1
|
Parab S, Sarlo V, Capellero S, Palmiotto L, Bartolini A, Cantarella D, Turi M, Gullà A, Grassi E, Lazzari C, Rubatto M, Gregorc V, Carnevale-Schianca F, Olivero M, Bussolino F, Comunanza V. Single-Nuclei Transcriptome Profiling Reveals Intra-Tumoral Heterogeneity and Characterizes Tumor Microenvironment Architecture in a Murine Melanoma Model. Int J Mol Sci 2024; 25:11228. [PMID: 39457009 PMCID: PMC11508838 DOI: 10.3390/ijms252011228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Malignant melanoma is an aggressive cancer, with a high risk of metastasis and mortality rates, characterized by cancer cell heterogeneity and complex tumor microenvironment (TME). Single cell biology is an ideal and powerful tool to address these features at a molecular level. However, this approach requires enzymatic cell dissociation that can influence cellular coverage. By contrast, single nucleus RNA sequencing (snRNA-seq) has substantial advantages including compatibility with frozen samples and the elimination of a dissociation-induced, transcriptional stress response. To better profile and understand the functional diversity of different cellular components in melanoma progression, we performed snRNA-seq of 16,839 nuclei obtained from tumor samples along the growth of murine syngeneic melanoma model carrying a BRAFV600E mutation and collected 9 days or 23 days after subcutaneous cell injection. We defined 11 different subtypes of functional cell clusters among malignant cells and 5 different subsets of myeloid cells that display distinct global transcriptional program and different enrichment in early or advanced stage of tumor growth, confirming that this approach was useful to accurately identify intratumor heterogeneity and dynamics during tumor evolution. The current study offers a deep insight into the biology of melanoma highlighting TME reprogramming through tumor initiation and progression, underlying further discovery of new TME biomarkers which may be potentially druggable.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Valery Sarlo
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Sonia Capellero
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
- Department of Veterinary Science, University of Torino, 10095 Grugliasco, Italy
| | - Luca Palmiotto
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | | | | | - Marcello Turi
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | | | - Elena Grassi
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Chiara Lazzari
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Marco Rubatto
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Vanesa Gregorc
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | | | - Martina Olivero
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| | - Valentina Comunanza
- Department of Oncology, University of Torino, 10060 Candiolo, Italy; (S.P.); (F.B.)
- Candiolo Cancer Institute, FPO—IRCCS, 10060 Candiolo, Italy
| |
Collapse
|
2
|
Carouge E, Burnichon C, Figeac M, Sebda S, Vanpouille N, Vinchent A, Truong MJ, Duterque-Coquillaud M, Tulasne D, Chotteau-Lelièvre A. Functional interaction between receptor tyrosine kinase MET and ETS transcription factors promotes prostate cancer progression. Mol Oncol 2024. [PMID: 39374163 DOI: 10.1002/1878-0261.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024] Open
Abstract
Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.
Collapse
Affiliation(s)
- Elisa Carouge
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Clémence Burnichon
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Martin Figeac
- US 41 - UAR 2014 - PLBS, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Shéhérazade Sebda
- US 41 - UAR 2014 - PLBS, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Nathalie Vanpouille
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Audrey Vinchent
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Marie-José Truong
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Martine Duterque-Coquillaud
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - David Tulasne
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| | - Anne Chotteau-Lelièvre
- UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU Lille, France
| |
Collapse
|
3
|
Li F, Wang J, Li M, Zhang X, Tang Y, Song X, Zhang Y, Pei L, Liu J, Zhang C, Li X, Xu Y, Zhang Y. Identifying cell type-specific transcription factor-mediated activity immune modules reveal implications for immunotherapy and molecular classification of pan-cancer. Brief Bioinform 2024; 25:bbae368. [PMID: 39082649 PMCID: PMC11289680 DOI: 10.1093/bib/bbae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Systematic investigation of tumor-infiltrating immune (TII) cells is important to the development of immunotherapies, and the clinical response prediction in cancers. There exists complex transcriptional regulation within TII cells, and different immune cell types display specific regulation patterns. To dissect transcriptional regulation in TII cells, we first integrated the gene expression profiles from single-cell datasets, and proposed a computational pipeline to identify TII cell type-specific transcription factor (TF) mediated activity immune modules (TF-AIMs). Our analysis revealed key TFs, such as BACH2 and NFKB1 play important roles in B and NK cells, respectively. We also found some of these TF-AIMs may contribute to tumor pathogenesis. Based on TII cell type-specific TF-AIMs, we identified eight CD8+ T cell subtypes. In particular, we found the PD1 + CD8+ T cell subset and its specific TF-AIMs associated with immunotherapy response. Furthermore, the TII cell type-specific TF-AIMs displayed the potential to be used as predictive markers for immunotherapy response of cancer patients. At the pan-cancer level, we also identified and characterized six molecular subtypes across 9680 samples based on the activation status of TII cell type-specific TF-AIMs. Finally, we constructed a user-friendly web interface CellTF-AIMs (http://bio-bigdata.hrbmu.edu.cn/CellTF-AIMs/) for exploring transcriptional regulatory pattern in various TII cell types. Our study provides valuable implications and a rich resource for understanding the mechanisms involved in cancer microenvironment and immunotherapy.
Collapse
Affiliation(s)
- Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jingwen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xiaomeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yongjuan Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xinyu Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yifang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Liying Pei
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jiaqi Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| |
Collapse
|
4
|
Chai B, Li Y, Guo Y, Zhang Z, Jia K, Chai X, Suo Y. ETV7 promotes colorectal cancer progression through upregulation of IFIT3. Funct Integr Genomics 2024; 24:8. [PMID: 38200280 PMCID: PMC10781848 DOI: 10.1007/s10142-023-01282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/04/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Members of the E26 transformation-specific (ETS) variant transcription factor family act as either tumor suppressors or oncogenic factors in numerous types of cancer. ETS variant transcription factor 7 (ETV7) participates in the development of malignant tumors, whereas its involvement in colorectal cancer (CRC) is less clear. In this study, The Cancer Genome Atlas (TCGA) and immunochemistry staining were applied to check the clinical relevance of ETV7 and interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) in CRC patients. Overexpression and knockdown of ETV7 and IFIT3 were conducted by transfecting the cells with pCDNA3.1 plasmids and siRNAs, respectively. Western blotting was used to detect the protein expression of ETV7 in CRC cells. Cell Counting Kit-8, cell colony formation, and Transwell assays, as well as flow cytometry, were used to evaluate the proliferation, migration, cell cycle, and apoptosis of CRC cells. Furthermore, western blotting, RT-qPCR, and luciferase assay were used to explore the regulation of ETV7 on IFIT3. Rescue assay was used to investigate the significance of ETV7/IFIT3 axis on CRC progression. We found that ETV7 was upregulated in CRC tissues and cells. Overexpression of ETV7 stimulated the proliferation, migration, and cell cycle amplification, and reduced the apoptosis of CRC cells. Downregulation of ETV7 exerted the opposite effect on CRC cell progression. Moreover, we demonstrated that ETV7 stimulated the transcription activity, the mRNA and protein expression of IFIT3 in CRC cells. There was a positive correlation between ETV7 and IFIT3 in CRC patients. IFIT3 knockdown reversed the promotive effect exerted by overexpression of ETV7 on the amplification and migration of CRC cells. By contrast, overexpression of IFIT3 blocked the inhibitory effect of ETV7-targeting siRNA. In summary, ETV7 induces progression of CRC by activating the transcriptional expression of IFIT3. The EVT7/IFIT3 axis may be a novel target for CRC therapy.
Collapse
Affiliation(s)
- Bao Chai
- Department of Gastroenterology, Shanxi Academy of Medical Science, Shanxi Bethune Hospital, Taiyuan, China
| | - Yanjun Li
- Department of Surgery, Shanxi Academy of Medical Science, Shanxi Bethune Hospital, Taiyuan, China
| | - Yarong Guo
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 85 South Jiefang Road, TaiyuanTaiyuan, 030001, Shanxi Province, China.
| | - Zhuowei Zhang
- Medical Imaging Department, Shanxi Medical University, Taiyuan, China
| | - Kai Jia
- Department of Surgery, The First Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinhao Chai
- Department of Oncology, The First Affiliated Hospital of Shanxi Medical University, 85 South Jiefang Road, TaiyuanTaiyuan, 030001, Shanxi Province, China
| | - Yuhong Suo
- Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Taiyuan, China
| |
Collapse
|
5
|
Hu Q, Wang S, Cheng R, Liu Y, Chang Z, Huang Y, Chen Y, Luo X, Zhou L, Wang B, Gao Y, Chen H, Liu R, Zhang L. Tannins in Phyllanthus emblica L. improves cisplatin efficacy in lung cancer cells by boosting endoplasmic reticulum stress to trigger immunogenic cell death. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155219. [PMID: 38056150 DOI: 10.1016/j.phymed.2023.155219] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Lung cancer is one of the deadliest cancers world-wide and immunotherapy has been considered as a promising therapeutic strategy. Previously, our study found that tannins in Phyllanthus emblica L. (PTF) could inhibit the growth of tumor by activating the immune response in liver cancer, and also exhibited a cytotoxicity on human lung cancer cells A549, H460, H1703 in vitro. OBJECTIVE To explore whether PTF inhibited the growth of lung cancer through its immune-regulating function and to clarify underlying mechanisms. METHODS The induction of immunogenic cell death (ICD) were characterized by calreticulin exposure, extracellular ATP secretion, and High Mobility Group Box 1(HMGB1) release both in vivo using LLC-derived xenograft tumor model and in vitro using both mouse LLC and human A549 cancer cells. RESULTS PTF inhibited lung cancer cells growth and tumorigenesis in vivo/vitro and promoted anti-tumor immune responses. We further found that PTF could induce ICD, which then activated Type I interferon responses and CXCL9/10-mediated chemotaxis. Mechanistically, PTF induced the formation of intracellular protein aggregates and following activation of PERK/ATF4/CHOP-dependent endoplasmic reticulum stress-related ICD. Moreover, PTF improved the antitumor efficacy of cisplatin by inducing ICD both in vitro and in vivo. Finally, we screened out 5 components from PTF, including gallocatechin, gallic acid, methyl gallate, ethyl gallate and ellagic acid, which could induce ICD in vitro and might be considered as the potential antitumor pharmacodynamic substances. CONCLUSION In conclusion, PTF inhibits the growth of lung cancer by triggering ICD and remodeling the tumor microenvironment, suggesting that PTF may have promising prospects as an adjacent immunotherapy for cancers.
Collapse
Affiliation(s)
- Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Shukai Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Ruiyang Cheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Yuqi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Zihao Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Ya Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Yinxin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Xiaowei Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Baojin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Ye Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Hongjiao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Beijing 102488, PR China.
| |
Collapse
|
6
|
Godoy PM, Oyedeji A, Mudd JL, Morikis VA, Zarov AP, Longmore GD, Fields RC, Kaufman CK. Functional analysis of recurrent CDC20 promoter variants in human melanoma. Commun Biol 2023; 6:1216. [PMID: 38030698 PMCID: PMC10686982 DOI: 10.1038/s42003-023-05526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Small nucleotide variants in non-coding regions of the genome can alter transcriptional regulation, leading to changes in gene expression which can activate oncogenic gene regulatory networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total genetic variation, including the well-characterized TERT promoter mutation. However, the compendium of regulatory non-coding variants is likely still functionally under-characterized. We developed a pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing putatively functional non-coding somatic variants that are located within predicted melanoma-specific regulatory regions. We identified hundreds of statistically significant hotspots, including the hotspot containing the TERT promoter variants, and focused on a hotspot in the promoter of CDC20. We found that variants in the promoter of CDC20, which putatively disrupt an ETS motif, lead to lower transcriptional activity in reporter assays. Using CRISPR/Cas9, we generated an indel in the CDC20 promoter in human A375 melanoma cell lines and observed decreased expression of CDC20, changes in migration capabilities, increased growth of xenografts, and an altered transcriptional state previously associated with a more proliferative and less migratory state. Overall, our analysis prioritized several recurrent functional non-coding variants that, through downregulation of CDC20, led to perturbation of key melanoma phenotypes.
Collapse
Affiliation(s)
- Paula M Godoy
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abimbola Oyedeji
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Jacqueline L Mudd
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Vasilios A Morikis
- Departments of Medicine (Oncology) and Cell Biology and Physiology and the ICCE Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna P Zarov
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory D Longmore
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
- Departments of Medicine (Oncology) and Cell Biology and Physiology and the ICCE Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Department of Medicine and Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in Saint Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Lin F, Ke ZB, Xue YT, Chen JY, Cai H, Lin YZ, Li XD, Wei Y, Xue XY, Xu N. A novel CD8 + T cell-related gene signature for predicting the prognosis and immunotherapy efficacy in bladder cancer. Inflamm Res 2023; 72:1665-1687. [PMID: 37578544 DOI: 10.1007/s00011-023-01772-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/25/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVE To identify CD8+ T cell-related molecular clusters and establish a novel gene signature for predicting the prognosis and efficacy of immunotherapy in bladder cancer (BCa). METHODS Transcriptome and clinical data of BCa samples were obtained from the Cancer Genome Atlas (TCGA) and GEO databases. The CD8+ T cell-related genes were screened through the CIBERSORT algorithm and correlation analysis. Consensus clustering analysis was utilized to identified CD8+ T cell-related molecular clusters. A novel CD8+ T cell-related prognostic model was developed using univariate Cox regression analysis and Lasso regression analysis. Internal and external validations were performed and the validity of the model was validated in a real-world cohort. Finally, preliminary experimental verifications were carried out to verify the biological functions of SH2D2A in bladder cancer. RESULTS A total of 52 CD8+ T cell-related prognostic genes were screened and two molecular clusters with notably diverse immune cell infiltration, prognosis and clinical features were developed. Then, a novel CD8+ T cell-related prognostic model was constructed. The patients with high-risk scores exhibited a significantly worse overall survival in training, test, whole TCGA and validating cohort. The AUC was 0.766, 0.725, 0.739 and 0.658 in the four cohorts sequentially. Subgroup analysis suggested that the novel prognostic model has a robust clinical application for selecting high-risk patients. Finally, we confirmed that patients in the low-risk group might benefit more from immunotherapy or chemotherapy, and validated the prognostic model in a real-world immunotherapy cohort. Preliminary experiment showed that SH2D2A was capable of attenuating proliferation, migration and invasion of BCa cells. CONCLUSIONS CD8+ T cell-related molecular clusters were successfully identified. Besides, a novel CD8+ T cell-related prognostic model with an excellent predictive performance in predicting survival rates and immunotherapy efficacy of BCa was developed.
Collapse
Affiliation(s)
- Fei Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Jia-Yin Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Hai Cai
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xiao-Dong Li
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
8
|
McCaffrey TA, Toma I, Yang Z, Katz R, Reiner J, Mazhari R, Shah P, Falk Z, Wargowsky R, Goldman J, Jones D, Shtokalo D, Antonets D, Jepson T, Fetisova A, Jaatinen K, Ree N, Ri M. RNAseq profiling of blood from patients with coronary artery disease: Signature of a T cell imbalance. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100033. [PMID: 37303712 PMCID: PMC10256136 DOI: 10.1016/j.jmccpl.2023.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Background Cardiovascular disease had a global prevalence of 523 million cases and 18.6 million deaths in 2019. The current standard for diagnosing coronary artery disease (CAD) is coronary angiography either by invasive catheterization (ICA) or computed tomography (CTA). Prior studies employed single-molecule, amplification-independent RNA sequencing of whole blood to identify an RNA signature in patients with angiographically confirmed CAD. The present studies employed Illumina RNAseq and network co-expression analysis to identify systematic changes underlying CAD. Methods Whole blood RNA was depleted of ribosomal RNA (rRNA) and analyzed by Illumina total RNA sequencing (RNAseq) to identify transcripts associated with CAD in 177 patients presenting for elective invasive coronary catheterization. The resulting transcript counts were compared between groups to identify differentially expressed genes (DEGs) and to identify patterns of changes through whole genome co-expression network analysis (WGCNA). Results The correlation between Illumina amplified RNAseq and the prior SeqLL unamplified RNAseq was quite strong (r = 0.87), but there was only 9 % overlap in the DEGs identified. Consistent with the prior RNAseq, the majority (93 %) of DEGs were down-regulated ~1.7-fold in patients with moderate to severe CAD (>20 % stenosis). DEGs were predominantly related to T cells, consistent with known reductions in Tregs in CAD. Network analysis did not identify pre-existing modules with a strong association with CAD, but patterns of T cell dysregulation were evident. DEGs were enriched for transcripts associated with ciliary and synaptic transcripts, consistent with changes in the immune synapse of developing T cells. Conclusions These studies confirm and extend a novel mRNA signature of a Treg-like defect in CAD. The pattern of changes is consistent with stress-related changes in the maturation of T and Treg cells, possibly due to changes in the immune synapse.
Collapse
Affiliation(s)
- Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- Department of Clinical Research and Leadership, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Zhaoqing Yang
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Katz
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jonathan Reiner
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Ramesh Mazhari
- Department of Medicine, Division of Cardiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Palak Shah
- INOVA Heart and Vascular Institute, 3300 Gallows Road, Fairfax, VA 22042, United States of America
| | - Zachary Falk
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Richard Wargowsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Dan Jones
- SeqLL, Inc., 3 Federal Street, Billerica, MA 01821, United States of America
| | - Dmitry Shtokalo
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| | - Denis Antonets
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
| | - Tisha Jepson
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- True Bearing Diagnostics, 2450 Virginia Avenue, Washington, DC 20037, United States of America
| | - Anastasia Fetisova
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Kevin Jaatinen
- Department of Medicine, Division of Genomic Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, United States of America
| | - Natalia Ree
- Center for Mitochondrial Functional Genomics, Institute of Living Systems, Immanuel Kant Baltic Federal University, Kalingrad 236040, Russia
| | - Maxim Ri
- The St. Laurent Institute, 317 New Boston Street, Woburn, MA 01801, United States of America
- A.P. Ershov Institute of Informatics Systems SB RAS, 6, Acad. Lavrentyeva Ave, Novosibirsk 630090, Russia
| |
Collapse
|
9
|
Meškytė EM, Pezzè L, Bartolomei L, Forcato M, Bocci IA, Bertalot G, Barbareschi M, Oliveira-Ferrer L, Bisio A, Bicciato S, Baltriukienė D, Ciribilli Y. ETV7 reduces inflammatory responses in breast cancer cells by repressing the TNFR1/NF-κB axis. Cell Death Dis 2023; 14:263. [PMID: 37041130 PMCID: PMC10089821 DOI: 10.1038/s41419-023-05718-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 04/13/2023]
Abstract
The transcription factor ETV7 is an oncoprotein that is up-regulated in all breast cancer (BC) types. We have recently demonstrated that ETV7 promoted breast cancer progression by increasing cancer cell proliferation and stemness and was also involved in the development of chemo- and radio-resistance. However, the roles of ETV7 in breast cancer inflammation have yet to be studied. Gene ontology analysis previously performed on BC cells stably over-expressing ETV7 demonstrated that ETV7 was involved in the suppression of innate immune and inflammatory responses. To better decipher the involvement of ETV7 in these signaling pathways, in this study, we identified TNFRSF1A, encoding for the main receptor of TNF-α, TNFR1, as one of the genes down-regulated by ETV7. We demonstrated that ETV7 directly binds to the intron I of this gene, and we showed that the ETV7-mediated down-regulation of TNFRSF1A reduced the activation of NF-κB signaling. Furthermore, in this study, we unveiled a potential crosstalk between ETV7 and STAT3, another master regulator of inflammation. While it is known that STAT3 directly up-regulates the expression of TNFRSF1A, here we demonstrated that ETV7 reduces the ability of STAT3 to bind to the TNFRSF1A gene via a competitive mechanism, recruiting repressive chromatin remodelers, which results in the repression of its transcription. The inverse correlation between ETV7 and TNFRSF1A was confirmed also in different cohorts of BC patients. These results suggest that ETV7 can reduce the inflammatory responses in breast cancer through the down-regulation of TNFRSF1A.
Collapse
Affiliation(s)
- Erna Marija Meškytė
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laura Pezzè
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Alia Therapeutics, s.r.l., Trento, Italy
| | - Laura Bartolomei
- Laboratory of Radiobiology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mattia Forcato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Irene Adelaide Bocci
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
- Institut für Zellbiologie, Universitätsklinikum Essen, Essen, Germany
| | - Giovanni Bertalot
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | - Mattia Barbareschi
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
| | | | - Alessandra Bisio
- Laboratory of Radiobiology, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daiva Baltriukienė
- Department of Biological Models, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Yari Ciribilli
- Laboratory of Molecular Cancer Genetics, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
10
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
11
|
Bao X, Wang W, Chen X, Feng Y, Xu X, Sun G, Li B, Liu X, Li Z, Yang J. Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Immunol 2022; 13:963931. [PMID: 36211441 PMCID: PMC9538352 DOI: 10.3389/fimmu.2022.963931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
12
|
Zhu Z, Li G, Li Z, Wu Y, Yang Y, Wang M, Zhang H, Qu H, Song Z, He Y. Core immune cell infiltration signatures identify molecular subtypes and promote precise checkpoint immunotherapy in cutaneous melanoma. Front Immunol 2022; 13:914612. [PMID: 36072600 PMCID: PMC9441634 DOI: 10.3389/fimmu.2022.914612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Yutao Wang, China Medical University, ChinaThe tumor microenvironment (TME) has been shown to impact the prognosis of tumors in patients including cutaneous melanoma (CM); however, not all components of TME are important. Given the aforementioned situation, the functional immune cell contents correlated with CM patient prognosis are needed to optimize present predictive models and reflect the overall situation of TME. We developed a novel risk score named core tumor-infiltrating immune cell score (cTICscore), which showed certain advantages over existing biomarkers or TME-related signatures in predicting the prognosis of CM patients. Furthermore, we explored a new gene signature named cTILscore−related module gene score (cTMGs), based on four identified TME-associated genes (GCH1, GZMA, PSMB8, and PLAAT4) showing a close correlation with the cTICscore, which was generated by weighted gene co-expression network analysis and least absolute shrinkage and selection operator analysis to facilitate clinical application. Patients with low cTMGs had significantly better overall survival (OS, P = 0.002,< 0.001, = 0.002, and = 0.03, respectively) in the training and validating CM datasets. In addition, the area under the curve values used to predict the immune response in four CM cohorts were 0.723, 0.723, 0.754, and 0.792, respectively, and that in one gastric cohort was 0.764. Therefore, the four-gene signature, based on cTICscore, might improve prognostic information, serving as a predictive tool for CM patients receiving immunotherapy.cutaneous melanoma, tumor microenvironment, prognosis, immunotherapy, cTICscore
Collapse
Affiliation(s)
- Zheng Zhu
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Guoyin Li
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an, China
| | - Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, Liaoning Province Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yinghua Wu
- School of Medicine, Central South University, Changsha, China
| | - Yan Yang
- Department of Public Health, Southwest Medical University, Luzhou, China
| | - Mingyang Wang
- Department of Ophthalmology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Huihua Zhang
- Department of Plastic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Hui Qu
- Department of Plastic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuanmin He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Yuanmin He,
| |
Collapse
|
13
|
Liu Y, Wang X, Zeng X, Wu Y, Liu X, Tan J, Li X. Bioinformatics-based analysis of SUMOylation-related genes in hepatocellular carcinoma reveals a role of upregulated SAE1 in promoting cell proliferation. Open Med (Wars) 2022; 17:1183-1202. [PMID: 35859792 PMCID: PMC9263891 DOI: 10.1515/med-2022-0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
The function of small ubiquitin-like modifier (SUMO)-related genes in hepatocellular carcinoma (HCC) remains unclear. This study aimed to analyze the expression profile and prognostic relevance of SUMO-related genes using publicly available data. A set of bioinformatics tools and experiments were integrated to explore the mechanism of the genes of interest. The least absolute shrinkage and selection operator Cox regression analysis was used to construct a prognostic model. SUMO-2 and SUMO-activating enzyme subunit 1 (SAE1) were upregulated in HCC. The enrichment analysis indicated that SUMO-2 and SAE1 might regulate the cell cycle. The downregulation of SAE1 inhibited the proliferation of HCC cells, whereas the upregulation of the gene promoted cell proliferation. IGF2BP3 contributed to the upregulation of SAE1 in an N6-methyladenosine (m6A)-dependent way. Eventually, an SAE1-related risk score (SRRS) was developed and validated in HCC. SRRS could serve as an independent prognostic factor and predict the efficiency of transarterial chemoembolization in patients with HCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xiang Wang
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xingzhi Zeng
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinghua Wu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.,Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xinrong Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Yuelu District, Changsha, Hunan, 410013, China
| | - Xiaoyan Li
- Department of Blood Transfusion, Shanxi Province People's Hospital, No. 29 Shuangtasi Street, Yingze District, Taiyuan, Shanxi, 030012, China
| |
Collapse
|
14
|
Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 2022; 13:925618. [PMID: 35898502 PMCID: PMC9311491 DOI: 10.3389/fimmu.2022.925618] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Aims Cuproptosis is a recently identified form of programmed cell death; however, its role in hepatocellular carcinoma (HCC) remains unclear. Methods A set of bioinformatic tools was integrated to analyze the expression and prognostic significance of ferredoxin 1 (FDX1), the key regulator of cuproptosis. A cuproptosis-related risk score (CRRS) was developed via correlation analyses, least absolute shrinkage and selection operator (LASSO) Cox regression, and multivariate Cox regression. The metabolic features, mutation signatures, and immune profile of CRRS-classified HCC patients were investigated, and the role of CRRS in therapy guidance was analyzed. Results FDX1 was significantly downregulated in HCC, and its high expression was associated with longer survival time. HCC patients in the high-CRRS group showed a significantly lower overall survival (OS) and enriched in cancer-related pathways. Mutation analyses revealed that the high-CRRS HCC patients had a high mutational frequency of some tumor suppressors such as tumor protein P53 (TP53) and Breast-cancer susceptibility gene 1 (BRCA1)-associated protein 1 (BAP1) and a low frequency of catenin beta 1 (CTNNB1). Besides, HCC patients with high CRRS showed an increase of protumor immune infiltrates and a high expression of immune checkpoints. Moreover, the area under the curve (AUC) values of CRRS in predicting the efficiency of sorafenib and the non-responsiveness to transcatheter arterial chemoembolization (TACE) in HCC patients reached 0.877 and 0.764, respectively. Significance The cuproptosis-related signature is helpful in prognostic prediction and in guiding treatment for HCC patients.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiangyang Zeng
- Department of Gynecology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yinghua Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China,*Correspondence: Zewen Song,
| |
Collapse
|
15
|
Comprehensive Analysis Identified ETV7 as a Potential Prognostic Biomarker in Bladder Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8530186. [PMID: 34926692 PMCID: PMC8678556 DOI: 10.1155/2021/8530186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 11/18/2022]
Abstract
Background The tumor microenvironment (TME) plays a crucial role in the initiation and progression of cancer. Bladder cancer (BLCA) is a malignant tumor of the genitourinary system. Its heterogeneity results in significant differences in the prognosis of patients. To date, this is still a huge challenge for clinical treatment. In recent years, more and more evidence showed that dysregulation of transcription factors (TFs) plays an important role in tumor progression, invasion, and metastasis. Unfortunately, the role of TFs on the tumor microenvironment in bladder cancer is unclear. Methods The original data of BLCA and corresponding adjacent tissues were obtained from The Cancer Genome Atlas (TCGA) database. TFs were downloaded from the Animal Transcription Factor DataBase (Animal TFDB). Intersection analysis was used to obtain TFs that were differentially expressed between tumor and adjacent tissues. Gene Set Cancer Analysis (GSCALite) and CIBERSORT software were used to reveal the key differentially expressed TFs (DE-TFs). Subsequently, UALCAN and Human Protein Atlas (HPA) databases were used to disclose the expression of key DE-TFs in BLCA. The K-M curve divulged the relationship between the key DE-TFs and the patient's overall survival (OS), and the univariate and multivariate Cox regression analyses were conducted to explore independent prognostic factors. The cluster profiler package and Gene Set Enrichment Analysis (GSEA) were used for functional enrichment of genes related to the key DE-TFs. Finally, CIBERSORT software analyzed the immune landscape of BLCA. Results We obtained a total of 117 BLCA-related DE-TFs. Among them, ETV7 was identified as the key DE-TFs due to its association with the autophagy activation pathway and various immune cells in cancer. Online databases of UALCAN and HPA indicated that ETV7 was overexpressed in tumors and negatively correlated with tumor severity. The K-M curve showed that the OS of patients with high expression of ETV7 was poor, which indicated that it was an independent prognostic factor. Functional enrichment of 87 DEGs between ETV7-high and -low expression groups indicated that it was closely related to the immune response and the functions of a variety of immune cells. Finally, CIBERSORT results proved that the high and low expression of ETV7 also caused significant differences in the tumor immune microenvironment of patients. Conclusion Overall, we proved that the transcription factor ETV7 was a novel prognostic factor, which may improve the individualized outcome prediction in BLCA by regulating the tumor immune microenvironment.
Collapse
|
16
|
Deng Y, Song Z, Huang L, Guo Z, Tong B, Sun M, Zhao J, Zhang H, Zhang Z, Li G. Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer. Aging (Albany NY) 2021; 13:24768-24785. [PMID: 34844217 PMCID: PMC8660621 DOI: 10.18632/aging.203714] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 01/05/2023]
Abstract
Background: Tumor purity plays a vital role in the biological process of solid tumors, but its function in gynecologic cancers remains unclear. This study explored the correlation between tumor purity and immune function of gynecological cancers and its reliability as a prognostic indicator of immunotherapy. Methods: Gynecological cancer-related datasets were downloaded from The Cancer Genome Atlas (TCGA). Tumor purity was calculated by the ESTIMATE algorithm. A LASSO Cox regression analysis was performed to construct the risk score model. A Kaplan–Meier Plotter was used to explore the relationships between tumor purity and cancer prognosis. We performed the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) to explore the pathways in the subgroups. A nomogram was used to quantitatively assess the cancer prognosis. Results: Tumor purity was negatively correlated with B cell infiltration in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Approximately 420 genes were positively associated with B cell infiltration and CESC prognosis and were enriched in immune-related signaling pathways. There were 11 key genes used to construct a risk score model. The low-risk group had a higher immune score and better prognosis than the high-risk group. A nomogram based on risk score, T stage, and clinical-stage had good predictive value in quantitatively evaluating CESC prognosis. Conclusions: This study is the first to reveal the correlation between tumor purity and immunity in CESC and suggests that low-risk patients may be more sensitive to immunotherapy. This provides a theoretical basis for the clinical treatment of CESC.
Collapse
Affiliation(s)
- Yali Deng
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zhenni Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Binghua Tong
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Meiqing Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jin Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Huina Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
17
|
Jiang T, Zhou W, Chang Z, Zou H, Bai J, Sun Q, Pan T, Xu J, Li Y, Li X. ImmReg: the regulon atlas of immune-related pathways across cancer types. Nucleic Acids Res 2021; 49:12106-12118. [PMID: 34755873 PMCID: PMC8643631 DOI: 10.1093/nar/gkab1041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
Immune system gene regulation perturbation has been found to be a major cause of the development of various types of cancer. Numbers of mechanisms contribute to gene expression regulation, thus, systematically identification of potential regulons of immune-related pathways is critical to cancer immunotherapy. Here, we comprehensively chart the landscape of transcription factors, microRNAs, RNA binding proteins and long noncoding RNAs regulation in 17 immune-related pathways across 33 cancers. The potential immunology regulons are likely to exhibit higher expressions in immune cells, show expression perturbations in cancer, and are significantly correlated with immune cell infiltrations. We also identify a panel of clinically relevant immunology regulons across cancers. Moreover, the regulon atlas of immune-related pathways helps prioritizing cancer-related genes (i.e. ETV7, miR-146a-5p, ZFP36 and HCP5). We further identified two molecular subtypes of glioma (cold and hot tumour phenotypes), which were characterized by differences in immune cell infiltrations, expression of checkpoints, and prognosis. Finally, we developed a user-friendly resource, ImmReg (http://bio-bigdata.hrbmu.edu.cn/ImmReg/), with multiple modules to visualize, browse, and download immunology regulation. Our study provides a comprehensive landscape of immunology regulons, which will shed light on future development of RNA-based cancer immunotherapies.
Collapse
Affiliation(s)
- Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhenghong Chang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haozhe Zou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Qisen Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Tao Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yongsheng Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
18
|
Zhang X, Liu Y, Zhang Z, Tan J, Zhang J, Ou H, Li J, Song Z. Multi-Omics Analysis of Anlotinib in Pancreatic Cancer and Development of an Anlotinib-Related Prognostic Signature. Front Cell Dev Biol 2021; 9:649265. [PMID: 33748143 PMCID: PMC7969999 DOI: 10.3389/fcell.2021.649265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Aberrant regulation of angiogenesis involves in the growth and metastasis of tumors, but angiogenesis inhibitors fail to improve overall survival of pancreatic cancer patients in previous phase III clinical trials. A comprehensive knowledge of the mechanism of angiogenesis inhibitors against pancreatic cancer is helpful for clinical purpose and for the selection of patients who might benefit from the inhibitors. In this work, multi-omics analyses (transcriptomics, proteomics, and phosphoproteomics profiling) were carried out to delineate the mechanism of anlotinib, a novel angiogenesis inhibitor, against pancreatic cancer cells. The results showed that anlotinib exerted noteworthy cytotoxicity on pancreatic cancer cells. Multi-omics analyses revealed that anlotinib had a profound inhibitory effect on ribosome, and regulated cell cycle, RNA metabolism and lysosome. Based on the multi-omics results and available data deposited in public databases, an anlotinib-related gene signature was further constructed to identify a subgroup of pancreatic cancer patients who had a dismal prognosis and might be responsive to anlotinib.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yang Liu
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhen Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Tan
- Department of Pathology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Junjun Zhang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hao Ou
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Department of Information Science and Engineering, Hunan University of Chinese Medicine, Changsha, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|