly understood. However, autoimmunity is an evolving theme in COVID-19’s pathogenesis. Additionally, deregulation of human retroelements (RE) is found in many viral infections, and has also been reported in COVID-19. Results Unexpectedly, coronaviruses (CoV) – including SARS-CoV-2 – harbour many RE-identical sequences (up to 35 base pairs), and some of these sequences are part of SARS-CoV-2 epitopes associated to COVID-19 severity. Furthermore, RE are expressed in healthy controls and human cells and become deregulated after SARS-CoV-2 infection, showing mainly changes in long interspersed nuclear element (LINE1) expression, but also in endogenous retroviruses. Conclusion CoV and human RE share coding sequences, which are targeted by antibodies in COVID-19 and thus could induce an autoimmune loop by molecular mimicry. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01040-2.
Collapse
Affiliation(s)
- Benjamin Florian Koch
- Department of Internal Medicine, Nephrology, Goethe University Hospital, Johann Wolfgang Goethe University Frankfurt/Main, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Abstract
Importance of viruses for biotechnological processes.
Collapse
Affiliation(s)
- Carmen Michán
- Departamento de Bioquímica y Biología MolecularUniversidad de CórdobaCampus de Excelencia Internacional Agroalimentario CeiA3Campus de RabanalesEdificio Severo OchoaCórdobaE‐14071Spain
| | - Alfredo Michán‐Doña
- Departamento de MedicinaHospital Universitario de JerezJerezSpain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA)CádizSpain
| |
Collapse
|
11
|
Gallucci S, Meka S, Gamero AM. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 2021; 146:155633. [PMID: 34340046 PMCID: PMC8475157 DOI: 10.1016/j.cyto.2021.155633] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs), mostly IFNα and IFNβ, and the type I IFN Signature are important in the pathogenesis of Systemic Lupus Erythematosus (SLE), an autoimmune chronic condition linked to inflammation. Both IFNα and IFNβ trigger a signaling cascade that, through the activation of JAK1, TYK2, STAT1 and STAT2, initiates gene transcription of IFN stimulated genes (ISGs). Noteworthy, other STAT family members and IFN Responsive Factors (IRFs) can also contribute to the activation of the IFN response. Aberrant type I IFN signaling, therefore, can exacerbate SLE by deregulated homeostasis leading to unnecessary persistence of the biological effects of type I IFNs. The etiopathogenesis of SLE is partially known and considered multifactorial. Family-based and genome wide association studies (GWAS) have identified genetic and transcriptional abnormalities in key molecules directly involved in the type I IFN signaling pathway, namely TYK2, STAT1 and STAT4, and IRF5. Gain-of-function mutations that heighten IFNα/β production, which in turn maintains type I IFN signaling, are found in other pathologies like the interferonopathies. However, the distinctive characteristics have yet to be determined. Signaling molecules activated in response to type I IFNs are upregulated in immune cell subsets and affected tissues of SLE patients. Moreover, Type I IFNs induce chromatin remodeling leading to a state permissive to transcription, and SLE patients have increased global and gene-specific epigenetic modifications, such as hypomethylation of DNA and histone acetylation. Epigenome wide association studies (EWAS) highlight important differences between SLE patients and healthy controls in Interferon Stimulated Genes (ISGs). The combination of environmental and genetic factors may stimulate type I IFN signaling transiently and produce long-lasting detrimental effects through epigenetic alterations. Substantial evidence for the pathogenic role of type I IFNs in SLE advocates the clinical use of neutralizing anti-type I IFN receptor antibodies as a therapeutic strategy, with clinical studies already showing promising results. Current and future clinical trials will determine whether drugs targeting molecules of the type I IFN signaling pathway, like non-selective JAK inhibitors or specific TYK2 inhibitors, may benefit people living with lupus.
Collapse
Affiliation(s)
- Stefania Gallucci
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.
| | - Sowmya Meka
- Laboratory of Dendritic Cell Biology, Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ana M Gamero
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States; Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
12
|
Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han SJ, Chen EY, Constantinides MG, Link VM, Lim AI, Enamorado M, Cataisson C, Gil L, Rao I, Farley TK, Koroleva G, Attig J, Yuspa SH, Fischbach MA, Kassiotis G, Belkaid Y. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 2021; 184:3794-3811.e19. [PMID: 34166614 PMCID: PMC8381240 DOI: 10.1016/j.cell.2021.05.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The microbiota plays a fundamental role in regulating host immunity. However, the processes involved in the initiation and regulation of immunity to the microbiota remain largely unknown. Here, we show that the skin microbiota promotes the discrete expression of defined endogenous retroviruses (ERVs). Keratinocyte-intrinsic responses to ERVs depended on cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes protein (STING) signaling and promoted the induction of commensal-specific T cells. Inhibition of ERV reverse transcription significantly impacted these responses, resulting in impaired immunity to the microbiota and its associated tissue repair function. Conversely, a lipid-enriched diet primed the skin for heightened ERV- expression in response to commensal colonization, leading to increased immune responses and tissue inflammation. Together, our results support the idea that the host may have co-opted its endogenous virome as a means to communicate with the exogenous microbiota, resulting in a multi-kingdom dialog that controls both tissue homeostasis and inflammation.
Collapse
Affiliation(s)
- Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siddharth R Krishnamurthy
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seong-Ji Han
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin Y Chen
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Michael G Constantinides
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Verena M Link
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIH Center for Human Immunology, Bethesda, MD 20896, USA
| | - Ai Ing Lim
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel Enamorado
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe Cataisson
- In Vitro Pathogenesis Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis Gil
- NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Indira Rao
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Taylor K Farley
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, UK
| | | | - Jan Attig
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Stuart H Yuspa
- In Vitro Pathogenesis Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A Fischbach
- Department of Bioengineering and ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Medicine, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Nath A, Johnson TP. Mechanisms of viral persistence in the brain and therapeutic approaches. FEBS J 2021; 289:2145-2161. [PMID: 33844441 DOI: 10.1111/febs.15871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
There is growing recognition of the diversity of viruses that can infect the cells of the central nervous system (CNS). While the majority of CNS infections are successfully cleared by the immune response, some viral infections persist in the CNS. As opposed to resolved infections, persistent viruses can contribute to ongoing tissue damage and neuroinflammatory processes. In this manuscript, we provide an overview of the current understanding of factors that lead to viral persistence in the CNS including how viruses enter the brain, how these pathogens evade antiviral immune system responses, and how viruses survive and transmit within the CNS. Further, as the CNS may serve as a unique viral reservoir, we examine the ways in which persistent viruses in the CNS are being targeted therapeutically.
Collapse
Affiliation(s)
- Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Affiliation(s)
- Mikko Hurme
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, Ontario, Canada
| |
Collapse
|
15
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
16
|
Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story. Viruses 2021; 13:v13020277. [PMID: 33670195 PMCID: PMC7916951 DOI: 10.3390/v13020277] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023] Open
Abstract
A causal link between viral infections and autoimmunity has been studied for a long time and the role of some viruses in the induction or exacerbation of systemic lupus erythematosus (SLE) in genetically predisposed patients has been proved. The strength of the association between different viral agents and SLE is variable. Epstein-Barr virus (EBV), parvovirus B19 (B19V), and human endogenous retroviruses (HERVs) are involved in SLE pathogenesis, whereas other viruses such as Cytomegalovirus (CMV) probably play a less prominent role. However, the mechanisms of viral-host interactions and the impact of viruses on disease course have yet to be elucidated. In addition to classical mechanisms of viral-triggered autoimmunity, such as molecular mimicry and epitope spreading, there has been a growing appreciation of the role of direct activation of innate response by viral nucleic acids and epigenetic modulation of interferon-related immune response. The latter is especially important for HERVs, which may represent the molecular link between environmental triggers and critical immune genes. Virus-specific proteins modulating interaction with the host immune system have been characterized especially for Epstein-Barr virus and explain immune evasion, persistent infection and self-reactive B-cell "immortalization". Knowledge has also been expanding on key viral proteins of B19-V and CMV and their possible association with specific phenotypes such as antiphospholipid syndrome. This progress may pave the way to new therapeutic perspectives, including the use of known or new antiviral drugs, postviral immune response modulation and innate immunity inhibition. We herein describe the state-of-the-art knowledge on the role of viral infections in SLE, with a focus on their mechanisms of action and potential therapeutic targets.
Collapse
|