1
|
Conde-Torres D, Calvelo M, Rovira C, Piñeiro Á, Garcia-Fandino R. Unlocking the specificity of antimicrobial peptide interactions for membrane-targeted therapies. Comput Struct Biotechnol J 2024; 25:61-74. [PMID: 38695015 PMCID: PMC11061258 DOI: 10.1016/j.csbj.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) are increasingly recognized as potent therapeutic agents, with their selective affinity for pathological membranes, low toxicity profile, and minimal resistance development making them particularly attractive in the pharmaceutical landscape. This study offers a comprehensive analysis of the interaction between specific AMPs, including magainin-2, pleurocidin, CM15, LL37, and clavanin, with lipid bilayer models of very different compositions that have been ordinarily used as biological membrane models of healthy mammal, cancerous, and bacterial cells. Employing unbiased molecular dynamics simulations and metadynamics techniques, we have deciphered the intricate mechanisms by which these peptides recognize pathogenic and pathologic lipid patterns and integrate into lipid assemblies. Our findings reveal that the transverse component of the peptide's hydrophobic dipole moment is critical for membrane interaction, decisively influencing the molecule's orientation and expected therapeutic efficacy. Our approach also provides insight on the kinetic and dynamic dependence on the peptide orientation in the axial and azimuthal angles when coming close to the membrane. The aim is to establish a robust framework for the rational design of peptide-based, membrane-targeted therapies, as well as effective quantitative descriptors that can facilitate the automated design of novel AMPs for these therapies using machine learning methods.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Martín Calvelo
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
| | - Carme Rovira
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rebeca Garcia-Fandino
- Center for Research in Biological Chemistry and Molecular Materials, Departamento de Química Orgánica, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Garrido PF, Castillo-Peinado LS, Priego-Capote F, Barrio I, Piñeiro Á, Domínguez-Santalla MJ, Rodríguez-Ruiz E, Garcia-Fandino R. Lipidomics signature in post-COVID patient sera and its influence on the prolonged inflammatory response. J Infect Public Health 2024; 17:588-600. [PMID: 38368647 DOI: 10.1016/j.jiph.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The ongoing issues with post-COVID conditions (PCC), where symptoms persist long after the initial infection, highlight the need for research into blood lipid changes in these patients. While most studies focus on the acute phase of COVID-19, there's a significant lack of information on the lipidomic changes that occur in the later stages of the disease. Addressing this knowledge gap is critical for understanding the long-term effects of COVID-19 and could be key to developing personalized treatments for those suffering from PCC. METHODS We employed untargeted lipidomics to analyze plasma samples from 147 PCC patients, assessing nearly 400 polar lipids. Data mining (DM) and machine learning (ML) tools were utilized to decode the results and ascertain significant lipidomic patterns. RESULTS The study uncovered substantial changes in various lipid subclasses, presenting a detailed profile of the polar lipid fraction in PCC patients. These alterations correlated with ongoing inflammation and immune response. Notably, there were elevated levels of lysophosphatidylglycerols (LPGs) and phosphatidylethanolamines (PEs), and reduced levels of lysophosphatidylcholines (LPCs), suggesting these as potential lipid biomarkers for PCC. The lipidomic signatures indicated specific anionic lipid changes, implicating antimicrobial peptides (AMPs) in inflammation. Associations between particular medications and symptoms were also suggested. Classification models, such as multinomial regression (MR) and random forest (RF), successfully differentiated between symptomatic and asymptomatic PCC groups using lipidomic profiles. CONCLUSIONS The study's groundbreaking discovery of specific lipidomic disruptions in PCC patients marks a significant stride in the quest to comprehend and combat this condition. The identified lipid biomarkers not only pave the way for novel diagnostic tools but also hold the promise to tailor individualized therapeutic strategies, potentially revolutionizing the clinical approach to managing PCC and improving patient care.
Collapse
Affiliation(s)
- P F Garrido
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, Zaragoza 50018, Spain
| | - L S Castillo-Peinado
- Department of Analytical Chemistry, University of Córdoba, Annex C-3 Building, Campus of Rabanales, Córdoba 14071, Spain; Maimónides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - F Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, Annex C-3 Building, Campus of Rabanales, Córdoba 14071, Spain; Maimónides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - I Barrio
- Department of Mathematics, University of the Basque Country UPV/EHU, Leioa 48940, Spain; Basque Center for Applied Mathematics, BCAM, Bilbao 48009, Spain
| | - Á Piñeiro
- Soft Matter & Molecular Biophysics Group, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, Spain
| | - M J Domínguez-Santalla
- Internal Medicine Department, University Clinic Hospital of Santiago de Compostela (CHUS), Galician Public Health System (SERGAS), Santiago de Compostela, Spain
| | - E Rodríguez-Ruiz
- Intensive Care Medicine Department, University Clinic Hospital of Santiago de Compostela (CHUS), Galician Public Health System (SERGAS), Santiago de Compostela, Spain; Simulation, Life Support & Intensive Care Research Unit of Santiago de Compostela (SICRUS), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; CLINURSID Research Group, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - R Garcia-Fandino
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain.
| |
Collapse
|
3
|
Conde-Torres D, Blanco-González A, Seco-González A, Suárez-Lestón F, Cabezón A, Antelo-Riveiro P, Piñeiro Á, García-Fandiño R. Unraveling lipid and inflammation interplay in cancer, aging and infection for novel theranostic approaches. Front Immunol 2024; 15:1320779. [PMID: 38361953 PMCID: PMC10867256 DOI: 10.3389/fimmu.2024.1320779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
The synergistic relationships between Cancer, Aging, and Infection, here referred to as the CAIn Triangle, are significant determinants in numerous health maladies and mortality rates. The CAIn-related pathologies exhibit close correlations with each other and share two common underlying factors: persistent inflammation and anomalous lipid concentration profiles in the membranes of affected cells. This study provides a comprehensive evaluation of the most pertinent interconnections within the CAIn Triangle, in addition to examining the relationship between chronic inflammation and specific lipidic compositions in cellular membranes. To tackle the CAIn-associated diseases, a suite of complementary strategies aimed at diagnosis, prevention, and treatment is proffered. Our holistic approach is expected to augment the understanding of the fundamental mechanisms underlying these diseases and highlight the potential of shared features to facilitate the development of novel theranostic strategies.
Collapse
Affiliation(s)
- Daniel Conde-Torres
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alejandro Seco-González
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fabián Suárez-Lestón
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela, Spain
| | - Alfonso Cabezón
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Paula Antelo-Riveiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Organic Chemistry Department, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
4
|
Blanco-González A, Marrink SJ, Piñeiro Á, García-Fandiño R. Molecular insights into the effects of focused ultrasound mechanotherapy on lipid bilayers: Unlocking the keys to design effective treatments. J Colloid Interface Sci 2023; 650:1201-1210. [PMID: 37478737 DOI: 10.1016/j.jcis.2023.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Administration of focused ultrasounds (US) represents an attractive complement to classical therapies for a wide range of maladies, from cancer to neurological pathologies, as they are non-invasive, easily targeted, their dosage is easy to control, and they involve low risks. Different mechanisms have been proposed for their activity but the direct effect of their interaction with cell membranes is not well understood at the molecular level. This is in part due to the difficulty of designing experiments able to probe the required spatio-temporal resolutions. Here we use Molecular Dynamics (MD) simulations at two resolution levels and machine learning (ML) classification tools to shed light on the effects that focused US mechanotherapy methods have over a range of lipid bilayers. Our results indicate that the dynamic-structural response of the membrane models to the mechanical perturbations caused by the sound waves strongly depends on the lipid composition. The analyses performed on the MD trajectories contribute to a better understanding of the behavior of lipid membranes, and to open up a path for the rational design of new therapies for the long list of diseases characterized by specific lipid profiles of pathological membrane cells.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovations S.L., Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Blanco-González A, Piñeiro Á, García-Fandiño R. Unravelling hierarchical levels of structure in lipid membranes. Comput Struct Biotechnol J 2022; 20:2798-2806. [PMID: 35685357 PMCID: PMC9168047 DOI: 10.1016/j.csbj.2022.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 11/30/2022] Open
Abstract
A set of hierarchical levels of structure can be proposed for lipid bilayers. The composition of a lipid bilayer is identified as a fluid version of primary structure. The interaction between leaflets is taken as the secondary structure of lipid bilayers. A method to identify membrane domains and their interaction is proposed as a third level of structure. The highly specific lipid perturbation around embedded macromolecules is taken as the quaternary level of structure.
In analogy with the hierarchical levels typically used to describe the structure of nucleic acids or proteins and keeping in mind that lipid bilayers are not just mere envelopers for biological material but directly responsible for many important functions of life, it is discussed here how membrane models can also be interpreted in terms of different hierarchies in their structure. Namely, lipid composition, interaction between leaflets, existence and interaction of domains arising from the coordinate behavior of lipids and their properties, plus the manifest and specific perturbation of the lipid organization around macromolecules embedded in a membrane are hereby used to define the primary, secondary, tertiary and quaternary structures, respectively. Molecular Dynamics simulations are used to illustrate this proposal. Alternative levels of organization and methods to define domains can be proposed but the final aim is to highlight the paradigm arising from this description which is expected to have significant consequences on deciphering the underlying factors governing membranes and their interactions with other molecules.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- MD.USE Innovations SL, Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Corresponding authors.
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain
- Corresponding authors.
| |
Collapse
|
6
|
Suarez-Leston F, Calvelo M, Tolufashe GF, Muñoz A, Veleiro U, Porto C, Bastos M, Piñeiro Á, Garcia-Fandino R. SuPepMem: a database of innate immune system peptides and their cell membrane interactions. Comput Struct Biotechnol J 2022; 20:874-881. [PMID: 35222846 PMCID: PMC8844400 DOI: 10.1016/j.csbj.2022.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
Host defense peptides (HDPs) are short cationic peptides that play a key role in the innate immune response of all living organisms. Their action mechanism does not depend on the presence of protein receptors, but on their ability to target and disrupt the membranes of a wide range of pathogenic and pathologic cells which are recognized by their specific compositions, typically with a relatively high concentration of anionic lipids. Lipid profile singularities have been found in cancer, inflammation, bacteria, viral infections, and even in senescent cells, enabling the possibility to use them as therapeutic targets and/or diagnostic biomarkers. Molecular dynamics (MD) simulations are extraordinarily well suited to explore how HDPs interact with membrane models, providing a large amount of qualitative and quantitative information that, nowadays, cannot be assessed by wet-lab methods at the same level of temporal and spatial resolution. Here, we present SuPepMem, an open-access repository containing MD simulations of different natural and artificial peptides with potential membrane lysis activity, interacting with membrane models of healthy mammal, bacteria, viruses, cancer or senescent cells. In addition to a description of the HDPs and the target systems, SuPepMem provides both the input files necessary to run the simulations and also the results of some selected analyses, including structural and MD-based quantitative descriptors. These descriptors are expected to be useful to train machine learning algorithms that could contribute to design new therapeutic peptides. Tools for comparative analysis between different HDPs and model membranes, as well as to restrict the queries to structural and time-averaged properties are also available. SuPepMem is a living project, that will continuously grow with more simulations including peptides of different sequences, MD simulations with different number of peptide units, more membrane models and also several resolution levels. The database is open to MD simulations from other users (after quality check by the SuPepMem team). SuPepMem is freely available under https://supepmem.com/.
Collapse
Affiliation(s)
- Fabián Suarez-Leston
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Martin Calvelo
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
- Departament de Química Inorgánica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Gideon F. Tolufashe
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Alicia Muñoz
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Uxía Veleiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - César Porto
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
| | - Margarida Bastos
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Corresponding authors at: Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain (Á. Piñeiro) and Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain and CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre, 687, P-4169-007 Porto, Portugal (R. Garcia-Fandino).
| | - Rebeca Garcia-Fandino
- Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain
- CIQUP, Centro de Investigação em Química, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- Corresponding authors at: Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain (Á. Piñeiro) and Department of Organic Chemistry, Center for Research in Biological Chemistry and Molecular Materials, Santiago de Compostela University, CIQUS, Spain and CIQUP, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre, 687, P-4169-007 Porto, Portugal (R. Garcia-Fandino).
| |
Collapse
|
7
|
Rivas-Santiago B, Jacobo-Delgado Y, Rodriguez-Carlos A. Are Host Defense Peptides and Their Derivatives Ready to be Part of the Treatment of the Next Coronavirus Pandemic? Arch Immunol Ther Exp (Warsz) 2021; 69:25. [PMID: 34529143 PMCID: PMC8444179 DOI: 10.1007/s00005-021-00630-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
The term host defense peptides arose at the beginning to refer to those peptides that are part of the host's immunity. Because of their broad antimicrobial capacity and immunomodulatory activity, nowadays, they emerge as a hope to combat resistant multi-drug microorganisms and emerging viruses, such as the case of coronaviruses. Since the beginning of this century, coronaviruses have been part of different outbreaks and a pandemic, and they will be surely part of the next pandemics, this review analyses whether these peptides and their derivatives are ready to be part of the treatment of the next coronavirus pandemic.
Collapse
Affiliation(s)
- Bruno Rivas-Santiago
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico.
| | - Yolanda Jacobo-Delgado
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico
| | - Adrian Rodriguez-Carlos
- Biomedical Research Unit-Zacatecas, Mexican Institute for Social Security-IMSS, Col. Centro Zacatecas, Interior of Alameda #45, Zacatecas, Mexico
| |
Collapse
|