1
|
Li J, Xu D, Shi C, Cheng C, Xu Z, Gao X, Cheng Y. Alarin regulates RyR2 and SERCA2 to improve cardiac function in heart failure with preserved ejection fraction. Eur J Histochem 2024; 68. [PMID: 39494460 DOI: 10.4081/ejh.2024.4122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF), a complex disease that is increasingly prevalent due to population aging, pose significant challenges in its treatment. The present study utilized the HFpEF rat model and H9C2 cells as research subjects to thoroughly investigate the potential mechanisms of alarin in protecting cardiac function in HFpEF. The study shows that under HFpEF conditions, oxidative stress significantly increases, leading to myocardial structural damage and dysfunction of calcium ion channels, which ultimately impairs diastolic function. Alarin, through its interaction with NADPH oxidase 1 (NOX1), effectively alleviates oxidative stress and modulates the activities of type 2 ryanodine receptor (RyR2) and sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2), thereby facilitating the restoration of Ca2+ homeostasis and significantly improving cardiac function in the HFpEF model. This research not only uncovers the cardioprotective effects of alarin and its underlying molecular mechanisms but also provides new insights and potential therapeutic targets for HFpEF treatment strategies, suggesting a promising future for alarin and related therapies in the management of this debilitating condition.
Collapse
Affiliation(s)
- Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Dawei Xu
- Department of Emergency Intensive Care Unit, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Ce Shi
- Department of Orthopedics, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Chunqi Cheng
- Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu
| | - Ziheng Xu
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Xingjuan Gao
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, Jiangsu
| | - Yong Cheng
- Department of Cardiology, Suqian Zhongwu Hospital, Suqian, Jiangsu
| |
Collapse
|
2
|
Faydaver M, Festinese V, Di Giacinto O, El Khatib M, Raspa M, Scavizzi F, Bonaventura F, Mastrorilli V, Berardinelli P, Barboni B, Russo V. Predictive Neuromarker Patterns for Calcification Metaplasia in Early Tendon Healing. Vet Sci 2024; 11:441. [PMID: 39330820 PMCID: PMC11435825 DOI: 10.3390/vetsci11090441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Unsuccessful tendon healing leads to fibrosis and occasionally calcification. In these metaplastic drifts, the mouse AT preclinical injury model represents a robust experimental setting for studying tendon calcifications. Previously, calcium deposits were found in about 30% of tendons after 28 days post-injury. Although a neuromediated healing process has previously been documented, the expression patterns of NF200, NGF, NPY, GAL, and CGRP in mouse AT and their roles in metaplastic calcific repair remain to be explored. This study included a spatiotemporal analysis of these neuromarkers during the inflammatory phase (7 days p.i.) and the proliferative/early-remodelling phase (28 days p.i.). While the inflammatory phase is characterised by NF200 and CGRP upregulation, in the 28 days p.i., the non-calcified tendons (n = 16/24) showed overall NGF, NPY, GAL, and CGRP upregulation (compared to 7 days post-injury) and a return of NF200 expression to values similar to pre-injury. Presenting a different picture, in calcified tendons (n = 8), NF200 persisted at high levels, while NGF and NPY significantly increased, resulting in a higher NPY/CGRP ratio. Therefore, high levels of NF200 and imbalance between vasoconstrictive (NPY) and vasodilatory (CGRP) neuromarkers may be indicative of calcification. Tendon cells contributed to the synthesis of neuromarkers, suggesting that their neuro-autocrine/paracrine role is exerted by coordinating growth factors, cytokines, and neuropeptides. These findings offer insights into the neurobiological mechanisms of early tendon healing and identify new neuromarker profiles predictive of tendon healing outcomes.
Collapse
Affiliation(s)
- Melisa Faydaver
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valeria Festinese
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy
| | | | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy
| |
Collapse
|
3
|
Moll GN. Agonists of galanin subtype 2 receptor may prevent pancreatic cancer and agonists of angiotensin II type 2 receptor may prevent colorectal cancer. Eur J Pharmacol 2024; 978:176772. [PMID: 38925290 DOI: 10.1016/j.ejphar.2024.176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a dreadful disease with poor prognosis. While the prognosis of colorectal carcinoma (CRC) is better than that of PDAC, it still is the second-leading cause of cancer deaths worldwide. Recently, a (methyl)lanthionine-stabilized, highly receptor-specific agonist of galanin subtype 2 (GAL2) receptor inhibited the growth of GAL2 receptor-expressing patient-derived xenografts (PDX) of pancreatic cancer. Furthermore, a lanthionine-constrained agonist of angiotensin II type 2 (AT2) receptor inhibited PDX of colorectal cancer in mice. Stimulation of GAL2 receptor may modulate immune surveillance and inhibits PDAC via cell cycle inhibition and apoptosis. Consistent with GAL2 receptor-mediated tumor inhibition, for PDAC, survival is much higher for patients with high GAL2 receptor expression. Importantly, a (methyl)lanthionine-stabilized GAL2 receptor-specific agonist enhances expression of GAL2 receptor, not only in PDAC-PDX but also in healthy tissue indicating therapeutic and preventive potentials for GAL2 receptor agonists. AT2 receptor is interacting with four tumor suppressor proteins, Src homology phosphatase 1, Src homology phosphatase 2, Promyelocytic Leukemia Zinc Finger protein and Microtuble-Associated Scaffold Protein1, the latter also known as Angiotensin-II type 2 receptor-Interacting Protein. Pathways linked to these tumor suppressor proteins may enhance immune surveillance, prevent carcinogenesis, counter proliferation and stimulate apoptosis. Taken together, current data are prompting the hypothesis of a prophylactic treatment option with stable, specific and safe agonists of GAL2 receptor and AT2 receptor to prevent the emergence of pancreatic and colorectal cancer in individuals at risk.
Collapse
MESH Headings
- Humans
- Animals
- Colorectal Neoplasms/prevention & control
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Colorectal Neoplasms/drug therapy
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/prevention & control
- Receptor, Galanin, Type 2/agonists
- Receptor, Galanin, Type 2/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/prevention & control
- Carcinoma, Pancreatic Ductal/metabolism
Collapse
Affiliation(s)
- Gert N Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborg 7, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
4
|
Kmiec Z, Kieżun J, Krazinski BE, Kwiatkowski P, Godlewski J. The role of galanin in the progression and prognosis of colorectal cancer: the unfinished story. Eur J Histochem 2024; 68:3990. [PMID: 38568200 PMCID: PMC11017717 DOI: 10.4081/ejh.2024.3990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
The paper presents a summary of immunohistochemical (IHC) and biochemical investigations on the presence of galanin (Gal), one of the neuropeptides abundant in the enteric nervous systems, and three types of its receptors (GalR1-3) in colorectal cancer (CRC) tissue and non-involved colon wall and their associations with clinical-pathological data of the CRC patients. We were the first to morphologically demonstrate the presence of endogenous Gal in CRC sections and measure its content in homogenates of tumor tissue and dissected compartments of unchanged colon wall. The prominent atrophy of myenteric plexuses displaying Gal immunoreactivity (Gal-Ir) located close to the tumor invasion was found to be accompanied by higher Gal content in the tumor-adjacent muscularis externa than in tumor-distant tissue. In further studies for the first time, we demonstrated by the IHC technique the presence of the GalR1-3 receptors in the CRC tumors and the colon mucosa and found that higher GalR3-Ir in the tumor tissue correlated with longer overall survival of CRC patients. Furthermore, we discovered that lower GalR1 expression in submucosal plexuses located near the tumor correlated with a better prognosis in patients with CRC. These findings suggest that GalR1 could be considered as a novel therapeutic target in CRC. In conclusion, our morphological investigations provided novel data documenting the involvement of Gal and its receptors in the progression of CRC and showed the usefulness of the IHC technique for the prognosis of CRC patients.
Collapse
Affiliation(s)
- Zbigniew Kmiec
- Department of Histology, Medical University of Gdansk; Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| | - Jacek Kieżun
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| | - Bartlomiej E Krazinski
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| | - Przemyslaw Kwiatkowski
- Department of Hematology with Bone Marrow Transplantation Unit, Clinical Hospital of the Ministry of Internal Affairs and Administration with the Warmia-Mazury Oncology Centre in Olsztyn.
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, University of Warmia and Mazury in Olsztyn.
| |
Collapse
|
5
|
Gałęcka I, Szyryńska N, Całka J. Influence of polyethylene terephthalate (PET) microplastic on selected active substances in the intramural neurons of the porcine duodenum. Part Fibre Toxicol 2024; 21:5. [PMID: 38321545 PMCID: PMC10845528 DOI: 10.1186/s12989-024-00566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Currently, society and industry generate huge amounts of plastics worldwide. The ubiquity of microplastics is obvious, but its impact on the animal and human organism remains not fully understood. The digestive tract is one of the first barriers between pathogens and xenobiotics and a living organism. Its proper functioning is extremely important in order to maintain homeostasis. The aim of this study was to determine the effect of microplastic on enteric nervous system and histological structure of swine duodenum. The experiment was carried out on 15 sexually immature gilts, approximately 8 weeks old. The animals were randomly divided into 3 study groups (n = 5/group). The control group received empty gelatin capsules once a day for 28 days, the first research group received daily gelatin capsules with polyethylene terephthalate (PET) particles as a mixture of particles of various sizes (maximum particle size 300 µm) at a dose of 0.1 g/animal/day. The second study group received a dose ten times higher-1 g/animal/day. RESULTS A dose of 1 g/day/animal causes more changes in the enteric nervous system and in the histological structure of duodenum. Statistically significant differences in the expression of cocaine and amphetamine regulated transcript, galanin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter and vasoactive intestinal peptide between control and high dose group was noted. The histopathological changes were more frequently observed in the pigs receiving higher dose of PET. CONCLUSION Based on this study it may be assumed, that oral intake of microplastic might have potential negative influence on digestive tract, but it is dose-dependent.
Collapse
Affiliation(s)
- Ismena Gałęcka
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland.
| | - Natalia Szyryńska
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| | - Jarosław Całka
- Deparment of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-719, Olsztyn, Poland
| |
Collapse
|
6
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
7
|
Chen D, Hagen SJ, Boyce M, Zhao CM. Neuroendocrine mechanism of gastric acid secretion: Historical perspectives and recent developments in physiology and pharmacology. J Neuroendocrinol 2023; 35:e13305. [PMID: 37317882 PMCID: PMC10656367 DOI: 10.1111/jne.13305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
The physiology of gastric acid secretion is one of the earliest subjects in medical literature and has been continuously studied since 1833. Starting with the notion that neural stimulation alone drives acid secretion, progress in understanding the physiology and pathophysiology of this process has led to the development of therapeutic strategies for patients with acid-related diseases. For instance, understanding the physiology of parietal cells led to the developments of histamine 2 receptor blockers, proton pump inhibitors (PPIs), and recently, potassium-competitive acid blockers. Furthermore, understanding the physiology and pathophysiology of gastrin has led to the development of gastrin/CCK2 receptor (CCK2 R) antagonists. The need for refinement of existing drugs in patients have led to second and third generation drugs with better efficacy at blocking acid secretion. Further understanding of the mechanism of acid secretion by gene targeting in mice has enabled us to dissect the unique role for each regulator to leverage and justify the development of new targeted therapeutics for acid-related disorders. Further research on the mechanism of stimulation of gastric acid secretion and the physiological significances of gastric acidity in gut microbiome is needed in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Susan J Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Chun-Mei Zhao
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Brzozowska M, Całka J. Acetylsalicylic Acid Supplementation Affects the Neurochemical Phenotyping of Porcine Duodenal Neurons. Int J Mol Sci 2023; 24:9871. [PMID: 37373019 DOI: 10.3390/ijms24129871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Aspirin (ASA) is a popular nonsteroidal anti-inflammatory drug (NSAID), which exerts its therapeutic properties through the inhibition of cyclooxygenase (COX) isoform 2 (COX-2), while the inhibition of COX-1 by ASA results in the formation of gastrointestinal side effects. Due to the fact that the enteric nervous system (ENS) is involved in the regulation of digestive functions both in physiological and pathological states, the aim of this study was to determine the influence of ASA on the neurochemical profile of enteric neurons in the porcine duodenum. Our research, conducted using the double immunofluorescence technique, proved an increase in the expression of selected enteric neurotransmitters in the duodenum as a result of ASA treatment. The mechanisms of the visualized changes are not entirely clear but are probably related to the enteric adaptation to inflammatory conditions resulting from aspirin supplementation. A detailed understanding of the role of the ENS in the development of drug-induced inflammation will contribute to the establishment of new strategies for the treatment of NSAID-induced lesions.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland
| |
Collapse
|
9
|
Makowska K, Gonkowski S. Changes Caused by Bisphenols in the Chemical Coding of Neurons of the Enteric Nervous System of Mouse Stomach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5125. [PMID: 36982030 PMCID: PMC10049369 DOI: 10.3390/ijerph20065125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA), an organic chemical compound which is widely used in the production of plastics, can severely damage live organisms. Due to these findings, the plastic industry has started to replace it with other substances, most often with bisphenol S (BPS). Therefore, during the present investigation, with the use of double immunofluorescence labeling, we compared the effect of BPA and BPS on the enteric nervous system (ENS) in the mouse corpus of the stomach. The obtained results show that both studied toxins impact the amount of nerve cells immunoreactive to substance P (SP), galanin (GAL), vesicular acetylcholine transporter (VAChT is used here as a marker of cholinergic neurons) and vasoactive intestinal polypeptide (VIP). Changes observed under the impact of both bisphenols depended on the neuronal factor, the type of the enteric ganglion and the doses of bisphenols studied. Generally, the increase in the percentage of neurons immunoreactive to SP, GAL and/or VIP, and the decrease in the percentage of VAChT-positive neurons, was noted. Severity of changes was more visible after BPA administration. However, the study has shown that long time exposure to BPS also significantly affects the ENS.
Collapse
Affiliation(s)
- Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland
| |
Collapse
|
10
|
Martins-da-Silva A, Baroni M, Salomão KB, das Chagas PF, Bonfim-Silva R, Geron L, Cruzeiro GAV, da Silva WA, Corrêa CAP, Carlotti CG, de Paula Queiroz RG, Marie SKN, Brandalise SR, Yunes JA, Scrideli CA, Valera ET, Tone LG. Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma. Cell Mol Neurobiol 2023; 43:813-826. [PMID: 35366170 DOI: 10.1007/s10571-022-01217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/22/2022] [Indexed: 11/03/2022]
Abstract
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Collapse
Affiliation(s)
- Andrea Martins-da-Silva
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Bezerra Salomão
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo Ferreira das Chagas
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Bonfim-Silva
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Lenisa Geron
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Pediatric Oncology, Harvard Medical School - Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carolina Alves Pereira Corrêa
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Rosane Gomes de Paula Queiroz
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | - Carlos Alberto Scrideli
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, University Hospital - Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil.,Department of Genetics, Ribeirão Preto Medical School - University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
The Comparison of the Influence of Bisphenol A (BPA) and Its Analogue Bisphenol S (BPS) on the Enteric Nervous System of the Distal Colon in Mice. Nutrients 2022; 15:nu15010200. [PMID: 36615857 PMCID: PMC9824883 DOI: 10.3390/nu15010200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Bisphenol A (BPA), commonly used as a plasticizer in various branches of industry has a strong negative effect on living organisms. Therefore, more and more often it is replaced in production of plastics by other substances. One of them is bisphenol S (BPS). This study for the first time compares the impact of BPA and BPS on the enteric neurons using double immunofluorescence technique. It has been shown that both BPA and BPS affect the number of enteric neurons containing substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), neuronal isoform of nitric oxide synthase (nNOS-a marker of nitrergic neurons) and/or vesicular acetylcholine transporter (VAChT- a marker of cholinergic neurons). The changes noted under the impact of both bisphenols are similar and consisted of an increase in the number of enteric neurons immunoreactive to all neuronal factors studied. The impact of BPS on some populations of neurons was stronger than that noted under the influence of BPA. The obtained results clearly show that BPS (similarly to BPA) administered for long time is not neutral for the enteric neurons even in relatively low doses and may be more potent than BPA for certain neuronal populations.
Collapse
|
12
|
Wu M, Yuan K, Lyu S, Li Y. Screening potential immune signatures for early-stage basal-like/triple-negative breast cancer. World J Surg Oncol 2022; 20:214. [PMID: 35751103 PMCID: PMC9229513 DOI: 10.1186/s12957-022-02683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Breast cancer (BC) is a highly heterogeneous disease. Among the BC molecular subtypes, basal-like/triple-negative BC (TNBC) is characterized by a high propensity for relatively early metastases and a lack of available endocrine and targeted therapies. Therefore, this study aimed to discover potential signatures for predicting the immune response in early-stage basal-like/triple-negative BC. Method A total of 86 cases of early-stage TNBC from the TCGA and 459 cases of normal breast tissue from GTEx were enrolled and analyzed to screen out differentially expressed genes (DEGs). Then, the prognostic effect and tumor immune cell infiltration relationship with the basal-like-specific DEGs were also evaluated. Results A total of 1556 DEGs, including 929 upregulated genes and 627 downregulated genes, were screened in early-stage basal-like BC. Two prognosis-associated DEGs, GAL and TTC36, were finally found to be basal-like BC specific. However, only GAL was significantly correlated with tumor immune-infiltrating cells, especially CD8+ T cells. The expressions of GAL and TTC36 were revalidated by using the GEO dataset. Conclusion GAL might be an immune signature for the response to immune checkpoint therapy in early basal-like/triple-negative BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-022-02683-2.
Collapse
Affiliation(s)
- Min Wu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Keyu Yuan
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Shuzhen Lyu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China
| | - Yanping Li
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital, Capital Medical University, Tieyi Road 10, Haidian District, Beijing, 100038, China.
| |
Collapse
|
13
|
Morphology and Chemical Coding of Rat Duodenal Enteric Neurons following Prenatal Exposure to Fumonisins. Animals (Basel) 2022; 12:ani12091055. [PMID: 35565482 PMCID: PMC9099666 DOI: 10.3390/ani12091055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 01/27/2023] Open
Abstract
Fumonisins (FBs), including fumonisin B1 and B2 produced by the fungus Fusarium verticillioides, are widespread mycotoxins contaminating crop plants as well as processed food. The aim of the experiment was to determine whether the exposure of 5-week-old pregnant rats to FBs at 60 mg/kg b.w. (group FB60) or 90 mg/kg b.w. (group FB90) results in morphological changes in the duodenum of weaned offspring, particularly the enteric nervous system (ENS). In addition, the levels of expression of galanin and vasoactive intestinal polypeptide (VIP) in the ENS were analysed by immunofluorescence in the control and experimental groups of animals. No significant morphological changes in the thickness of the muscle layer or submucosa of the duodenum were noted in group FB60 or FB90. In group FB90 (but not FB60), there was a significant increase in the width of the villi and in the density of the intestinal crypts. Immunofluorescence analysis using neuronal marker Hu C/D showed no significant changes in group FB60 or FB90 in the morphology of the duodenal ENS, i.e., the myenteric plexus (MP) and submucosal plexus (SP), in terms of the density of enteric ganglia in the MP and SP, surface area of MP and SP ganglia, length and width of MP and SP ganglia, surface area of myenteric and submucosal neurons, diameter of myenteric and submucosal neurons, density of myenteric and submucosal neurons, and number of myenteric and submucosal neurons per ganglion. In both groups, there was an increase (relative to the control) in the percentage of Hu C/D-IR/VIP-IR (IR-immunoreactive) and Hu C/D-IR/galanin-IR myenteric and submucosal neurons in the ganglia of both the MP and SP of the duodenum. In addition, in groups FB60 and FB90, there was an increase in the number of nerve fibres showing expression of VIP and galanin in the mucosa, submucosa and circular muscle layer of the duodenum. The results indicate that prenatal exposure to FBs does not significantly alter the histological structure of the duodenum (including the ENS) in the weaned offspring. The changes observed in the chemical code of the myenteric and submucosal neurons in both experimental groups suggest harmful activity of FBs, which may translate into activation of repair mechanisms via overexpression of neuroprotective neuropeptides (VIP and galanin).
Collapse
|
14
|
Wattchow DA, Smolilo D, Hibberd T, Spencer NJ, Brookes SJ, De Giorgio R, Heitmann PT, Costa M, Dinning PG. The human enteric nervous system. Historical and modern advances. Collaboration between science and surgery. ANZ J Surg 2022; 92:1365-1370. [PMID: 35403788 DOI: 10.1111/ans.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND There are considerable advantages and opportunities for surgeons and trainee surgeons in conducting a period of research allied with basic scientists. Such clinicians are well placed to define relevant clinical questions, provide human material (tissue, biopsy and blood) and translate the techniques derived in experimental animals to human subjects. METHODS This small review explores research conducted on the nervous system of the intestines, with an emphasis on the translation of findings from animal to human. RESULTS This work shows that new techniques of immunohistochemistry and retrograde tracing, developed in animal tissue, have greatly expanded our knowledge of the structure of the human enteric nervous system. CONCLUSIONS Such findings have sparked therapeutic trials for the treatment of gastrointestinal disorders in patients.
Collapse
Affiliation(s)
- David A Wattchow
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - David Smolilo
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Tim Hibberd
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Simon Jh Brookes
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paul T Heitmann
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Marcello Costa
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Phil G Dinning
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.,Departments of Surgery and Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Kiezun J, Godlewski J, Krazinski BE, Kozielec Z, Kmiec Z. Galanin Receptors (GalR1, GalR2, and GalR3) Expression in Colorectal Cancer Tissue and Correlations to the Overall Survival and Poor Prognosis of CRC Patients. Int J Mol Sci 2022; 23:ijms23073735. [PMID: 35409094 PMCID: PMC8998502 DOI: 10.3390/ijms23073735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cause of cancer in women and the third in men. The postoperative pathomorphological evaluation of patients with CRC is extremely important for future therapeutic decisions. Although our previous studies demonstrated high galanin (GAL) presence within tumor tissue and an elevated concentration of GAL in the serum of CRC patients, to date, there is a lack of data regarding GAL receptor (GalR) protein expression in CRC cells. Therefore, the aim of this study was to evaluate the presence of all three types of GalRs (GalR1, GalR2 and GalR3) within epithelial cells of the human colon and CRC tissue with the use of the immunohistochemical method and to correlate the results with the clinical-pathological data. We found stronger immunoreactivity of GalR1 and GalR3 in CRC cells compared to epithelial cells of the unchanged mucosa of the large intestine. No differences in the GalR2 protein immunoreactivity between the studied tissues were noted. We also found that the increased immunoexpression of the GalR3 in CRC tissue correlated with the better prognosis and longer survival (p < 0.0079) of CRC patients (n = 55). The obtained results suggest that GalR3 may play the role of a prognostic factor for CRC patients. Based on data from the TCGA-COAD project deposited in the GDC Data Portal, we also found that GalR mRNA in cancer samples and the adjacent normal tissue did not correlate with immunoexpression of the GalR proteins in CRC cells and epithelial cells of the unchanged mucosa.
Collapse
MESH Headings
- Colorectal Neoplasms/genetics
- Female
- Humans
- Male
- RNA, Messenger/metabolism
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/metabolism
- Receptors, Galanin/genetics
- Receptors, Galanin/metabolism
Collapse
Affiliation(s)
- Jacek Kiezun
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (J.G.); (B.E.K.)
- Correspondence: ; Tel.: +48-89-524-53-06
| | - Janusz Godlewski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (J.G.); (B.E.K.)
| | - Bartlomiej E. Krazinski
- Department of Human Histology and Embryology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland; (J.G.); (B.E.K.)
| | - Zygmunt Kozielec
- Department of Pathomorphology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, 10-561 Olsztyn, Poland;
| | - Zbigniew Kmiec
- Department of Histology, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland;
| |
Collapse
|
16
|
Brzozowska M, Jana B, Całka J. Effect of NSAIDs Supplementation on the PACAP-, SP- and GAL-Immunoreactive Neurons in the Porcine Jejunum. Int J Mol Sci 2021; 22:ijms222111689. [PMID: 34769120 PMCID: PMC8583865 DOI: 10.3390/ijms222111689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Side effects associated with nonsteroidal anti-inflammatory drugs (NSAIDs) treatment are a serious limitation of their use in anti-inflammatory therapy. The negative effects of taking NSAIDs include abdominal pain, indigestion nausea as well as serious complications such as bleeding and perforation. The enteric nervous system is involved in regulation of gastrointestinal functions through the release of neurotransmitters. The present study was designed to determine, for the first time, the changes in pituitary adenylate cyclase-activating polypeptide (PACAP), substance P (SP) and galanin (GAL) expression in porcine jejunum after long-term treatment with aspirin, indomethacin and naproxen. The study was performed on 16 immature pigs. The animals were randomly divided into four experimental groups: control, aspirin, indomethacin and naproxen. Control animals were given empty gelatin capsules, while animals in the test groups received selected NSAIDs for 28 days. Next, animals from each group were euthanized. Frozen sections were prepared from collected jejunum and subjected to double immunofluorescence staining. NSAIDs supplementation caused a significant increase in the population of PACAP-, SP- and GAL-containing enteric neurons in the porcine jejunum. Our results suggest the participation of the selected neurotransmitters in regulatory processes of the gastrointestinal function and may indicate the direct toxic effect of NSAIDs on the ENS neurons.
Collapse
Affiliation(s)
- Marta Brzozowska
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
- Correspondence: ; Tel.: +48-89-523-44-61
| | - Barbara Jana
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland;
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| |
Collapse
|
17
|
Ma W, Lyu H, Pandya M, Gopinathan G, Luan X, Diekwisch TGH. Successful Application of a Galanin-Coated Scaffold for Periodontal Regeneration. J Dent Res 2021; 100:1144-1152. [PMID: 34328037 DOI: 10.1177/00220345211028852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nervous system exerts finely tuned control over all aspects of the life of an organism, including pain, sensation, growth, and development. Recent developments in tissue regeneration research have increasingly turned to small molecule peptides to tailor and augment the biological response following tissue loss or injury. In the present study, we have introduced the small molecule peptide galanin (GAL) as a novel scaffold-coating agent for the healing and regeneration of craniofacial tissues. Using immunohistochemistry, we detected GAL and GAL receptors in healthy periodontal tissues and in the proximity of blood vessels, while exposure to our periodontal disease regimen resulted in a downregulation of GAL. In a 3-dimensional bioreactor culture, GAL coating of collagen scaffolds promoted cell proliferation and matrix synthesis. Following subcutaneous implantation, GAL-coated scaffolds were associated with mineralized bone-like tissue deposits, which reacted positively for alizarin red and von Kossa, and demonstrated increased expression and protein levels of RUNX2, OCN, OSX, and iBSP. In contrast, the GAL receptor antagonist galantide blocked the effect of GAL on Runx2 expression and inhibited mineralization in our subcutaneous implantation model. Moreover, GAL coating promoted periodontal regeneration and a rescue of the periodontal defect generated in our periodontitis model mice. Together, these data demonstrate the efficacy of the neuropeptide GAL as a coating material for tissue regeneration. They are also suggestive of a novel role for neurogenic signaling pathways in craniofacial and periodontal regeneration.
Collapse
Affiliation(s)
- W Ma
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - H Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - M Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - G Gopinathan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - X Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - T G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| |
Collapse
|