1
|
Yu KX, Yuan WJ, Wang HZ, Li YX. Extracellular matrix stiffness and tumor-associated macrophage polarization: new fields affecting immune exclusion. Cancer Immunol Immunother 2024; 73:115. [PMID: 38693304 PMCID: PMC11063025 DOI: 10.1007/s00262-024-03675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
In the malignant progression of tumors, there is deposition and cross-linking of collagen, as well as an increase in hyaluronic acid content, which can lead to an increase in extracellular matrix stiffness. Recent research evidence have shown that the extracellular matrix plays an important role in angiogenesis, cell proliferation, migration, immunosuppression, apoptosis, metabolism, and resistance to chemotherapeutic by the alterations toward both secretion and degradation. The clinical importance of tumor-associated macrophage is increasingly recognized, and macrophage polarization plays a central role in a series of tumor immune processes through internal signal cascade, thus regulating tumor progression. Immunotherapy has gradually become a reliable potential treatment strategy for conventional chemotherapy resistance and advanced cancer patients, but the presence of immune exclusion has become a major obstacle to treatment effectiveness, and the reasons for their resistance to these approaches remain uncertain. Currently, there is a lack of exact mechanism on the regulation of extracellular matrix stiffness and tumor-associated macrophage polarization on immune exclusion. An in-depth understanding of the relationship between extracellular matrix stiffness, tumor-associated macrophage polarization, and immune exclusion will help reveal new therapeutic targets and guide the development of clinical treatment methods for advanced cancer patients. This review summarized the different pathways and potential molecular mechanisms of extracellular matrix stiffness and tumor-associated macrophage polarization involved in immune exclusion and provided available strategies to address immune exclusion.
Collapse
Affiliation(s)
- Ke-Xun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wei-Jie Yuan
- Department of Gastrointestinal Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
2
|
Fukushima H, Furusawa A, Takao S, Matikonda SS, Kano M, Okuyama S, Yamamoto H, Choyke PL, Schnermann MJ, Kobayashi H. Phototruncation cell tracking with near-infrared photoimmunotherapy using heptamethine cyanine dye to visualise migratory dynamics of immune cells. EBioMedicine 2024; 102:105050. [PMID: 38490105 PMCID: PMC10951901 DOI: 10.1016/j.ebiom.2024.105050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Noninvasive in vivo cell tracking is valuable in understanding the mechanisms that enhance anti-cancer immunity. We have recently developed a new method called phototruncation-assisted cell tracking (PACT), that uses photoconvertible cell tracking technology to detect in vivo cell migration. This method has the advantages of not requiring genetic engineering of cells and employing tissue-penetrant near-infrared light. METHODS We applied PACT to monitor the migration of immune cells between a tumour and its tumour-draining lymph node (TDLN) after near-infrared photoimmunotherapy (NIR-PIT). FINDINGS PACT showed a significant increase in the migration of dendritic cells (DCs) and macrophages from the tumour to the TDLN immediately after NIR-PIT. This migration by NIR-PIT was abrogated by inhibiting the sphingosine-1-phosphate pathway or Gαi signaling. These results were corroborated by intranodal immune cell profiles at two days post-treatment; NIR-PIT significantly induced DC maturation and increased and activated the CD8+ T cell population in the TDLN. Furthermore, PACT revealed that NIR-PIT significantly enhanced the migration of CD8+ T cells from the TDLN to the tumour four days post-treatment, which was consistent with the immunohistochemical assessment of tumour-infiltrating lymphocytes and tumour regression. INTERPRETATION Immune cells dramatically migrated between the tumour and TDLN following NIR-PIT, indicating its potential as an immune-stimulating therapy. Also, PACT is potentially applicable to a wide range of immunological research. FUNDING This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Centre for Cancer Research (grant number: ZIA BC011513 and ZIA BC011506).
Collapse
Affiliation(s)
- Hiroshi Fukushima
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Aki Furusawa
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Seiichiro Takao
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Siddharth S Matikonda
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Makoto Kano
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Shuhei Okuyama
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hiroshi Yamamoto
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Centre for Cancer Research, National Cancer Institute, NIH, Frederick, MD, 21702, USA
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Centre for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
4
|
Pizurica M, Larmuseau M, Van der Eecken K, de Schaetzen van Brienen L, Carrillo-Perez F, Isphording S, Lumen N, Van Dorpe J, Ost P, Verbeke S, Gevaert O, Marchal K. Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer. Cancer Res 2023; 83:2970-2984. [PMID: 37352385 PMCID: PMC10538366 DOI: 10.1158/0008-5472.can-22-3113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/08/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
In prostate cancer, there is an urgent need for objective prognostic biomarkers that identify the metastatic potential of a tumor at an early stage. While recent analyses indicated TP53 mutations as candidate biomarkers, molecular profiling in a clinical setting is complicated by tumor heterogeneity. Deep learning models that predict the spatial presence of TP53 mutations in whole slide images (WSI) offer the potential to mitigate this issue. To assess the potential of WSIs as proxies for spatially resolved profiling and as biomarkers for aggressive disease, we developed TiDo, a deep learning model that achieves state-of-the-art performance in predicting TP53 mutations from WSIs of primary prostate tumors. In an independent multifocal cohort, the model showed successful generalization at both the patient and lesion level. Analysis of model predictions revealed that false positive (FP) predictions could at least partially be explained by TP53 deletions, suggesting that some FP carry an alteration that leads to the same histological phenotype as TP53 mutations. Comparative expression and histologic cell type analyses identified a TP53-like cellular phenotype triggered by expression of pathways affecting stromal composition. Together, these findings indicate that WSI-based models might not be able to perfectly predict the spatial presence of individual TP53 mutations but they have the potential to elucidate the prognosis of a tumor by depicting a downstream phenotype associated with aggressive disease biomarkers. SIGNIFICANCE Deep learning models predicting TP53 mutations from whole slide images of prostate cancer capture histologic phenotypes associated with stromal composition, lymph node metastasis, and biochemical recurrence, indicating their potential as in silico prognostic biomarkers. See related commentary by Bordeleau, p. 2809.
Collapse
Affiliation(s)
- Marija Pizurica
- Internet Technology and Data Science Lab (IDLab/IMEC), Ghent University, Gent, Belgium
- Department of Plant biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, California
| | - Maarten Larmuseau
- Internet Technology and Data Science Lab (IDLab/IMEC), Ghent University, Gent, Belgium
- Department of Plant biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | | | - Louise de Schaetzen van Brienen
- Internet Technology and Data Science Lab (IDLab/IMEC), Ghent University, Gent, Belgium
- Department of Plant biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Francisco Carrillo-Perez
- Department of Architecture and Computer Technology (ATC), University of Granada, Granada, Spain
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine, Stanford, California
| | - Simon Isphording
- Internet Technology and Data Science Lab (IDLab/IMEC), Ghent University, Gent, Belgium
- Department of Plant biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Piet Ost
- Department of Radiotherapy, Ghent University Hospital, Ghent, Belgium
| | - Sofie Verbeke
- Department of Urology, Ghent University Hospital, Ghent, Belgium
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, School of Medicine, Stanford, California
- Stanford Center for Biomedical Informatics Research (BMIR), Stanford University, School of Medicine, Stanford, California
| | - Kathleen Marchal
- Internet Technology and Data Science Lab (IDLab/IMEC), Ghent University, Gent, Belgium
- Department of Plant biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| |
Collapse
|
5
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
6
|
Liberini V, Morand GB, Rupp NJ, Orita E, Deandreis D, Broglie Däppen M, Hofbauer M, Maurer A, Husmann L, Mader CE, Grünig H, Alharbi AA, Messerli M, Huellner MW. Histopathological Features of Parathyroid Adenoma and 18F-Choline Uptake in PET/MR of Primary Hyperparathyroidism. Clin Nucl Med 2022; 47:101-107. [PMID: 35006103 DOI: 10.1097/rlu.0000000000003987] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The aim of this study was to assess the relationship between the histopathological properties of hyperfunctioning parathyroids and parathyroid 18F-choline uptake. PATIENTS AND METHODS A total of 31 parathyroid adenomas were retrospectively analyzed in patients with primary hyperparathyroidism and preoperative 18F-choline PET/MR. PET/MR parameters of parathyroid glands (SUVmax and target-to-background ratio in early-phase [EP] and late-phase [LP]), MRI volume, preoperative parathyroid hormone (PTH) serum concentration, and postoperative histopathology (predominant cell type and growth pattern of adenoma cells, location and size of adenoma) were assessed. The relationship of PET/MR parameters, PTH, and histological parameters was determined using linear regression, Spearman correlation and Kruskal-Wallis test. RESULTS The median volume of parathyroid adenoma was 421.78 ± 142.46 mm3 (46.39-4412.69). Adenomas were predominantly composed of chief, water-clear, and oncocytic/oxyphilic cells in 27/31, 2/31, and 2/31 cases, respectively. The growth pattern was predominantly solid, follicular, and trabecular in 18/31, 8/31, and 5/31, respectively. The SUVmax was 6.71 ± 3.39 in EP and 6.91 ± 3.97 in LP. Follicular growth pattern had slightly higher EP SUVmax (trabecular: 4.12 ± 0.56; solid: 6.62 ± 3.19; follicular: 8.56 ± 3.96; P = 0.046). Spearman correlation showed strong positive correlation between volume and both EP and LP SUVmax (0.626; P = 0.0001 and 0.576; P = 0.0001, respectively). Linear regression analysis revealed significant correlation between PTH level and EP and LP SUVmax (both P = 0.001); in contrast, no correlation was found between PTH level and both cell type and growth pattern. CONCLUSIONS Our findings suggest that 18F-choline uptake of parathyroid adenomas might be associated both with the histological growth pattern and adenoma volume, but not with a specific cell type.
Collapse
Affiliation(s)
| | | | | | | | - Désirée Deandreis
- Department of Medical Science, Nuclear Medicine Unit, University of Turin
| | | | - Marlena Hofbauer
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Alexander Maurer
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Lars Husmann
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Cäcilia E Mader
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Hannes Grünig
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Abdullah A Alharbi
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Michael Messerli
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| | - Martin W Huellner
- From the Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Van Hoeck J, Vanhove C, De Smedt SC, Raemdonck K. Non-invasive cell-tracking methods for adoptive T cell therapies. Drug Discov Today 2021; 27:793-807. [PMID: 34718210 DOI: 10.1016/j.drudis.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
Adoptive T cell therapies (ACT) have demonstrated groundbreaking results in blood cancers and melanoma. Nevertheless, their significant cost, the occurrence of severe adverse events, and their poor performance in solid tumors are important hurdles hampering more widespread applicability. In vivo cell tracking allows instantaneous and non-invasive monitoring of the distribution, tumor homing, persistence, and redistribution to other organs of infused T cells in patients. Furthermore, cell tracking could aid in the clinical management of patients, allowing the detection of non-responders or severe adverse events at an early stage. This review provides a concise overview of the main principles and potential of cell tracking, followed by a discussion of the clinically relevant labeling strategies and their application in ACT.
Collapse
Affiliation(s)
- Jelter Van Hoeck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Christian Vanhove
- Infinity Lab, Medical Imaging and Signal Processing Group-IBiTech, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Lilburn DM, Groves AM. The role of PET in imaging of the tumour microenvironment and response to immunotherapy. Clin Radiol 2021; 76:784.e1-784.e15. [DOI: 10.1016/j.crad.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Liberini V, Mariniello A, Righi L, Capozza M, Delcuratolo MD, Terreno E, Farsad M, Volante M, Novello S, Deandreis D. NSCLC Biomarkers to Predict Response to Immunotherapy with Checkpoint Inhibitors (ICI): From the Cells to In Vivo Images. Cancers (Basel) 2021; 13:4543. [PMID: 34572771 PMCID: PMC8464855 DOI: 10.3390/cancers13184543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death, and it is usually diagnosed in advanced stages (stage III or IV). Recently, the availability of targeted strategies and of immunotherapy with checkpoint inhibitors (ICI) has favorably changed patient prognosis. Treatment outcome is closely related to tumor biology and interaction with the tumor immune microenvironment (TME). While the response in molecular targeted therapies relies on the presence of specific genetic alterations in tumor cells, accurate ICI biomarkers of response are lacking, and clinical outcome likely depends on multiple factors that are both host and tumor-related. This paper is an overview of the ongoing research on predictive factors both from in vitro/ex vivo analysis (ranging from conventional pathology to molecular biology) and in vivo analysis, where molecular imaging is showing an exponential growth and use due to technological advancements and to the new bioinformatics approaches applied to image analyses that allow the recovery of specific features in specific tumor subclones.
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
- Nuclear Medicine Department, S. Croce e Carle Hospital, 12100 Cuneo, Italy
| | - Annapaola Mariniello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Luisella Righi
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Marco Donatello Delcuratolo
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Mohsen Farsad
- Nuclear Medicine, Central Hospital Bolzano, 39100 Bolzano, Italy;
| | - Marco Volante
- Pathology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (L.R.); (M.V.)
| | - Silvia Novello
- Thoracic Oncology Unit, Department of Oncology, S. Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy; (A.M.); (M.D.D.); (S.N.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Turin, 10126 Turin, Italy;
| |
Collapse
|
10
|
Liberini V, Laudicella R, Capozza M, Huellner MW, Burger IA, Baldari S, Terreno E, Deandreis D. The Future of Cancer Diagnosis, Treatment and Surveillance: A Systemic Review on Immunotherapy and Immuno-PET Radiotracers. Molecules 2021; 26:2201. [PMID: 33920423 PMCID: PMC8069316 DOI: 10.3390/molecules26082201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy is an effective therapeutic option for several cancers. In the last years, the introduction of checkpoint inhibitors (ICIs) has shifted the therapeutic landscape in oncology and improved patient prognosis in a variety of neoplastic diseases. However, to date, the selection of the best patients eligible for these therapies, as well as the response assessment is still challenging. Patients are mainly stratified using an immunohistochemical analysis of the expression of antigens on biopsy specimens, such as PD-L1 and PD-1, on tumor cells, on peritumoral immune cells and/or in the tumor microenvironment (TME). Recently, the use and development of imaging biomarkers able to assess in-vivo cancer-related processes are becoming more important. Today, positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is used routinely to evaluate tumor metabolism, and also to predict and monitor response to immunotherapy. Although highly sensitive, FDG-PET in general is rather unspecific. Novel radiopharmaceuticals (immuno-PET radiotracers), able to identify specific immune system targets, are under investigation in pre-clinical and clinical settings to better highlight all the mechanisms involved in immunotherapy. In this review, we will provide an overview of the main new immuno-PET radiotracers in development. We will also review the main players (immune cells, tumor cells and molecular targets) involved in immunotherapy. Furthermore, we report current applications and the evidence of using [18F]FDG PET in immunotherapy, including the use of artificial intelligence (AI).
Collapse
MESH Headings
- Antineoplastic Agents, Immunological/therapeutic use
- Artificial Intelligence
- B7-H1 Antigen/genetics
- B7-H1 Antigen/immunology
- Fluorodeoxyglucose F18/administration & dosage
- Fluorodeoxyglucose F18/chemistry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/metabolism
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/diagnostic imaging
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/therapy
- Positron-Emission Tomography/methods
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/immunology
- Radiopharmaceuticals/administration & dosage
- Radiopharmaceuticals/chemical synthesis
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Virginia Liberini
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Martina Capozza
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Martin W. Huellner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
| | - Irene A. Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland; (M.W.H.); (I.A.B.)
- Department of Nuclear Medicine, Kantonsspital Baden, 5004 Baden, Switzerland
| | - Sergio Baldari
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (S.B.)
| | - Enzo Terreno
- Molecular & Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (M.C.); (E.T.)
| | - Désirée Deandreis
- Department of Medical Science, Division of Nuclear Medicine, University of Torino, 10126 Torino, Italy;
| |
Collapse
|
11
|
Su S, Li X. Dive into Single, Seek Out Multiple: Probing Cancer Metastases via Single-Cell Sequencing and Imaging Techniques. Cancers (Basel) 2021; 13:1067. [PMID: 33802312 PMCID: PMC7959126 DOI: 10.3390/cancers13051067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Metastasis is the cause of most cancer deaths and continues to be the biggest challenge in clinical practice and laboratory investigation. The challenge is largely due to the intrinsic heterogeneity of primary and metastatic tumor populations and the complex interactions among cancer cells and cells in the tumor microenvironment. Therefore, it is important to determine the genotype and phenotype of individual cells so that the metastasis-driving events can be precisely identified, understood, and targeted in future therapies. Single-cell sequencing techniques have allowed the direct comparison of the genomic and transcriptomic changes among different stages of metastatic samples. Single-cell imaging approaches have enabled the live visualization of the heterogeneous behaviors of malignant and non-malignant cells in the tumor microenvironment. By applying these technologies, we are achieving a spatiotemporal precision understanding of cancer metastases and clinical therapeutic translations.
Collapse
Affiliation(s)
| | - Xiaohong Li
- Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA;
| |
Collapse
|